
Explainable Machine Learning Frameworks for
Managing HPC Systems

Emre Ates∗‡, Burak Aksar∗‡, Vitus J. Leung†, and Ayse K. Coskun∗
∗Dept. of Electrical and Computer Eng.

Boston University
Boston, MA, USA

Email: {ates,aksar,acoskun}@bu.edu
†Sandia National Laboratories

Albuquerque, NM, USA
Email: vjleung@sandia.gov

Abstract—Recent research on supercomputing proposes a va-
riety of machine learning frameworks that are able to detect
performance variations, find optimum application configurations,
perform intelligent scheduling or node allocation, and improve
system security. Although these goals align well with HPC
systems’ needs, barriers such as the lack of user trust or
the difficulty of debugging need to be overcome to enable the
widespread adoption of such frameworks in production systems.
This paper evaluates a new counterfactual time series explainabil-
ity method and compares it against state-of-the-art explainability
methods for supervised machine learning frameworks that use
multivariate HPC system telemetry data. The counterfactual
time series explainability method outperforms existing methods
in terms of comprehensibility and robustness. We also show how
explainability techniques can be used to debug machine learning
frameworks and gain a better understanding of HPC system
telemetry data.

Index Terms—high performance computing, monitoring, ex-
plainability, interpretability, machine learning, time series

I. INTRODUCTION

High performance computing (HPC) systems produce ter-
abytes of instrumentation data per day in the form of logs,
metrics, and traces. HPC monitoring frameworks organize
system-wide resource utilization metrics as multivariate time
series, each time series representing a different resource statistic
such as network packet counts, CPU utilization, or memory
statistics. Thousands of metrics can be collected per node and
each metric is sampled on intervals of seconds to minutes [1]–
[3]. Analyzing this data is invaluable for management and
debugging [1], [4], but extensive manual analysis of this data
is not feasible.

Recently, researchers have begun using machine learning
(ML) to help understand HPC system telemetry data and gain
useful insights. ML approaches can process vast volumes of
data and, in addition, ML-based frameworks benefit from the
versatility of models that generalize to various systems and
even previously unseen situations. ML frameworks have been
shown to diagnose performance variations [5]–[8], improve
scheduling [9] or improve system security by detecting un-
wanted or illegal applications on HPC systems [10] using

‡
The authors have contributed equally to this work.

multivariate time series data. In this paper, we refer to such
ML frameworks that use multivariate time series HPC system
telemetry data as HPC ML frameworks.

The growth in ML frameworks indicates that ML is be-
coming a key part of HPC system analysis and manage-
ment. Widespread adoption of such methods in production
systems, however, depends on solving important challenges in
accountability, accuracy, and explainability. These frameworks
commonly have a taciturn nature, e.g., reporting only the final
classification result “memory leakage on nodeid:599”
without providing reasoning relating to the underlying data.
Furthermore, black-box ML models can perform several data
transformations before classification is achieved, and thus
are often difficult to understand. The black-box design of
these frameworks creates a multitude of disadvantages such as
degrading user trust and making debugging challenging.

Researchers have proposed a variety of methods to resolve
this ML explainability problem. Some classifiers such as
linear regression and decision trees are inherently interpretable.
However, in our experience, even decision trees can become
overly complex when trained with HPC data sets. There
are also methods that explain black-box classifiers [11],
based on whether they explain a single prediction or the
complete classifier. However, most of the current explainability
approaches are not designed for multivariate time series data
and do not produce sufficiently clear explanations when it
comes to explaining the HPC ML frameworks.

There are several reasons that existing explainability methods
fail to provide satisfactory explanations for HPC time series
data. One differentiating factor is the complexity of the data.
Figure 1 shows a sample where 199 metrics are obtained via
the system telemetry during an application run. Current sample-
based methods [12] are built on the premise that one sample
is self-explanatory and users can visually differentiate between
two samples; however, additional sample HPC time series data
with hundreds of metrics similar to the one shown in Fig. 1 is
not a sufficient explanation. On the other hand, existing feature-
based methods [13], [14] provide a collection of features and
require users to know normal and abnormal values for features,
as well as their meanings.

0 10 20 30 40
Time (s)

0

1

2

3

4

5

6

Va
rio

us
 m

et
ric

s
1e7

Fig. 1. A 45-second time window sample from a single node of a multi-node
application execution on Voltrino, a Cray XC30m supercomputer with 56
nodes.

In this paper, we evaluate a novel time series explainability
method [15] that provides counterfactual explanations for time
series and compare it against state-of-the-art explainability
methods, LIME [13] and SHAP [14], using various HPC
system telemetry datasets. The counterfactual explanations
consist of hypothetical samples that are as similar as possible
to the sample that is explained, while having a different
classification label, i.e., “if these metrics were different in
the given sample, the classification label would have been
different.” The counterfactual time series explainability method
generates explanations by selecting a minimum number of time
series from the training set and substituting them in the sample
under investigation to obtain different classification results.
By analyzing a limited range of substituted metrics, system
administrators or users may understand the expected behavior
of the model. It is also possible to use these explanations to
debug misclassifications, understand how the classifier makes
decisions, provide adaptive dashboards that explain critical
metrics from ongoing application runs and learn about the
essence of normal or anomalous behavior of a system.

