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ABSTRACT

We propose an automated method to facilitate the design of energy-
efficient Mono3DDNN accelerators with safe on-chip temperatures
for mobile systems. We introduce an optimizer to investigate the
effect of different aspect ratios and footprint specifications of the
chip, and select energy-efficient accelerators under user-specified
thermal and performance constraints. We also demonstrate that
using our optimizer, we can reduce energy consumption by 1.6× and
area by 2× with a maximum of 9.5% increase in latency compared
to a Mono3D DNN accelerator optimized only for performance.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are extremely popular for numerous
machine learning applications, such as image classification or object
detection [1]. There is an increasing demand for DNNs in mobile
systems, such as IoT devices, autonomous drones, tablets, etc. To
satisfy the performance demands of these devices, DNN accelerators
are actively being developed [2]. However, the high energy demand
of DNNs (due to their heavy computation and data movement) is
a major design issue. In addition, mobile systems have tight area
and power/thermal budgets (e.g., due to the absence of heat sinks
and fans) add to the constraints associated with designing energy-
efficient DNN accelerators.

A systolic DNN accelerator comprises a two dimensional (2D)
array of simple processing elements (PEs), with on-chip scratchpad
memories for input feature map (IFMAP), filter weights (Filter),
and output feature map (OFMAP), as shown in Fig. 1 [3]. Each
PE consists of a Multiply-and-Accumulate (MAC) unit along with
internal registers to store the inputs and partial sums. In a systolic
architecture, data flows into the array from the PEs along the top
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Figure 1: 4×4 systolic array. Figure 2: Mono3D stack.

and left edges (Fig. 1) and passes onto the neighboring PEs every
clock cycle. Straightforward design and high compute density make
systolic arrays a popular choice in mobile systems [2].

With technology scaling slowing down, improving performance
under energy, power, and thermal constraints is increasingly more
challenging. Monolithic 3D (Mono3D) is a three-dimensional (3D)
integration technology that can overcome 2D scaling bottlenecks
by achieving small chip footprint, dense integration, wire length
savings, power savings, and high bandwidth [4]. These properties
make Mono3D attractive for designing DNN accelerators in mobile
systems. However, 3D architectures have significant thermal chal-
lenges due to high power densities and vertical thermal resistance
[5]. In addition, Mono3D systems have thin device layers, resulting
in limited lateral heat flow and high inter-tier thermal coupling
(unlike through silicon via based 3D stacking), thus exacerbating
thermal problems in mobile systems [6]. Consequently, tempera-
ture becomes an indispensable part of the methodologies and tools
used to architect Mono3D systems.

This work focuses on designing energy-efficient architectures
based on systolic arrays fabricated with Mono3D technologies,
enabling DNN inference tasks in mobile systems. The primary
contributions of this paper are as follows:
• We develop an automated method to investigate the performance,
power, temperature, and energy trends in Mono3D DNN accel-
erators for a wide range of DNNs commonly used for mobile
inference tasks.
• We integrate a DNN performance model and Mono3D power
and thermal models to construct a comprehensive optimization
flow. We also provide validation for our Mono3D thermal model.
• Compared to a Mono3D DNN accelerator that is only perfor-
mance optimized, our optimizer reports up to 2× and 1.6× savings
in chip footprint and energy, respectively, at the expense of a
9.5% increase in latency, while also satisfying the thermal budget.

https://doi.org/10.1145/3394885.3431577
https://doi.org/10.1145/3394885.3431577


ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Prachi Shukla, Sean S. Nemtzow, Vasilis F. Pavlidis, Emre Salman, and Ayse K. Coskun

Figure 3: Flow diagram of the optimization process.

2 RELATEDWORK

DNN accelerators. Recent works target energy efficiency in sys-
tolic accelerators by adjusting DRAM design parameters, such as
supply voltage and access latency [7], replacing off-chip DRAM
with non volatile memories [2], or designing dataflow mechanisms
to improve data re-use and reduce SRAM accesses [8]. Prior works
have also focused on co-designing DNN models and their corre-
sponding hardware accelerators (e.g., [9]). These works focus on
2D accelerators without considering temperature. Another work
achieves DNN energy efficiency and latency improvement by stack-
ing memory-on-logic using through-silicon vias (TSVs) [10].

