
ACE: Just-in-time Serverless Software Component
Discovery Through Approximate Concrete Execution

Anthony Byrne
Boston University
abyrne19@bu.edu

Shripad Nadgowda
IBM T.J. Watson Research Center

nadgowda@us.ibm.com

Ayse K. Coskun
Boston University
acoskun@bu.edu

Abstract
While much of the software running on today’s serverless
platforms is written in easily-analyzed high-level interpreted
languages, many performance-conscious users choose to de-
ploy their applications as container-encapsulated compiled
binaries on serverless container platforms such as AWS Far-
gate or Google Cloud Run. Modern CI/CDworkflows make
this deployment process nearly-instantaneous, leaving little
time for in-depth manual application security reviews. This
combination of opaque binaries and rapid deployment pre-
vents cloud developers and platform operators from knowing
if their applications contain outdated, vulnerable, or legally-
compromised code. This paper proposes Approximate Con-
crete Execution (ACE), a just-in-time binary analysis tech-
nique that enables automatic software component discovery
for serverless binaries. Through classification and search en-
gine experiments with common cloud software packages, we
find that ACE scans binaries 5.2x faster than a state-of-the-art
binary analysis tool, minimizing the impact on deployment
and cold-start latency while maintaining comparable recall.

CCSConcepts • Software and its engineering→ Empir-
ical software validation; Software maintenance tools; •Com-
puter systems organization→Cloud computing.

Keywords serverless computing, software integrity, soft-
ware component discovery

ACMReference Format:
Anthony Byrne, ShripadNadgowda, andAyse K. Coskun. 2020. ACE:
Just-in-time Serverless Software Component Discovery Through
ApproximateConcrete Execution. InWorkshop on Serverless Comput-
ing (WoSC ’20), December 7–11, 2020, Delft, Netherlands.ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3429880.3430098

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of thisworkownedbyothers than the author(s)must behonored.Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WoSC ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-8204-5/20/12. . . $15.00
https://doi.org/10.1145/3429880.3430098

1 Introduction
Today’s ever-accelerating cloud software development cycles
place a high cost on “reinventing the wheel,” encouraging
developers to use pre-built components (e.g., libraries, mi-
croservices, etc.) when they are available. While this practice
saves time and money, any security vulnerabilities or reliabil-
ity bugswithin a pre-built component also become part of the
resulting application. Failure to realize and properly manage
these risks can have disastrous consequences: e.g., a vulner-
ability discovered in a popular web application framework
led to the breach of 143 million Equifax customers’ personal
data [13]. Other than security concerns, external code may
also be “undesirable” due to restrictive licensing that forces
legally-binding provisions on any applications that include
it (e.g., the GNUAffero General Public License [6]).

The risks inherent inpre-built components andopaque soft-
ware packaging plaguemost forms of software, and serverless
software is no exception. While most Function-as-a-Service
(FaaS) platforms currently only host software written in in-
terpreted languages, serverless container platforms such as
Google Cloud Run, AWS Fargate, andAzureApp Service offer
theability toautomaticallypull andruncontainer images from
a developer’s registry or build server immediately after build
completion. Because these serverless container platforms
host software in the form of metadata-stripped1 container-
encapsulated binaries, they have a more difficult time screen-
ing out undesirable code than FaaS platforms, which have the
luxury of possessing function source code that can be scanned
using several well-established static analysis techniques [11].
This inability to discover undesired components of server-
less software exposes both cloud developers and platforms
to potential attacks, data breaches, and legal liability.
We envision a two-part solution to this software explo-

ration problem: first, unlabeled binary blobs representing
functions must be extracted from serverless applications and
transformed into some kind of concise, uniquely-identifiable
representation, which we refer to as a function fingerprint.
Second, that fingerprint must be somehow checked for the
existence of known undesirable software components in a
process we call software component discovery.