Our specific contributions are as follows:

• Demonstration of existing general-purpose explainability
methods and how they are inadequate to explain HPC
time series frameworks (§ V-A),

• demonstration of the counterfactual time series explain-
ability method with several ML-based HPC frameworks
and data sets (§ IV, V),

• comparison of the counterfactual time series explainability
method with state-of-the-art explainability methods using a
set of novel and standard metrics. The counterfactual time
series explainability method generates comprehensible
explanations for HPC time series data, and performs
better than baselines in terms of faithfulness and robust-
ness (§ V).

II. BACKGROUND AND RELATED WORK

In this section, we discuss the use of ML in HPC, the need
for explainable AI methods, existing explainability methods
and their limitations.

A. Machine Learning in HPC

As the scale of HPC systems increased to millions of cores
and thousands of nodes, automated techniques have become
essential to ensure the reliability, security, and efficiency
of the systems. Consequently, researchers have developed
many frameworks, techniques, and algorithms to automate
HPC system management using ML. Tuncer et al. design a
supervised learning framework that extracts statistical features
from the time series, and uses models such as the random
forest to classify performance variations [5], [6]. Borghesi et
al. describe an autoencoder-based unsupervised framework that
detects performance anomalies using the anomalous behavior
in system telemetry data [7].

ML has been applied to HPC time series data for other
novel purposes as well. Ates et al. describe a feature extraction
and random forest based framework that classifies applications
executing on the nodes, and demonstrate successful detection
of unwanted applications such as cryptocurrency miners [10].
Klinkenberg et al. describe a supervised learning framework
that extracts statistical features and uses a random forest
classifier to detect critical node failures before they happen [8].

B. Existing Explainability Methods

The field of explainability aims to generate explanations
for existing black-box models and we need to ensure that
administrators and users are able to make sense of the ML
classifications and predictions, and accordingly iterate on their
design, fix possible bugs, or determine additional probes for
data collection.

We use the helpful classification of Arya et al. when
discussing the existing literature [11]. We focus on explainable
models and local sample- and feature-based explanations for
black-box models.

Explainable models learn a model that is inherently under-
standable by untrained operators. They include simple models
like logistic regression and decision trees and newer models
like CORELS, which learns minimal rule lists that are easy to
understand [16]. CORELS fails to learn a usable model and
decision trees become too complex when HPC time series data
is applied.

Sample-based explanations provide samples that explain
decisions by giving supportive or counter examples, or proto-
types of certain classes. Koh and Liang use influence functions
to find training set samples that are most impactful for a
specific decision [17]. Contrastive explanations method (CEM)
provides a synthetic sample with a different classification result
that is as similar to the input sample as possible, while using
autoencoders to ensure the generated sample is realistic [12].
Sample-based methods do not address the inherent complexity
of HPC data, since they focus on tabular data or images where
the test sample and the explanation sample are easy to compare
manually. HPC time series data with thousands of time series
per sample is challenging for users to compare and contrast
without additional computing.

Feature-based explanations highlight certain features that
are impactful during classification. Global feature-based expla-

nations for some classifiers such as random forests and logistic
regression use the learned weights of the classifiers [18]. Local
feature-based explanations include LIME, which fits a linear
model to classifier decisions for samples in the neighborhood
of the sample to be explained [13]. SHAP derives additive
Shapley values for each feature to represent the impact of
that feature [14]. These feature-based models do not support
using time series directly; however, many HPC frameworks
use feature transformations and feature-based explanations can
explain these models’ classifications in terms of the features
they use. In this case, interpreting the meaning of complex
features is left to the user.

Time series specific explanations have also been foci of
research. Schegel et al. evaluate different general purpose
explainability methods on time series [19]. Karlsson et al.
propose a method to synthetically generate sample-based
explanations for time series [20]. All of these methods operate
on univariate time series and do not address the problem of
explaining multivariate time series. Assaf and Roy propose a
method to extract visual saliency maps for multivariate time
series [21]; however, their method is specific to deep neural
networks. Furthermore, saliency maps lose their simplicity
when scaled to hundreds or thousands of time series.

Counterfactual explanations have been used to explain
ML models. Wachter et al. are among the first to use the
term “counterfactual” for ML explanations [22]. DiCE is an
open source counterfactual explanation method for black-box
classifiers [23]. To the best of our knowledge, there are no
existing methods to generate counterfactual explanations for
high-dimensional multivariate time series. Furthermore, many
of these methods generate synthetic data without specifically
addressing the difficulties of generating highly-correlated
multivariate time series data, which is the type of data used in
HPC ML frameworks.