Mono3D.Mono3D is an emerging 3D integration technology
where multiple tiers (or device layers) are fabricated sequentially,
separated by thin dielectrics, even though current Mono3D fabri-
cation challenges limit the number of tiers to two [4]. The vertical
connections between the tiers are achieved using nano-scale inter-
tier vias (MIVs) [4]. The thin tiers andMIVs can overcome 2D scaling
limitations and provide greater interconnect density, wire length
reduction, power savings, and denser integration than traditional
TSV-based 3D ICs. There are three types of partitions possible in
Mono3D: block-, gate-, and transistor-level. While there are several
works in gate- and transistor-level partition [11–13], we focus on a
two-tier block-level partition in this paper, in which 2D IP blocks
can be used in the design process of Mono3D. Block-level partitions
have been shown to achieve up to 16%, 8%, and 51% improvement
in power, performance, and footprint, respectively, over 2D [14].

Prior works have focused on designing DNN accelerators in
Mono3D but have not considered thermal awareness [15–18]. Yu et
al. design a block-level Mono3D architecture with an FPGA-based
accelerator and several resistive RAM tiers to improve performance,
power, and energy compared to a 2D baseline with an off-chip
DRAM [15, 16]. Chang et al. implement accelerators (with MAC
units and SRAMs) for two DNN models with different weight com-
pression on a two-tier Mono3D system [17], and show up to 22.3%
iso-performance power savings for block-level integration. Do et
al. integrate a two-tier Mono3D scratchpad memory on a GPU
and provide 46% performance improvement [18]. In contrast, our
work proposes an automated method to perform a comprehensive
architecture-level performance, power, and temperature analysis
for various DNNs and underlying architecture parameters to deter-
mine the most energy-efficient accelerator while also satisfying the
thermal and performance constraints.

Key Innovation. To the best of our knowledge, this is the first
work that offers a temperature-aware analysis and optimization
framework for Mono3D DNN accelerators. The proposed frame-
work enables navigating performance versus temperature tradeoffs
for Mono3D systolic DNN accelerators aiming mobile systems.

3 DESIGN OPTIMIZATION METHOD FOR

MONO3D DNN ACCELERATORS

This section details our design optimization method for DNN ac-
celerators in mobile systems. As shown in Fig. 3, our method takes
a DNN topology (e.g., MobileNet [19]) and design constraints as
inputs to a Mono3D optimizer that determines design parameters
for the accelerators for the subsequent iterations and finally out-
puts a near-optimal accelerator with safe chip temperatures. This
optimization flow starts with performance evaluation using SCALE-
Sim, a cycle-accurate simulator for systolic DNN accelerators [20].
SCALE-Sim outputs, along with CACTI-6.5 (an SRAM simulator)
[21] and Mono3D power models, are then used to generate power
traces for the accelerator. We then use HotSpot v6.0 (which we
configure to simulate Mono3D systems) to obtain steady state tem-
peratures [22]. We also implement a feedback loop that updates the
power traces with temperature-dependent leakage (resulting from
inter-tier thermal coupling) for HotSpot, to obtain updated chip
temperatures. This loop continues until the temperature converges.

3.1 Mono3D DNN Accelerator Design

Existing Mono3D technologies can typically support only two tiers
due to the low fabrication temperature requirements for upper tiers
[4]. Due to this, we have limited our design to two tiers (see Fig.
2 for a cross-sectional view). The number of metal layers, dielec-
tric/device layer thickness, and material properties of the stack are
taken from recent work [4, 12]. The systolic array has a higher
power consumption than SRAMs and is placed on the tier closer to
the heat spreader. The systolic array and SRAMs have a high degree
of connectivity through the MIVs since there are many read/write
accesses to the SRAMs throughout the computations in the systolic
array. We assume a high logic density for the tier with the systolic
array, with SRAMs of the appropriate size on the other tier. Any
whitespace (as a result of area mismatch between the two tiers) al-
ways appears on the SRAM tier in our design. We place whitespaces
along chip edges so that thermal analyses are not affected.
3.2 Mono3D Optimizer

We construct a multi-start simulated annealing (MSA) based opti-
mizer to sweep a sufficient portion of the design space of accelera-
tors and select near-optimal energy-efficient Mono3D architectures
for mobile systems. MSA is a search algorithm that accepts solutions
that temporarily degrade the optimization goal to escape from local
minima. MSA can launch multiple "starts" in parallel to increase
the probability of finding the global minima.