1Executable Linkage Format (ELF) binaries contain optional metadata fields
(e.g., compiler version, debugging symbols) that are routinely stripped dur-
ing the build processes for many package formats [3]. Increasingly-popular
single-binary “microcontainer” images also exacerbate this problem by ob-
fuscating the OS resources included within a containerized application [16].

https://doi.org/10.1145/3429880.3430098
https://doi.org/10.1145/3429880.3430098

WoSC ’20, December 7–11, 2020, Delft, Netherlands Anthony Byrne, Shripad Nadgowda, and Ayse K. Coskun

In this paper, we aim to protect serverless systems from
buggy, vulnerable, or otherwise-unwanted code without sig-
nificantly delaying deployment or increasing cold-start la-
tency. To this end, we propose Approximate Concrete Exe-
cution (ACE), a just-in-time binary analysis technique that
enables automatic detection of undesirable components in
executable binaries found in serverless applications without
requiring a trusted build system. With ACE, we contribute
a novel method of creating function fingerprints just before
serverless software is first-executed, in which we execute an
intermediate representation of the code in an approximate vir-
tual machine and use the resulting context as the fingerprint.
As depicted in Fig. 1, ACE fingerprints can then be compared
to a function blocklist using simple vector distance metrics or
searched for in a 𝑘-nearest-neighbor fashion. In our evalua-
tion, we find that ACE performs these tasks with comparable
accuracy 5.2x faster than a state-of-the-art method.
We begin with a review of related binary analysis tech-

niques in Section 2. After detailing ACE’s methodology in
Section 3, we present results from our initial experiments
comparing ACE to the current state-of-the-art in Section 4.
We then explore ACE’s potential as a serverless binary finger-
printing tool and conclude with a discussion of our vision for
ACE and potential future directions in Sections 5 and 6.

2 Background and RelatedWork
Likemost modern software, cloud applications are often com-
posed of both bespoke and off-the-shelf components that
come together at various points in a software supply chain
to produce a final build destined for deployment on cloud
platforms. This build pipeline is frequently automated with
continuous integration and deployment (CI/CD) tools like
Jenkins and AWS CodeDeploy, which can automatically pull
the latest versions of components from their source reposi-
tories, integrate them into the build environment, and deploy
the final build — all within minutes or less. While instrumen-
tal in enabling the breakneck pace of development that users
have come to expect, these highly-automated software sup-
ply chains can rapidly propagate the effects of human errors
(e.g., accidental use of an outdated library) and have become
attractive targets for bad actors looking to quietly insert back-
doors, sabotage tools, and even cryptocurrency miners into
otherwise-legitimate cloud software via third-party libraries
or compromised compilers [2, 14, 17].

Discovering these undesirable components is a nontrivial
problem: modern optimizing compilers produce variations
in machine code that thwart simple binary pattern-matching
methods, and asmentioned in Section 1, most of themetadata
that could be used for component identification is frequently
stripped out of the final binary to minimize storage and mem-
ory costs. Howmuch information is left behind depends on
how the binary is linked to its components. For dynamically-
linked binaries, the stripping process does not remove the

Build
Server

Container Img.

DATA BIN

ACE

S
er

ve
rle

ss
 U

se
r

C
lo

ud
 P

ro
vi

de
r Similar? Function

Blocklist

Developers

F-prints

B
inaries Yes

No A
pp

Serverless Execution
Environment

 WARN

F-prints

Figure 1.ACE can screen containerized serverless binaries
just before execution. Binaries generating ACE fingerprints
matching known “undesirable” code are flagged for review.

symbol table entries that reference the specific libraries in
use. On the other hand, statically-linked binaries (like those
produced by the increasingly-popular Golang compiler by
default) do not require any symbols that reference external
libraries to run, so most stripping tools remove all such meta-
data. Both processes blind cloud platforms to the contents of
the binary serverless applications they host.

As outlined in Section 1, we propose a solution to this prob-
lemof restoring information lost during the serverless applica-
tion build process in two phases: function fingerprinting and
software component discovery. Below,we discuss approaches
to both phases.We note that most of the prior binary analysis
work we reference below does not specifically target cloud or
serverless settings; nonetheless, we find the insights within
this literature useful for developing our proposed solution.