III. SELECTED EXPLAINABILITY METHODS FOR HPC ML
FRAMEWORKS

A. Counterfactual Time Series Explainability Method

We use the counterfactual time series explanation method
proposed in our recent work to generate explanations for a
black-box ML model that uses multivariate time series data
as input [15]. Our method operates by finding a minimum
set of feature substitutions from a distractor, xdist, that will
change the classification result of a test sample, xtest, such
that the resulting sample is predicted as the class of interest, c.
At a high level, the method provides an explanation like the
following, “if feature X was not exceeding Y over time, xtest
would not be classified as memory leakage”. The format of the
counterfactual explanation is identical to the format of the xtest
with the same number of time series and same window length.
The optimum counterfactual explanation can be constructed by
finding xdist among the training set and A which minimizes

L (f, c, A, x′) =
(
(τ − fc(x′))+

)2
+ λ(||A||1 − δ)+,

*A sample from the dataset, which results in a new classification result.

where

x′ = (Im −A)xtest +Axdist,

τ is the target probability for the classifier, δ is the desired
number of features in an explanation, λ is a tuning parameter,
Im is the m × m identity matrix, and x+ = max(0, x),
which is the rectified linear unit (ReLU). ReLU is used to
avoid penalizing explanations shorter than δ. We set δ = 3,
as it is shown to be a suitable number of features in an
explanation [24].
A is a binary diagonal matrix where Aj,j = 1 if metric

j of xtest is going to be swapped with that of xdist, and 0
otherwise. While forming A, we replace each feature in xtest
by the corresponding feature from xdist. In each iteration, we
choose the feature that leads to the highest increase in the
prediction probability. After we replace a feature in xtest, we
continue the greedy search with the remaining feature set until
the prediction probability exceeds τ , which is the predefined
threshold that will flip the prediction when it is exceeded.

B. LIME

LIME stands for local interpretable model-agnostic expla-
nations [13]. LIME operates by fitting an interpretable linear
model to the classifiers predictions of random data samples.
The samples are weighted based on their distance to the test
sample, which generates local explanations. When generating
samples, LIME produces samples within the range found in the
training set. In our evaluation, we use the open-source LIME
implementation.

LIME does not directly apply to time series as it operates
by sampling the classifier using randomly generated data.
Randomly generating HPC time series data while still following
the physical constraints in the data as well as preserving
representative behavior over time is a challenging open problem.
In our evaluation, we apply LIME to frameworks that perform
feature extraction, and LIME interprets the classifier that takes
features as input. LIME requires the number of features in the
explanation as a user input. Generally, it is hard for users to
know how many features in an explanation are adequate. In our
experiments, we use the number of metrics in the counterfactual
time series explanation method’s explanation as LIME’s input.

C. SHAP

The Shapley additive explanations (SHAP), presented by
Lundberg and Lee [14], propose 3 desirable characteristics of
explanations, local accuracy, missingness and consistency.

Using the model parameters, SHAP calculates feature
importance values. We use the open-source KernelSHAP
implementation, which we refer to as SHAP in the remainder
of the paper. SHAP also suffers from one of the limitations of
LIME; it is not directly applicable to time series, so we apply
SHAP to frameworks that perform feature extraction. SHAP
does not require the number of features in the explanation as
an input.

IV. EXPERIMENTAL SETUP

In this section, we describe the data sets, comparison metrics
and ML frameworks we use to evaluate the counterfactual time
series explainability method [15] along with other baseline
explainability methods.

A. Comparison Metrics

There is no consensus on metrics for comparing explain-
ability methods in academia [25], [26]. In this work, we
use 4 metrics proposed in our recent work to compare the
counterfactual time series explanation method with baseline
methods [15].

Faithfulness to the original model: An explanation is
faithful to the classifier if it reflects the actual reasoning
process of the model and it is a first-order requirement of
any explainability method [13]. To test the faithfulness of the
methods, we explain a simple model with a known reasoning
process and report the precision and recall of the explanations.

Comprehensibility by human operators: According to a
survey by Miller [24], humans prefer only 1 or 2 causes
instead of an explanation that covers the actual and full list
of causes and comprehension of an explanation should not
require advanced ML knowledge. This is particularly important
for HPC time series data, because each time series represents
a different metric and each metric usually needs research to
understand the meaning. Thus, to evaluate comprehensibility,
we compare the number of time series that are returned in
explanations by different explainability methods.

Robustness to changes in the sample: A good explanation
would not only explain the given sample, but provide similar
explanations for similar samples [27], [28]. A method that
have been used to measure robustness is the local Lipschitz
constant [27]. Intuitively, the Lipschitz constant measures the
ratio of change of explanations to changes in the samples.