Our optimizer takes a DNN topology and the following design
constraints as inputs (Fig. 3): (i) chip footprint budget; (ii) bounds
on chip aspect ratio; (iii) limits on systolic array size, (iv) maximum
SRAM size, (v) maximum allowed whitespace (as a result of mis-
match between the two tiers in the Mono3D chip), (vi) thermal
budget (i.e., maximum allowed peak temperature, 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ), and
(vii) maximum performance loss (𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 ) w.r.t. the fastest design
that satisfies the design constraints (i)-(vi). The optimizer generates
performance, power, and thermal traces for systematically selected
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Mono3D accelerators, and converges to a near-optimal design for
the user-specified optimization goal (e.g., minimizing energy or
latency) while satisfying performance and thermal constraints. For
the systematic selection of accelerators , the optimizer uses the op-
erating frequency, chip’s aspect ratio, and combinations of systolic
array and SRAMs as its control knobs. Since the array and SRAMs
have to satisfy the whitespace constraint, we produce a list of all
possible combinations offline (l𝑐𝑜𝑚𝑏 ).

Algorithm 1 details our optimizer, which is inherently paralleliz-
able because all the "starts" run in parallel (line 1). Each start is
assigned an operating frequency and an aspect ratio range (𝐴𝑅),
within which the optimizer determines a near-optimal solution by
minimizing the objective function, 𝑂𝑏 𝑗 , which can be inference
latency, chip power, energy or another energy efficiency metric.
𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , and decay (𝛿) are parameters of the optimizer that
define the annealing temperatures and the rate of cooling1. Each
start begins by randomly choosing an initial accelerator (𝑆𝑖 ) that
satisfies the design constraints (i)-(vi) listed above (lines 3-7). We set
𝑆𝑖 as the current solution (𝑆𝑐𝑢𝑟𝑟 ) and initialize the latency (𝐶𝑐𝑢𝑟𝑟 ),
smallest latency (𝐶𝑏𝑒𝑠𝑡 ), peak temperature (𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 ), and𝑂𝑏 𝑗𝑐𝑢𝑟𝑟
with 𝑆𝑖 ’s parameters (lines 8-10). We then randomly perturb 𝑆𝑐𝑢𝑟𝑟
by selecting a feasible design (𝑆𝑝 ) from l𝑐𝑜𝑚𝑏 (lines 11-15). If the
DNN inference latency on the perturbed design (𝐶𝑝 ) is smaller or
within a user-specified performance degradation (𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 ) from
𝐶𝑏𝑒𝑠𝑡 , this design (i.e., 𝑆𝑝 ) is ‘accepted’ for the next step. Otherwise,
it is ‘rejected’ (lines 16-19). The ‘accepted’ 𝑆𝑝 is then thermally
simulated for steady state analysis. If the peak chip temperature
(𝑇𝑝𝑒𝑎𝑘,𝑝 ) is greater than the thermal budget (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ), 𝑆𝑝 is re-
jected. Otherwise, 𝑆𝑝 is checked for a lower𝑂𝑏 𝑗𝑝 . If𝑂𝑏 𝑗𝑝 is smaller
than 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 , then 𝑆𝑝 is ‘accepted’. Otherwise, it is ‘accepted’ with
a certain probability (lines 20-30). The term Δ𝑂𝑏 𝑗 is the difference
between 𝑂𝑏 𝑗𝑝 and 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 , while Δ𝑂𝑏 𝑗𝑎𝑣𝑔 refers to the running
average of Δ𝑂𝑏 𝑗 for the accepted designs. The ‘accepted’ 𝑆𝑝 is then
set as 𝑆𝑐𝑢𝑟𝑟 for the next iteration (lines 31-35).

The algorithm terminates upon satisfying the conditions in lines
1 and 11. The accepted designs are stored in a file. Finally, the
optimizer selects the best design among all the starts with the
least𝑂𝑏 𝑗 while satisfying the performance and thermal constraints
(line 39). If the user’s objective is to design a single accelerator for
multiple DNNs, then additional meta strategies could be integrated
to the optimizer, e.g., selecting the most efficient design out of
several optimized solutions for all target DNNs on average, or the
design that yields the best results for the most frequently run DNNs.
3.3 Performance Model

SCALE-Sim is a cycle-accurate simulator for systolic arrays that
operate on 8-bit integer data. It takes the array and SRAM size,
along with DRAM bandwidth as inputs, simulates a stall-free DNN
inference, and outputs compute cycles, non-overlapping DRAM
cycles, array utilization, SRAM accesses, and SRAM bandwidth to
support stall-free inference. Compute cycles include cycles spent in
data transfer between SRAMs and systolic array, along with DRAM
cycles that overlap with the computation. We divide the compute
cycles and non-overlapping cycles by chip and DRAM frequencies,
respectively, to calculate the latency. Among the several dataflows
1Annealing temperature is a unitless parameter in MSA that allows it to escape a local
minima by accepting a design with a higher𝑂𝑏 𝑗 value. Rate of cooling is the rate at
which the annealing temperature decays to achieve convergence.