2.1 Function Fingerprinting
Preprocessing. Individual functionscanonlybefingerprinted
when in the form of discrete binary strings containing raw
machine-code instructions. While extracting the executable
binary file from its encapsulating container can be as easy
as running docker cp, extracting properly-separated binary
strings is often more difficult. This is especially true when
the binary is stripped, as the symbols containing the start and
end addresses of each function are removed [8]. Several ap-
proaches exist to restore this boundary informationwith high
accuracy, from relatively-simple signature-based approaches
(i.e., pattern matching) to advanced neural-network-assisted
control flow graph analysis techniques [1, 10, 12, 19]. As in
previous work, we use the ground-truth function boundary
data found in DWARF debugging symbols embedded by the
compiler in our experiments to ensure result integrity [4, 15].

ACE: Just-in-time Serverless Software Component Discovery WoSC ’20, December 7–11, 2020, Delft, Netherlands

Fingerprinting. Once the address boundaries of a function
have been identified and its raw machine instructions ex-
tracted, most binary analysis approaches convert those in-
structions into a function fingerprint, or a concise uniquely-
identifiable representation. In the popular disassembler IDA
Pro’s signature-based approach, this fingerprint ismadeof the
first 32 bytes of the function (with some wildcards to account
for compiler variations) combinedwith theCRC16 of a certain
number of the following bytes [10]. Massarelli et al. propose
“SAFE,” a machine-learning-based approach inspired by nat-
ural language processing where each instruction “word” of
a function is encoded and used to train a self-attentive neural
network, which is in turn used to generate the function’s fin-
gerprint [15]. Egele et al. take an execution-based approach,
in which the “side-effects” (i.e., register and memory values)
caused by a function’s execution on an x86 CPU become a
function’s fingerprint [5]. Pewnyet al. take a similar symbolic-
execution-based approach, where functions are disassembled,
translated into an intermediate representation, and then con-
verted into symbolic expressions [18]. Those symbolic expres-
sions are executed with random concrete inputs, and the re-
sulting input-output pairs become the function’s fingerprint.

2.2 Software Component Discovery
Aftergeneratingafingerprint, a componentdiscoverymethod
must check the fingerprint for software components of inter-
est. Methods that aim to discover unknown software security
vulnerabilities, for example, accomplish this by mapping fin-
gerprints to code samples containing generic classes of vul-
nerabilities, such as buffer overflows or use-after-frees [18].
Methods that focus on discovering known undesirable compo-
nents (e.g., “cryptojacking” libraries or restrictively-licensed
code) accomplish this by mapping fingerprints to a corpus
of libraries and function names [10, 12, 20]. In this paper, we
focus on the latter application of discovering known compo-
nents,whichwe term functionfingerprint classification. Below,
we compare some recent approaches in function fingerprint
classification.
Signature-based approaches like those used by IDA Pro

tend to have high precision but low recall, as they can only
discover functions that match a byte-signature in their data-
bases [1]. Since this search is exhaustive and repeated for each
function in a binary, and since each functionmay requiremul-
tiple signaturesdue tocompilervariations, thesedatabasesare
typically limited to the most common library functions [10].
Execution-based approaches, on the other hand, tend to

have high recall but low precision. Pewny et al. and Egele et al.
all evaluate their work as “binary search engines,” measuring
accuracy in terms of how high a query function fingerprint’s
true label ranks among the top 𝑘 most-likely labels returned
by the search engine (where 𝑘 varies between 10 and 200) in
a 𝑘-nearest-neighbor-style fashion [5, 18]. Using this metric,
Egele et al.’s and Pewny et al.’s methods achieve 77% and 56%
accuracy, respectively.

Learning-based approaches vary greatly in their perfor-
mance. Some approaches achieve very high accuracy at the
cost of overhead high enough to disqualify use in a “just-in-
time” application like serverless software component discov-
ery [9]. Xu et al.’s method “Gemini,” for example, proposes a
highly-accurate neural-network-assisted fingerprinting ap-
proach, but it can takeup to10GPU-hours to train thenetwork
on 100,000 function samples [20]. In Section 4, we evaluate
the current state-of-the-art learning-based approach, SAFE,
and find that its high overhead outweighs the benefits of its
high accuracy for serverless applications [15].