Generalizability of explanations: Each explanation should
be generalizable to similar samples; otherwise, human operators
using the explanations would not be able to gain an intuitive
understanding of the model. Furthermore, for misclassifications,
it is more useful for the explanations to uncover classes of
misclassifications instead of a single mishap. We measure
generalizability by applying an explanation’s substitutions to
other samples. If the same metric substitutions from the same
distractor can flip the prediction of other samples, that means
the explanation is generalizable.

B. Data Sets

We use three multivariate HPC system telemetry time series
data sets. For all data sets, we normalize the data such that
each time series is between 0 and 1 across the training set. We
use the same normalization parameters for the test set. We use
normalized data to train classifiers, and provide normalized
data to the explainability methods. However, the real values
of metrics are meaningful to users (e.g., CPU utilization %),
so we provide un-normalized data in the explanations given to
users and our figures in the paper.

HPAS data set: We use the HPC performance anomaly
suite (HPAS) [3] to generate synthetic performance anomalies
on HPC applications and collect time series data using
LDMS [1]. We run our experiments on Voltrino at Sandia
National Laboratories, a 24-node Cray XC30m supercomputer
with 2 Intel Xeon E5-2698 v3 processors and 125 GB of
memory per node [29]. We run the Cloverleaf, CoMD, mini-
AMR, miniGhost, and miniMD from the Mantevo Benchmark
Suite [30], proxy applications Kripke [31] and SW4lite [32],
and MILC [33] which represents part of the codes written by
the MIMD Lattice Computation collaboration. We run each
application on 4 nodes, with and without anomalies. We use the
cpuoccupy, memorybandwidth, cachecopy, memleak, memeater
and netoccupy anomalies from HPAS.

Each sample has 839 time series, from the /proc filesystem
and Cray network counters. We take a total of 617 samples for
our data set, and we divide this into 350 training samples and
267 test samples. One sample corresponds to the data collected
from a single node of an application run. After this division,
we extract 45 second time windows with 30 second overlaps
from each sample.

Cori data set: We collect telemetry data from Cori [34] to
test explainability methods’ performance with real applications
in a large-scale system. The goal of this data set is to use
monitoring data to classify applications. Cori is a Cray XC40
supercomputer with 12,076 nodes. We run our applications
in compute nodes with 2 16-core Intel Xeon E5-2698 v3
processors and 128 GB of memory. We run 6 applications on
64 nodes for 15-30 minutes: 3 real applications, LAMMPS [35],
a classical molecular dynamics code with a focus on materials
modeling, QMCPACK [36], an open-source continuum quan-
tum Monte Carlo simulation code, HACC [37], an open-source
code uses N-body techniques to simulate the evolution of the
universe; 2 proxy applications, NEKBone and miniAMR from
ECP Proxy Apps Suite [38]; and HPCG [39] benchmark, which
is used to rank the TOP500 computing systems.

We collect a total of 9216 samples and we divide this
sample set into 7373 training and 1843 test samples. Each
sample represents the data collected from a single node of an
application run and has 819 time series collected using LDMS
from the /proc filesystem and PAPI [40] counters.

Taxonomist data set: This data set, released by Ates
et al. [41], was collected from Voltrino, a Cray XC30m
supercomputer, using LDMS. The data set contains runs of 11
different applications with various input sets and configurations,
and the goal is to classify the different applications.

We use all of the data, which has 4728 samples. We divide it
into 3776 training samples and 952 test samples. Each sample
has 563 time series. Each sample represents the data collected
from a single node of an application run.

C. Machine Learning Techniques

We evaluate the explainability techniques by explaining 3
different ML pipelines that represent different HPC frameworks
proposed by researchers.

0 5 10 15 20 25 30 35 40 45
Time (s)

0

2000

4000

pgalloc_normal::vmstat

xtest

Distractor

0 5 10 15 20 25 30 35 40 45
Time (s)

0

5

10
htlb_buddy_alloc_success::vmstat

Fig. 2. The explanation of the counterfactual time series explanation method
for correctly classified time window with the “memleak” label. The method
provides two metrics as an explanation to change classification label from
“memleak” to “healthy.” The metrics are shown in the y-axes and the metric
names are above the plots.

Feature Extraction + Random Forest: This technique
represents a commonly used pipeline to classify time series
data for failure prediction, diagnose performance variability, or
classify applications [5], [6], [8], [10]. For example, Tuncer et
al. [5] diagnose performance anomalies at runtime by collecting
time series data with different types of anomalies, and train a
random forest to classify the type, or absence, of anomalies
using statistical features extracted from time series.

We extract 11 statistical features including the minimum,
maximum, mean, standard deviation, skew, kurtosis, 5th, 25th,
50th, 75th and 95th percentiles from each of the time series.
Then, we train scikit-learn’s random forest classifier based on
these features.