Algorithm 1:MSA-based Temperature-Aware Optimizer
Input :DNN, AR range, footprint budget, systolic array range,

𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 , frequencies, 𝑙𝑐𝑜𝑚𝑏

Output :𝑆𝑏𝑒𝑠𝑡 with minimum𝑂𝑏 𝑗

Initialize :𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , 𝑁 , decay rate 𝛿 ,𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 ,𝑇 , AR range for
each start 𝑖 (𝐴𝑅𝑖 ),𝑇𝑝𝑒𝑎𝑘 for each start 𝑖 (𝑇𝑝𝑒𝑎𝑘,𝑖 )

1 while𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 > 0 do
2 𝑇𝑝𝑒𝑎𝑘,𝑖 ←𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 1
3 while𝑇𝑝𝑒𝑎𝑘,𝑖 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

4 randomly select an accelerator (𝑆𝑖 ) with𝐴𝑅𝑖 and a frequency
5 if 𝑆𝑖 meets design constraints (i)-(v) in Sec. 3.2 then
6 generate performance traces, calculate inference latency𝐶𝑖

7 generate power traces, estimate peak temperature (𝑇𝑝𝑒𝑎𝑘,𝑖 )

8 set current solution: 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑖 ,𝐶𝑐𝑢𝑟𝑟 ←𝐶𝑖 ,𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 ←𝑇𝑝𝑒𝑎𝑘,𝑖
9 calculate𝑂𝑏 𝑗𝑐𝑢𝑟𝑟

10 initialize best performance,𝐶𝑏𝑒𝑠𝑡 ←𝐶𝑐𝑢𝑟𝑟

11 while𝑇 > 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ do

12 while 𝑁 > 0 do
13 randomly select a design, 𝑆𝑝 , from 𝑙𝑐𝑜𝑚𝑏 with𝐴𝑅𝑖
14 𝑁 -= 1
15 if 𝑆𝑝 meets design constraints (i)-(v) in Sec. 3.2 then

16 calculate𝐶𝑝 and loss in performance𝐶𝑙𝑜𝑠𝑠 =
𝐶𝑝−𝐶𝑐𝑢𝑟𝑟

𝐶𝑐𝑢𝑟𝑟

17 initialize status← ‘Reject’
18 if 𝐶𝑙𝑜𝑠𝑠 ≤ 𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥 then

19 status← ‘Accept’

20 if status = ‘Accept’ then
21 status← ‘Reject’
22 generate power traces and calculate𝑇𝑝𝑒𝑎𝑘, 𝑝
23 calculate𝑂𝑏 𝑗𝑝
24 if 𝑇𝑝𝑒𝑎𝑘,𝑝 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

25 Δ𝑂𝑏 𝑗𝑎𝑣𝑔 = 𝑎𝑏𝑠 (𝑂𝑏 𝑗𝑝 −𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 )
26 if 𝑂𝑏 𝑗𝑝 ≤ 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 then

27 status← ‘Accept’

28 else if 𝑂𝑏 𝑗𝑝 > 𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 then

29 if random(0,1) < 𝑒𝑥𝑝 (− Δ𝑂𝑏𝑗

Δ𝑂𝑏𝑗𝑎𝑣𝑔∗𝑇 )
then

30 status← ‘Accept’

31 if status = ‘Accept’ then
32 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑝 ,𝐶𝑐𝑢𝑟𝑟 ←𝐶𝑝 ,𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 ←𝑂𝑏 𝑗𝑝
33 update Δ𝑂𝑏 𝑗𝑎𝑣𝑔
34 if 𝐶𝑝 < 𝐶𝑐𝑢𝑟𝑟 then

35 𝐶𝑏𝑒𝑠𝑡 ←𝐶𝑐𝑢𝑟𝑟

36 Store 𝑆𝑐𝑢𝑟𝑟 ,𝐶𝑐𝑢𝑟𝑟 ,𝑂𝑏 𝑗𝑐𝑢𝑟𝑟 ,𝑇𝑝𝑒𝑎𝑘,𝑐𝑢𝑟𝑟 in a data structure

37 𝑇 ←𝑇 ∗ 𝛿
38 𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑎𝑟𝑡𝑠 -= 1

39 return 𝑆𝑏𝑒𝑠𝑡 s.t.𝑇𝑝𝑒𝑎𝑘 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , &𝐶𝑙𝑜𝑠𝑠 ≤ 𝐶𝑙𝑜𝑠𝑠,𝑚𝑎𝑥