3 ACE: Approximate Concrete Execution
WithACE,we attempt to combine some of the lessons learned
from the successes of recent works to create a low-overhead
serverless binary function fingerprinting and classification
method that achieves acceptable accuracy and high tolerance
to variations across compiler versions and optimization levels.
In practice, the fingerprints produced by ACE will be labeled,
cataloged, and compared against fingerprints on a “function
blocklist” pre-execution, as depicted in Fig. 1. A match be-
tween an unlabeled fingerprint and a blocklist entry would
indicate that potentially undesirable code is present within
the binary in question.
With these goals in mind, we apply the key insight de-

veloped by Pewny et al.’s and Egele et al.’s execution-based
approaches: given known and consistent inputs, a function
𝐹 () compiled by compiler 𝐶 for architecture 𝐴 will have a
demonstrably-similar effect on its environment (i.e., the CPU
context)whenexecutedas that same function𝐹 () compiledby
compiler𝐶 ′ for architecture𝐴′ [5, 18]. We apply this insight
by executing functions in an approximate virtual machine
and using the resulting context as the function’s fingerprint.

Howonedefines“demonstrably-similar,”ofcourse, ishighly
dependent on one’s application. For our target application
of just-in-time serverless binary scans, we envision different
cloud users having different levels of security-consciousness:
e.g., developers of an online banking application may be es-
pecially tolerant of the occasional false positive in exchange
for catching more truly undesirable code, while developers
of a weather application may only wish to be alerted when
the presence of unwanted code is all but guaranteed. There-
fore, for the first experiment we describe in this paper, we
define “demonstrably-similar” to mean “exact match” (i.e.,
the definition least likely to produce false positives). In our
second experiment, however, we expand this definition to
include fingerprints similar enough that a statistical search
method (e.g., 𝑘-nearest-neighbor) returns 𝐹 ()’s label as one
of the top-𝑘 most-likely classifications of 𝐹 ()’s fingerprint
(i.e., the definition least likely to produce false negatives). In
our future work, we plan to explore the use of other machine
learning methods (e.g., logistic regression) in our software
component discovery process.

WoSC ’20, December 7–11, 2020, Delft, Netherlands Anthony Byrne, Shripad Nadgowda, and Ayse K. Coskun

3.1 Binary Preparation
As explained in Section 2.1, we begin by extracting ELF bina-
ries from their encapsulating containers and breaking them
down into their individual functions using the boundary ad-
dress data embedded within the DWARF debugging symbols
by GCC [4]. Then, for each raw binary function, we follow
the process shown in Fig. 2, beginning with the disassembly
of the functions into their native assembly code. In our im-
plementation, we utilize the Capstone disassembler due to its
speed and multi-platform support.

3.2 Intermediate Representation
In order to mitigate the idiosyncratic differences in binaries
compiled by different compilers, compiler versions, optimiza-
tion levels, etc., the now-disassembled functionmust be trans-
lated into some common architecture- and compiler-agnostic
representation: i.e., an intermediate representation (IR). In our
implementation of ACE, we choose Zynamics’ Reverse En-
gineering Intermediate Language (REIL) as our IR due to its
small RISC-like instruction set (17 instructions vs. 1,503 in
x86), simple structure (each instructionhas exactly 3 operands
and returns 1 value), and availability of translator source code
for x86, ARM, and PowerPC (to allow for the possibility of
cross-platform fingerprinting in the future) [21].

3.3 Approximate Virtual Machine
Although REIL serves as a platform-agnostic common lan-
guage, two code-identical, byte-different functions (e.g., iden-
tical code compiled at different optimization levels) will typi-
callynotproduce thesameREILcodewhentranslated,making
it unsuitable as a function fingerprint. Instead, we execute the
REIL representation of a function inside an approximate vir-
tualmachine (aVM)andcollect thefinal state of the aVMas the
function’s fingerprint. Applying the insight discussed above,
this execution-based process should produce a fingerprint
that satisfies the “demonstrable-similarity” property.
We define ACE’s aVM as a simple instruction-level em-

ulator for the REIL instruction set. However, unlike most
emulators, the aVM’s goal is not to accurately emulate the
theoretical REILCPU,whichZynamics defines as a “CPUwith
unlimitedmemory and an unlimited number of registers” that
executes instructions sequentially without side-effects [21].
Instead, the novel aVM is designed to produce consistent,
demonstrably-similar fingerprints for code that is similar,
invariant of noise like compiler optimizations or toolchain
version differences.