Autoencoder: Borghesi et al. has proposed an autoencoder
architecture for anomaly detection using HPC time series
data [7]. The autoencoder is trained using only “healthy”
data, and it learns a compressed representation of this data.
At runtime, data is reconstructed using the autoencoder and
the mean error is measured. A high error means the new
data deviates from the learned “healthy” data; thus it can
be classified as anomalous. We implement the architecture
described by Borghesi et al. and use it for our evaluation. In
order to convert the mean error, which is a positive real number,
to class probabilities between 1 and 0, we subtract the chosen
threshold from the error and use the sigmoid function. This
autoencoder model is a deep neural network, and deep neural
networks are known to be one of the least explainable ML
methods.

Feature Extraction + Logistic Regression: The logistic
regression classifier is inherently interpretable, so we use this
pipeline for sanity checks of our explanations in experiments
where we need a ground truth for explanations. For input
feature vector x the logistic regression model we use calculates
the output y using the formula:

y = S(w · x),

where S(z) = 1
1+e−z is the sigmoid function. Thus, the

0.45

0.45

0.50

0.50

0.55

0.55

0.60

0.60

Model output value

std_HugePages_Surp::meminfo
perc95_htlb_buddy_alloc_success::vmstat

perc25_loadavg_running_processes::cray_aries_r
perc75_pgalloc_normal::vmstat

perc75_htlb_buddy_alloc_success::vmstat
perc05_loadavg_running_processes::cray_aries_r

perc95_pgalloc_normal::vmstat
perc05_procs_running::procstat

mean_loadavg_running_processes::cray_aries_r
perc50_loadavg_running_processes::cray_aries_r

 (3,962.173)
 (10)
 (65)
 (5,127)
 (10)
 (65)
 (5,132)
 (65)
 (65.022)
 (65)

Fig. 3. The explanation of SHAP for a correctly classified time window with
the “memleak” label. SHAP provides 187 features with non-zero SHAP values
to explain the characteristics of “memleak” anomaly of which we show the top
10 in the figure. It is very challenging to understand how many features are
sufficient for an explanation, whether these features are relevant to “memleak”
or other anomalies, or how to interpret the feature values in the explanation.

classifier only learns the weight vector w during training*.
Furthermore, it is possible to deduce that any feature xi for
which the corresponding weight wi is zero has no effect on
the classification. Similarly, features can be sorted based on
their impact on the classifier decision using |wi|. We use the
same features as the random forest pipeline.

V. EVALUATION

In this section, we evaluate the counterfactual time series
explanation method and compare it with other explainability
methods based on qualitative comparisons and the metrics
described in Sec. IV.

A. Qualitative Evaluation

Our first-order evaluation is to use the counterfactual time
series explanation method and the baselines to explain a
realistic classifier. we use the random forest classifier with
feature extraction [5], [6] and the HPAS dataset, which includes
different types of performance anomalies. From HPAS data
set, we choose “memleak” anomaly, which makes increasing
memory allocations without freeing to mimic memory leakage.
Our goal is to better understand the classifier’s understanding
of the “memleak” anomaly. We select a correctly classified
time window with the memleak label as xtest, and the “healthy”
class as the class of interest. We run the counterfactual time
series explanation method, LIME, and SHAP with the same
xtest and compare the results.

The counterfactual time series explanation method provides
two time series as explanation, and is shown in Fig. 2.
The first metric to be replaced is pgalloc_normal from
/proc/vmstat, which is a counter that represents the
number of page allocations. The plot shows the number of page
allocations per second due to the preprocessing. It is obvious
that performing memory allocations in a periodic manner is
one important factor contributes to memory leaks.

*Other formulations of logistic regression include a b term such that
y = S(w · x+ b), but we omit this for better interpretability.

0.02 0.00 0.02 0.04

perc95_compact_free_scanned::vmstat <= 0.00
perc95_compact_isolated::vmstat <= 0.00

kurt_nr_isolated_file::vmstat <= 0.00
perc50_pgalloc_normal::vmstat > 18.00

min_softirq::procstat <= 0.00
skew_pginodesteal::vmstat <= 0.00

mean_nr_isolated_file::vmstat <= 0.00
std_nr_isolated_anon::vmstat <= 0.00

perc75_htlb_buddy_alloc_success::vmstat > 0.00
perc95_pgalloc_normal::vmstat > 83.00

Local explanation for class leak

Fig. 4. The explanation of LIME for correctly classified time window with the
“memleak” label. LIME provides features that positively (green) and negatively
(red) affect the decision. Although the first two features are derived from the
metrics in the counterfactual time series explanation method’s explanation, it
is not straightforward to interpret the values of the features, especially the
negative ones. The number of features is an input from the user.

The second metric, from the same time window, in Fig. 2
is htlb_buddy_alloc_successes, which shows the
number of successful huge page allocations. Memory leaks do
not need to cause huge page allocations, since memory leaks
in a system with fragmented memory might cause failed huge
page allocations. This shows that our training set is biased
towards systems with less fragmented memory, most likely
because many of the benchmarks are short-lived.