SCALE-Sim supports, we use output stationary as it has been shown
to outperform the other dataflows [20].
3.4 Mono3D Power Models

We use SCALE-Sim outputs to obtain the average dynamic power
of the systolic array (𝑃𝑆𝐴,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 ) using Eqs. (1) and (2):

𝑈𝑎𝑣 = (
𝑁∑
𝑖=1

𝑈𝑖 ∗𝐶𝑖 )/(
𝑁∑
𝑖=1

𝐶𝑖 ), (1)

𝑃𝑆𝐴,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑈𝑎𝑣 ∗ 𝑃𝑀𝐴𝐶,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 , (2)
where 𝑁 is the total number of convolutional layers in the DNN,
𝑈𝑖 and 𝐶𝑖 are the utilization and compute cycles, respectively, for
the 𝑖𝑡ℎ layer, and 𝑃𝑀𝐴𝐶,𝐷𝑦𝑛𝑎𝑚𝑖𝑐 is the dynamic power for a MAC
unit. We also integrate an exponential leakage model for MAC (see
Sec. 4.1.1 for details on MAC’s power model).
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Systolic array size 16×16 to 256×256
Each SRAM size {32, 64, 128, 256, 512, 1024, 2048, 4096} 𝐾𝐵

Aspect ratio of the chip 0.7 to 1.3
Frequencies {735, 600, 500}𝑀𝐻𝑧

Table 1: Design space for DNN accelerators.

We use the SRAM bandwidth (𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒) generated by
SCALE-Sim to decide the number of banks in SRAM.We use CACTI
to calculate the SRAM dynamic power and leakage. To estimate
SRAM leakage at a finer granularity than the 10 degree default
granularity of CACTI, we fit a linear model (a linear model can
accurately estimate leakage across close temperatures [23]).

We deploy a generic interconnect power model, where the in-
terconnects consume 15% of the total chip dynamic power because
(i) DNNs require large amounts of memory for inputs, weights,
and outputs, and (ii) there is frequent data movement between the
systolic array and SRAMs [24]. We then reduce the interconnect
power by 10%, which is equal to Mono3D iso-performance power
savings obtained from a recent work [14].

For energy efficiency, we use system energy (𝐸𝑠𝑦𝑠 , includes both
the chip and DRAM energy), energy-delay-area product (𝐸𝐷𝐴𝑃 ),
energy-delay2 product (𝐸𝐷2𝑃 ), and energy-delay product (𝐸𝐷𝑃 ).
3.5 Mono3D Thermal Model

We build a compact thermal model (CTM) in HotSpot for the chip-
stack shown in Fig. 2. The CTM has 32 layers (including tiers, metal
layers, etc.). We use HotSpot’s default ambient setting, i.e. 45 ◦𝐶 ,
and grid mode (grid length =MAC length) to conduct steady state
thermal simulations with the power traces generated using CACTI
and Mono3D power models. To model a mobile system, we set the
heat spreader thickness to 50 𝜇𝑚 and remove the heat sink by set-
ting its thickness to a negligible value. After every HotSpot run, we
read the SRAM andMAC temperatures and update the power traces
with their temperature-dependent leakage, and rerun HotSpot. This
feedback loop continues till the difference is < 1◦𝐶 for both MAC
and SRAM temperatures between consecutive HotSpot runs.

We validate our CTM with a model for the same design in COM-
SOL, a multiphysics simulator that uses finite element method to
solve a second order heat diffusion equation [25]. We model var-
ious aspect ratios, hot spot locations, sizes, and power densities.
Overall, we observe a maximum error in peak temperature of 3.89%
w.r.t. COMSOL. We also report average, maximum and RMS errors
of 1.53◦𝐶 , 4◦C (corresponds to 3.2% w.r.t. COMSOL), and 1.76◦𝐶 ,
respectively. We also observe that power profiles resembling our
Mono3D setup show amaximum error of 1◦ C (corresponds to 1.3%)
for peak temperatures close to 80◦𝐶 (𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in our analysis).
4 EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, evaluate our
optimizer for correctness and speed, and present the results of our
optimization flow. For our analyses, we have used eight DNN infer-
ence benchmarks, six from MLPerf [19], namely VGG19, VGG16,
VGG11, ResNet50, MobileNet, and GoogLeNet, along with Faster
R-CNN [26] and Tiny-YOLO [27]. We group MobileNet, GoogLeNet,
ResNet50, and Tiny-YOLO as low-complexity (LoC) DNNs because
of their lower memory usage and fewer number of MAC operations
and the rest as high-complexity (HiC) DNNs because of their greater
number of MAC operations and higher memory usage [28].
4.1 Experimental setup