In order to mitigate certain compiler optimizations like
instruction re-ordering, the aVM first sorts REIL instructions
lexicographically.2 The aVM is then initialized to someknown
state, e.g., with all registers and memory set to zero. Finally,

2The choice of sorting key is arbitrary and inconsequential provided it is
consistent across all fingerprints in a dataset.

the aVM sequentially executes each instruction “approxi-
mately,” i.e., with a loose adherence to its specified operation,
aggressively optimizing for speed and simplicity over exact
emulation. For example, traditionally-slow control flow in-
structions (e.g., conditional-jump or JCC) are treated as null
instructions or NOPs.

Disassembly

Translation

Intermed.
Represent.

r ax: =r bp+
r bp: =r 3* r
j ump- [r 30

x86
Assembly

add- r ax,
mov- r bp,
j mp- 0x64

ELF Binary 101010
010101
101010

Apx. Execution

Final aVM
State

r 0 = 7
r 1 = 4
r 2 = 0
r 3 = 8

Function
Fingerprint
Database

Figure 2. ACE
fingerprinting
process overview.

This relaxed accuracy constraint sets
ACE apart from the other execution-
based methods discussed in Section 2.1,
which attempt to accurately model the
function’s native architecture when
generatingfingerprints, oftenat thecost
of additional overhead. It also greatly
simplifies the aVM,with our current im-
plementation containing only 375 lines
of Python code.
After executing all instructions in a

REIL code function, the aVM returns its
final state as the function’s fingerprint.
In our current implementation, only the
values of the first 32 registers are re-
turned (instructions involving registers
beyond the 32nd are nullified), making
every fingerprint a 32-element vector
of integers. We are currently exploring
ways to incorporate the aVM’s “unlim-
ited memory” into ACE’s fingerprints.
We repeat this process for every

function in a binary. Since each func-
tion can be fingerprinted independently
of any other function, this process is
embarrassingly-parallelizable, and we
take advantageof that property through
multithreading in our implementation.

4 Evaluation
Our goal for evaluation in this paper is to assess the feasibility
of a just-in-time serverless software component screening
tool using ACE as its function fingerprinting method. To this
end, we perform two experiments: the first assesses ACE’s ba-
sic ability to specifically identify a piece of code we inject into
228 applications commonly found in cloud systems (similarly
to howonemight search for a buggy function present in a pop-
ular cloud library), and the second assesses ACE’s ability to
discover functions more sensitively (i.e., with a progressively-
lower confidence threshold) in an attempt to achieve better
recall in the presence of several different optimization levels
and compiler versions. In both experiments, we compareACE
to a state-of-the-art approach, SAFE [15].

4.1 Datasets
Our evaluation dataset for our code-injection experiment con-
sists of 228 64-bit x86 ELF binaries drawn from 4 packages

ACE: Just-in-time Serverless Software Component Discovery WoSC ’20, December 7–11, 2020, Delft, Netherlands

found inmostLinux-based systems (coreutils,util-linux,
diffutils, and inetutils) and the MediaService applica-
tion from theDeathStarBench cloud benchmarking suite [7].
We choose these applications to achieve diversity in terms
of binary size and functionality. Wemodify all Makefiles to
disable the stripping of binaries, as we require a ground-truth
source of function names and address bounds. We compile all
applications using the standard GCC toolchain in an Ubuntu
18.04 build environment, and the resulting binaries contain
18,567 functions in total, including external library functions.

For our function search experiment, we use a modified ver-
sion of the “AMD64PostgreSQL” dataset published by Mas-
sarelli et al [15]. This modified dataset contains 344,396 func-
tions extracted from 28 binary versions of PostgreSQL, a pop-
ular cloud database, each compiled by a different version of
GCC (versions 3.4, 4.7, 4.8, 4.9, 5.4, 6, and 7) at four different
optimization levels (O0, O1, O2, O3).