The LIME explanation is shown in Fig. 4. Green values
indicate that the features were used in favor of memory leak,
and red values were opposing memory leak. We keep the
number of features in the explanation at the default value of
10. The first two features are derived from the metrics in our
explanation, and a threshold is given for the features, e.g., the
95th percentile of page allocations is over 83, which causes
this run to be likely to be a memory leak. Interpreting features
such as percentiles, standard deviation and thresholds on their
values is left to the user. Furthermore, the effect of the red
features is unclear, as it is not stated which class the sample
would be if it is not labeled as leak.

The SHAP explanation, in Fig. 3, contains 187 features
with very similar SHAP values. Even though we can sort the
features by importance, it is difficult to decide how many
features are sufficient for a good explanation. Also, SHAP
provides a single explanation for one sample, regardless of
which class we are interested in, so the most important features
are features that are used to differentiate this run from other
CPU-based anomalies, which may not be relevant if our goal
is to understand memory leak characteristics. Finally, it is left
to the user to interpret the values of different features, e.g.,
the 75th percentile of pgalloc_normal was 5,127; however,
this does not inform the user of normal values for this metric,
or whether it was too high or too low.

LIME and SHAP get prediction probabilities for randomly
generated data and use this for the explanations. Therefore,
it is important to ensure that the randomly generated data
is realistic. However, the random data generations assumes
that all of the features are independent variables. In reality,
many features are in fact dependent, e.g., statistical features
generated from the same metric. The counterfactual time series
explanation method does not generate synthetic data and uses

the entire time series instead of just the features, and makes
no assumptions on the dependence of features.

B. Comprehensibility

We use the number of metrics in the explanation to calculate
comprehensibility. The counterfactual time series explanation
method returns 2 time series for the qualitative evaluation
example in Fig. 2, and in most cases the number is below 3
but can go up to 10 for some difficult cases. SHAP returns 187
features, and typically SHAP explanations contain hundreds of
features for HPC time series data. LIME requires the number
of features as an input and does not include instructions of
how to select the number of features.

C. Faithfulness Experiments

We check if the explanations represent the model’s decision-
making process, i.e., whether they are faithful to the model.
For every data set, we train a logistic regression model with
L1 regularization. We change the L1 regularization parameter
until the classifier uses less than 10 features. In a logistics
regression model, it is possible to see number of features used
in the classification. For HPAS and Cori data sets, the resulting
classifier uses 5 features and 8 for Taxonomist. Because we
know the used features, we can rank the explanations based
on precision and recall.
• Recall: How many of the metrics used by the classifier

are in the explanation?
• Precision: How many of the metrics in the explanation

are used by the classifier?
We get explanations for each sample in the test set, and

show the average precision and recall in Fig. 5. We first run
the greedy search method and get the number of metrics in the
explanation to not disadvantage other explainability methods.
Then, we get the same number of metrics from each method.
In this way, e.g., LIME is not adversely affected by trying to
provide 10 features in the explanation even though only 7 are
used by the classifier.

The results show that besides random, all explainability
methods are relatively strong in faithfulness. LIME has, in
particular, low precision for Cori and Taxonomist data sets
which show that LIME explanations contain features that the

HPAS Cori Taxonomist
Data Set

0.7

0.8

0.9

1.0

Pr
ec

isi
on

HPAS Cori Taxonomist
Data Set

0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll

OptimizedSearch Greedy SHAP LIME Random

Fig. 5. Precision and recall of the explanations for a classifier with known
feature importances. The counterfactual time series explanation method
(OptimizedSearch and Greedy), and SHAP have perfect precision. LIME
has lower precision for Cori and Taxonomist data sets, which indicates that
although some features have no impact on the classifier decision, they are
included in the LIME explanations. The low recall indicates that not every
feature is used in every local decision.

HPAS Cori Taxonomist
Data Set

0.0

0.5

1.0

1.5
No

rm
al

ize
d

Lip
sc

hi
tz

 C
on

st
an

t
Method

OptimizedSearch
Greedy
SHAP
LIME
Random

Fig. 6. Robustness of explanations to changes in the test sample. The
counterfactual time series explanation method (OptimizedSearch and Greedy)
is the most robust to small changes in the input, resulting in more predictable
explanations and better user experience. Lipschitz constant is normalized
to enable comparisons among data sets, and a lower value indicates better
robustness.

classifier actually does not use at all. This could be due to the
randomness in the data sampling stage of LIME.

D. Robustness Experiments

For robustness, we calculate the Lipschitz constant for each
test sample and show average results in Fig. 6. In these results,
the counterfactual time series explanation method is the most
robust explainability technique since it does not involve random
data generation for explanations, which reduces the randomness
in the explanations. It is important for explanations to be
robust, which ensures that users can trust the ML models and
explanations.