4.1.1 SRAM/Systolic Array MAC model. We synthesize a 65 𝑛𝑚
8-bit MAC unit at 250𝑀𝐻𝑧 using the Synopsys Design Compiler
(DC) and scale it down to 22 𝑛𝑚 technology node. The scaled down

area, dynamic power, and the frequency are 121 𝜇𝑚2 (length = 11
𝜇𝑚), 0.25𝑚𝑊 , and 735𝑀𝐻𝑧, respectively. We also fit a temperature-
dependent exponential leakage model for a MAC unit using data
points (temperature, leakage) from our synthesized MAC model.
Furthermore, wemodel 22𝑛𝑚 SRAMs in CACTI-6.5 and the off-chip
DRAM is based on 8 𝐺𝑏 LPDDR2-800 x32 chips at 400𝑀𝐻𝑧, with
8.5 𝐺𝐵𝑝𝑠 bandwidth and 200 𝑝 𝐽/𝑏𝑦𝑡𝑒 energy consumption [29].
4.1.2 Constraints and Design Space. We set our chip footprint bud-
get to 8 𝑚𝑚2, desired systolic array size between 16×16 [2] and
256×256 (similar to Google’s Tensor Processing Unit), total allowed
SRAM size to 24 𝑀𝐵, thermal budget to 80◦𝐶 , and the maximum
whitespace allowed to 1% of the chip footprint. In addition to the
chip frequency of 735𝑀𝐻𝑧, we include 600𝑀𝐻𝑧 and 500𝑀𝐻𝑧 in
our search space. We set a constraint on maximum performance
loss of ≤ 10% w.r.t. the design with the lowest latency under the
given constraints. Note that this is a user-defined parameter and can
change as required. Each SRAM has 4 banks and provides a band-
width of 256 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 to match with the maximum SRAM
bandwidth for the given systolic array bounds as output by SCALE-
Sim. Table 1 shows the total design space for DNN accelerators, i.e.,
24.6𝑘 (3 frequencies × 8.2𝑘 accelerators) design points.
4.2 Optimizer Evaluation

4.2.1 Setup and Running Times. We launch 6 starts for each fre-
quency and each start is assigned an aspect ratio range. Each start
has 6 annealing temperatures with 35 perturbations. We ensure
convergence by observing that the optimizer does not accept worse
designs as it approaches termination. For tuning the optimizer, we
vary 𝛿 from 0.7 to 0.92 and 𝑇𝑠𝑡𝑎𝑟𝑡 from 1.446 to 4.481 (values set
empirically, based on a set of known good results). These two pa-
rameters control the rate and probability, respectively, with which
MSA accepts worse solutions to escape the local minima and arrive
at a near-optimal solution. Also, our optimizer can work with a
larger range of frequencies and still select a near-optimal point (this
may require launching more starts in parallel).

SCALE-Sim and HotSpot take 10-60 and 5-45 mins, respectively,
depending on the chip footprint and DNN. HiC DNNs have a higher
number of MAC operations that lead to higher power densities and
peak temperatures (more active PEs), which increase temperature-
dependent leakage. Thus, these DNNs require more iterations (4-5)
to converge in HotSpot. LoC DNNs require fewer iterations (2-3)
due to fewer MAC operations [28] and lower chip power. Long
simulation times are bottlenecks to perform an exhaustive search
in our large design space and demonstrate the need for an optimizer.
4.2.2 Correctness of the Optimizer. To demonstrate the correct-
ness of our optimizer, we select a smaller design space with one
frequency (735𝑀𝐻𝑧), 0.94 to 1 aspect ratio range, under the same
constraints listed in Sec. 4.1.2. In total, there are 1,196 valid config-
urations. We evaluate the optimizer with {10, 5, 3}% performance
constraints. We select 2 DNNs, Tiny-YOLO (LoC) and VGG11 (HiC),
and compare the optimizer’s choices to those determined by an
exhaustive search. The optimizer’s parameters {𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑓 𝑖𝑛𝑖𝑠ℎ , 𝛿}
for Tiny-YOLO and VGG11 are set to {1.446, 0.738611, 0.8} and {1.446,
0.885963, 0.85}, respectively. The 6 starts are assigned aspect ratio
ranges: [0.94, 0.95], (0.95, 0.96], and so on till (0.99, 1]. Across all the
objectives (performance, power, energy, EDP, ED2P, and EDAP),
the near-optimal designs selected by the optimizer and the global
optimal differ by ≤ 2% in 𝑂𝑏 𝑗 values, showing close agreement.
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Figure 4: Performance versus temperature tradeoffs in Mono3D DNN accelerators.

(a) ResNet50 (b) VGG19

Figure 5: Power-performance-temperature tradeoffs in Mono3D DNN accelerators.

Optimization Goal MobileNet ResNet50 GoogLeNet Tiny-YOLO VGG11 VGG16 VGG19 Faster R-CNN
Performance

(Inference Latency)
212×172 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

198×184 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

190×192 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

174×208 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

212×172 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

194×188 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

170×214 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

160×228 (735𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

Chip Power 170×214 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

126×144 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

192×198 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

122×150 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

160×228 735𝑀𝐻𝑧)
{4096, 64, 32} 𝐾𝐵

210×174 (600𝑀𝐻𝑧)
{4096, 64, 32} 𝐾𝐵

180×202 (600𝑀𝐻𝑧)
{4096, 32, 32} 𝐾𝐵

152×120 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

System Energy 174×208 (735𝑀𝐻𝑧)
{32, 4028, 32} 𝐾𝐵

212×172 (735 MHz)
{4096, 64, 32} 𝐾𝐵

214×170 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

202×184 (735𝑀𝐻𝑧)
{4096, 128, 32} 𝐾𝐵

216×172 (735𝑀𝐻𝑧)
{4096, 128, 32} 𝐾𝐵

190×200 (735𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

222×172 (600𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

146×126 (735𝑀𝐻𝑧)
{2048, 64, 32} 𝐾𝐵

System EDAP 196×186 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

142×128 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

216×168 (735𝑀𝐻𝑧)
{32, 32, 4096} 𝐾𝐵

122×150 (735𝑀𝐻𝑧)
{2048, 32, 32} 𝐾𝐵

210×176 ( 735𝑀𝐻𝑧)
{4096, 128, 32} 𝐾𝐵

190×200 (735𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

218×174 (600𝑀𝐻𝑧)
{4096, 256, 32} 𝐾𝐵

146x126 (735𝑀𝐻𝑧)
{2048, 64, 32} 𝐾𝐵

Table 2: Designs selected by our optimizer: systolic array (operating frequency) and {IFMAP, Filter, OFMAP} SRAMs.

Exhaustive search for Tiny-YOLO and VGG11 requires 48.3 and 55
hours, respectively, with 6 parallel searches, while the optimizer
requires 4.8 and 5.5 hours, respectively, with 6 parallel starts.
4.3 Optimization Results

We next discuss the temperature-aware optimization results for
various objective functions. The 6 starts are assigned aspect ratio
ranges: [0.7, 0.8], (0.8, 0.9], and so on till (1.2, 1.3].

4.3.1 Performance. Fig. 4 shows performance versus temperature
results for all the designs that our optimizer evaluates before con-
verging to near-optimal solutions for ResNet50 and VGG19 when
minimizing latency. The dashed lines are the user-defined perfor-
mance and thermal constraints. The optimizer selects a 198×184
systolic array with a 4160 𝑀𝐵 SRAM at 735 𝑀𝐻𝑧 for ResNet50
(Fig. 4a). The figure also shows a few points with slightly worse
performance but higher temperature within the performance con-
straint. Those points have a slightly larger footprint (1%) with more
active PEs, which results in higher power and peak temperatures.
LoC DNNs have adequate thermal headroom to run on big systolic
arrays at 735𝑀𝐻𝑧 without sacrificing performance (see Table 2).

In contrast, HiC DNNs have a higher array utilization (due to
more MAC operations) and lead to more thermal violations (due
to higher chip power) compared to the LoC DNNs (e.g., VGG19 in
Fig. 4b). The optimizer selects 170×214 with 4160 𝐾𝐵 SRAM for
VGG19. Fig. 4b shows a 5% performance tradeoff w.r.t. the smallest
latency accelerator to obey the tight thermal budget for VGG19.
The smallest latency accelerator has higher utilization (with same
SRAM size), which leads to better performance but higher dynamic

power and temperature in the systolic array tier. The inter-tier
thermal coupling in Mono3D further increases the static power by
4% (despite the same SRAM size), eventually leading to a 3◦𝐶 higher
peak temperature. On average, HiC DNNs tradeoff 2% performance
to operate under safe temperatures (Table 2).