E. Generalizability Experiments

We evaluate if the counterfactual time series explanation
method’s explanations for one xtest are generalizable to other
samples. We use the HPAS data set and random forest classifier
with feature extraction. There are 3 classes that are confused
with each other. For each misclassified test instance, we get
an explanation and apply the same metric substitutions using
the same distractor to other test samples with the same (true
class, predicted class) pair. We report the percentage of (true
class, predicted class) pairs that flip the prediction with the
explanation among all possible (true class, predicted class) pairs
in Fig. 7. According to the results, on average, explanations
for one mispredicted sample are applicable to over 40% of
similarly mispredicted samples. This shows that users do not
need to manually check the explanation for every misprediction,
and instead they can get a general understanding of the error
characteristics of the classifiers from a few explanations, which
is one of the main objectives of explainability.

cachecopy cpuoccupy membw
Predicted

cachecopy

cpuoccupy

membw

Ac
tu

al

0.37 0.13

1 0.28

0.48 0.34
0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Fig. 7. The ratio of test samples that the counterfactual time series explanation
method’s explanations are applicable to, among samples with the same
misclassification characteristics. For the cpuoccupy runs that are misclassified
as cachecopy, every explanation is applicable to every other sample with the
same misclassification.

VI. CONCLUSION AND FUTURE WORK

We identify the following open problems for future explo-
ration. Such data is widely used in ML-based HPC analysis and
management methods that show a lot of promise to improve
HPC system performance, efficiency, and resilience. Being
explainable is an important requirement for any ML framework
that seeks widespread adoption.

Production systems: The challenges faced when deploying
ML frameworks on HPC systems can lead to important research
questions, and it has been shown that user studies are critical
for evaluating explainability methods [42]. We hope to work
with administrators and deploy HPC ML frameworks with our
explainability method to production systems and observe how
administrators use the frameworks and explanations, and find
the strengths and weaknesses of different approaches.

Explainable models: During our experiments, we conducted
a preliminary experiment using CORELS, which is an inter-
pretable model that learns rule lists [16]. We trained CORELS
using the HPAS data set to classify the time windows between
the 5 anomalies and the healthy class. Regardless of our
experimentation with different configuration options, the model
in our experiments took over 24 hours to train and the resulting
rule list classified every time window as healthy regardless of
the input features. Challenges in this direction include designing
inherently explainable models that provide good accuracy for
HPC time series data.

ACKNOWLEDGMENT

This work has been partially funded by Sandia National Labora-
tories. Sandia National Labs is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under Contract DE-NA0003525.

REFERENCES

[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight
distributed metric service: A scalable infrastructure for continuous
monitoring of large scale computing systems and applications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014, pp. 154–165.

[2] A. Bartolini, A. Borghesi, A. Libri, F. Beneventi, D. Gregori, S. Tinti,
C. Gianfreda, and P. Altoè, “The D.A.V.I.D.E. big-data-powered fine-
grain power and performance monitoring support,” in Proceedings of
the 15th ACM International Conference on Computing Frontiers, ser.
CF ’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 303–308.

[3] E. Ates, Y. Zhang, B. Aksar, J. Brandt, V. J. Leung, M. Egele, and A. K.
Coskun, “HPAS: An HPC performance anomaly suite for reproducing
performance variations,” in Proceedings of the 48th International
Conference on Parallel Processing, ser. ICPP 2019, no. 40. New
York, NY, USA: Association for Computing Machinery, 2019.

[4] R. Izadpanah, N. Naksinehaboon, J. Brandt, A. Gentile, and D. Dechev,
“Integrating low-latency analysis into HPC system monitoring,” in
Proceedings of the 47th International Conference on Parallel Processing,
ser. ICPP 2018. New York, NY, USA: Association for Computing
Machinery, 2018.

[5] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing performance variations in HPC
applications using machine learning,” in International Supercomputing
Conference (ISC-HPC), 2017, pp. 355–373.

[6] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele,
and A. K. Coskun, “Online diagnosis of performance variation in HPC
systems using machine learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 883–896, April 2019.

[7] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“A semisupervised autoencoder-based approach for anomaly detection
in high performance computing systems,” Engineering Applications of
Artificial Intelligence, vol. 85, p. 634–644, Oct 2019.

[8] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller, “Data mining-
based analysis of HPC center operations,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), 2017, pp. 766–773.

[9] Q. Xiong, E. Ates, M. C. Herbordt, and A. K. Coskun, “Tangram:
Colocating HPC applications with oversubscription,” in IEEE High
Performance Extreme Computing Conference, 2018, pp. 1–7.

[10] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and A. K.
Coskun, “Taxonomist: Application detection through rich monitoring
data,” in Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani,
and M. Torquati, Eds. Cham: Springer International Publishing, 2018,
pp. 92–105.