4.3.2 Power. Fig. 5 shows performance, power, and temperature
tradeoffs for ResNet50 and VGG19. We see at low total chip power
(< 1 W), peak temperatures can be high (80◦C for ResNet50 and
82◦C for VGG19). Here, the DNNs are running on smaller chip
footprints (≈1𝑚𝑚2), i.e., with smaller systolic arrays and SRAMs,
which leads to higher power density and peak temperatures. The
optimizer selects 126×144 with 2112 𝐾𝐵 SRAM at 735 𝑀𝐻𝑧 for
ResNet50. 600 𝑀𝐻𝑧 designs that satisfy the imposed constraints
have a larger chip footprint with more PEs operating in parallel,
which results in a net higher power (than the selected design). 500
𝑀𝐻𝑧 accelerators violate the performance constraint and thus, are
not selected by the optimizer. Similarly, the optimizer selects 735
𝑀𝐻𝑧 designs for the other LoC DNNs (Table 2).

For VGG19, the optimizer selects a 180×202 systolic array with
2080 𝐾𝐵 SRAM at 600 𝑀𝐻𝑧 (see Fig. 5b). At 735 𝑀𝐻𝑧, the most
power-efficient design under the user-specified constraints is almost
of the same size as the selected design (≈0.99×) with a similar array
utilization and same SRAM size. The higher dynamic power (due
to faster PEs) causes higher temperature in the systolic array tier,
which further increases the static power by 9% due to inter-tier
thermal coupling (despite the same size of the SRAM), eventually
resulting in a 7◦𝐶 higher peak temperature. Similarly, a 600𝑀𝐻𝑧
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Figure 6: Energy distribution in Mono3D DNN accelerators under performance and temperature constraints.

design is selected for VGG16. On the other hand, Faster-RCNN
and VGG11 have lower power and lead to relatively fewer thermal
violations. Hence the optimizer finds power-efficient accelerators
at 735𝑀𝐻𝑧 under the thermal constraint (see Table 2).
4.3.3 Energy Efficiency. Fig. 6 shows system energy (𝐸𝑠𝑦𝑠 ) distribu-
tion for ResNet50 and VGG19. The optimizer selects 212×172 with
2112 𝐾𝐵 SRAM at 735 𝑀𝐻𝑧 for ResNet50. While there exist few
600 𝑀𝐻𝑧 accelerators with lower power under the performance
constraint, the higher latency negates the power savings. Similarly,
735𝑀𝐻𝑧 accelerators are selected for the other LoC DNNs. Even for
HiC DNNs, the optimizer selects 735𝑀𝐻𝑧 accelerators for all but
VGG19 (Table 2). VGG19, being the highest power DNN, benefits
from both Mono3D iso-performance power savings and slower PEs,
thus making up for the performance loss w.r.t. 735 𝑀𝐻𝑧 designs.
On average, our optimizer achieves 1.2× energy and 1.1× area sav-
ings, with a performance loss of 5.3% across all the DNNs. Finally,
selections made by the optimizer for minimizing 𝐸𝐷𝐴𝑃 achieve up
to 2× chip footprint and 1.6× 𝐸𝑠𝑦𝑠 savings, by sacrificing up to 9.7%
latency (average: 1.2×, 1.4×, 5.5%, respectively).
5 CONCLUSION

We propose a design optimization method that yields near-optimal
energy efficient DNN accelerators based on Mono3D under user-
specified thermal and performance constraints. Based on tradeoff
analysis, several conclusions can be drawn: (i) HiC DNNs with
higher dynamic power result in higher temperature, which further
increases leakage due to inter-tier thermal coupling, eventually re-
sulting in thermal violations. As a result, HiC DNNs have to tradeoff
performance to operate under safe temperatures. (ii) Although we
can add more SRAM and PEs (i.e., larger systolic array) to utilize the
two tiers in a given chip footprint, power efficiency can drop (even
at lower frequencies) due to (a) higher dynamic power (more active
PEs) and (b) higher SRAM static power, as a result of both SRAM
size and inter-tier thermal coupling in Mono3D across all DNNs.
(iii) HiC DNNs (e.g., VGG19) with more PEs running in parallel
can benefit from running at lower frequency, along with Mono3D
power savings, thereby achieving higher energy efficiency.
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