[11] V. Arya, R. K. E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. C.
Hoffman, S. Houde, Q. V. Liao, R. Luss, A. Mojsilović, S. Mourad,
P. Pedemonte, R. Raghavendra, J. Richards, P. Sattigeri, K. Shanmugam,
M. Singh, K. R. Varshney, D. Wei, and Y. Zhang, “One explanation
does not fit all: A toolkit and taxonomy of AI explainability techniques,”
arXiv: 1909.03012 [cs.AI], 2019.

[12] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam,
and P. Das, “Explanations based on the missing: Towards contrastive
explanations with pertinent negatives,” in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc.,
2018, pp. 592–603.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 1135–1144.

[14] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4765–4774.

[15] E. Ates, B. Aksar, V. J. Leung, and A. K. Coskun, “Counterfactual
explanations for machine learning on multivariate time series data,”
arXiv:2008.10781 [cs, stat], Aug 2020, arXiv: 2008.10781. [Online].
Available: http://arxiv.org/abs/2008.10781

[16] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin,
“Learning certifiably optimal rule lists,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 35–44.

[17] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in Proceedings of the 34th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. International Convention Centre,
Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1885–1894.

[18] A. Palczewska, J. Palczewski, R. Marchese Robinson, and D. Neagu,
“Interpreting random forest classification models using a feature con-
tribution method,” Advances in Intelligent Systems and Computing, p.
193–218, 2014.

[19] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim,
“Towards a rigorous evaluation of XAI methods on time series,” in
2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), 2019, pp. 4197–4201.

[20] I. Karlsson, J. Rebane, P. Papapetrou, and A. Gionis, “Explainable time
series tweaking via irreversible and reversible temporal transformations,”
in 2018 IEEE International Conference on Data Mining (ICDM), 2018,
pp. 207–216.

[21] R. Assaf and A. Schumann, “Explainable deep neural networks for
multivariate time series predictions,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 7
2019, pp. 6488–6490.

[22] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations

without opening the black box: Automated decisions and the GDPR,”
Harv. JL & Tech., vol. 31, p. 841, 2017.

[23] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, ser.
FAT* ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 607–617.

[24] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, p. 1–38, Feb 2019.

[25] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16,
no. 3, p. 31–57, Jun. 2018.

[26] P. Schmidt and F. Biessmann, “Quantifying interpretability and trust in
machine learning systems,” arXiv:1901.08558 [cs.LG], Jan 2019.

[27] D. Alvarez-Melis and T. S. Jaakkola, “On the robustness of interpretability
methods,” arXiv:1806.08049 [cs.LG], 2018.

[28] D. Alvarez Melis and T. Jaakkola, “Towards robust interpretability with
self-explaining neural networks,” in Advances in Neural Information Pro-
cessing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018,
pp. 7775–7784.

[29] National Technology and Engineering Solutions of Sandia, LLC.,
“Advanced systems technology test beds,” https://www.sandia.gov/asc/
computational systems/HAAPS.html, 2020, accessed: April 21, 2020.

[30] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[31] A. Kunen, T. Bailey, and P. Brown, “Kripke-a massively parallel transport
mini-app,” Lawrence Livermore National Laboratory, Tech. Rep., 2015.

[32] B. Sjogreen, “SW4 final report for iCOE,” Lawrence Livermore National
Laboratory (LLNL), Livermore, CA, Tech. Rep., 2018.

[33] The MIMD Lattice Computation (MILC) Collaboration, “MILC bench-
mark application,” http://www.physics.utah.edu/∼detar/milc/, 2016.

[34] National Energy Research Scientific Computing Center, “Cori,” https:
//docs.nersc.gov/systems/cori/, 2020, accessed: June 5, 2020.

[35] S. Plimpton, “Fast parallel algorithms for short-range molecular dy-
namics,” Journal of Computational Physics, vol. 117, no. 1, p. 1–19,
1995.

[36] J. Kim, A. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A.
Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, and
et al., “Qmcpack: An open source ab initio quantum monte carlo package
for the electronic structure of atoms, molecules, and solids,” Journal
of Physics: Condensed Matter, vol. 30, no. 19, p. 195901, May 2018,
arXiv: 1802.06922.

[37] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann,
“Hacc: Extreme scaling and performance across diverse architectures,”
in SC ’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–10.

[38] “ECP proxy applications.” [Online]. Available: https://proxyapps.
exascaleproject.org/

[39] J. Dongarra, M. A. Heroux, and P. Luszczek, “A new metric for ranking
high-performance computing systems,” National Science Review, vol. 3,
no. 1, p. 30–35, Mar 2016.

[40] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance
data with papi-c,” in Tools for High Performance Computing 2009, M. S.
Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds., 2010, p. 157–173.

[41] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and A. K.
Coskun, “Artifact for Taxonomist: Application Detection through Rich
Monitoring Data,” https://doi.org/10.6084/m9.figshare.6384248.v1, Aug
2018.

[42] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman, J. W. Vaughan,
and H. Wallach, “Manipulating and measuring model interpretability,”
arXiv:1802.07810 [cs.AI], 2018.