4.2 Code-injection Experiment
In order to function as an effective serverless software com-
ponent screening tool, ACE should generate a consistent fin-
gerprint for a given piece of undesirable code regardless of
compiler variations. To assess this ability, we inject C andC++
functions with known ACE fingerprints3, shown in Fig. 3,
into the main source code file of every application in our
dataset. We compile these “injected” applications alongside
their “clean” counterparts using the process outlined in Sec-
tion 4.1, creating the set of 456 binaries (containing 37,134
functions) that we use for this experiment. Note that due to
compiler variations, there exist 217 unique versions of the
binary string representation of dummy_math()’s instructions,
i.e., most instances of dummy_math() are not byte-identical
to other instances of the function.
We begin our evaluation by generating ACE and SAFE

fingerprints for every function in the set in parallel on an
8-vCPU virtual machine, using the process defined in Sec-
tion 3 for ACE and the code published by Massarelli et al.
for SAFE. Following typical binary classification protocols,
we classify each function as dummy_math or not_dummy_math
based on whether or not the ACE/SAFE fingerprint produced
by the function is an exact match to the known fingerprint for
dummy_math(). We count the number of Type I and II errors
that occur and calculate the resulting precision, recall, and F1
score for use as performancemetrics. As shown by the results
in Fig. 4, ACE achieves near-perfect accuracy, generating the
correct fingerprint in all but two cases.

4.3 Function Search Experiment
In order to evaluate ACE’s recall in the presence of server-
less applications compiled by different toolchains, and to
3Despite backward-compatibility, C compilers interpret the semantics of the
function shown in Fig. 3 significantly differently than C++ compilers, leading
us to classify each language variant separately in this experiment. We leave
language-agnosticism to future work.

1 int dummy_math () {

2 volatile int num , nabs , result;

3 volatile div_t ndiv;

4 volatile int array [16];

5 unsigned short int i;

6 for (i=0; i < 16; i++) {

7 num = rand() / (RAND_MAX / 360);

8 array[i] = (i > 0) ?

9 (array[i-1] + num) : num;

10 }

11 if (num > 100) nabs = abs(num + 1);

12 else nabs = abs(num - 1);

13 ndiv = div(nabs , 7);

14 result = 2 * (num * ndiv.quot) - nabs;

15 return result;

16 }

Figure 3. C/C++ code of the dummy function used in the
code-injection experiment (Sec. 4.2). We use the volatile
keyword to dissuade the compiler from “optimizing away”
the function, as we do not add calls to it.

Precision Recall F1

0.8

0.9

1
1.00 0.99 0.991.00

0.90
0.95

ACE SAFE

Figure 4.Code-injection experiment (Sec. 4.2) accuracy com-
parison. Note that only exact-fingerprint-matches are consid-
ered true positives.

more-directly compare ACE against a current state-of-the-
art method, we recreate the “function search” experiment
described byMassarelli et al. using the modified dataset de-
scribed in Section 4.1. We begin by generating ACE finger-
prints for each PostgreSQL function similarly to the pre-
vious experiment. Instead of generating SAFE fingerprints
ourselves, however, we use the fingerprints provided in the
AMD64PostgreSQL dataset.

We then generate an 80,000-function query set composed
of 10,000 functions randomly sampled from each compiler-
version/optimization-level combination. For each function in
the query set, we find the top 𝑘 ACE/SAFE fingerprints near-
est (in terms of Euclidean distance) to the query function’s
ACE/SAFEfingerprint,where𝑘 ∈ {10,20,30,40,50,100,200}.We
consider functionswith the same name and origin filename as
the query function to be true positives when returned by the
queryor falsenegativeswhennot returned.Using recall as our
performance metric, we find that while SAFE delivers recall
scores 3-10% higher than ACE for 𝑘 <100, ACE outperforms
SAFE by similar margins for 𝑘 ≥ 100, reaching a maximum
recall of 0.67. Furthermore, we find ACE has a significantly
lower end-to-end runtime than SAFE, as shown in Table 1.

WoSC ’20, December 7–11, 2020, Delft, Netherlands Anthony Byrne, Shripad Nadgowda, and Ayse K. Coskun

Table 1. Function Search Experiment Overhead Comparison
Runtime (min)

Phase ACE SAFE
Function Fingerprinting 3.03 5.87*

Software Component Discovery 1.10 15.65
Total 4.13 21.52

*Pre-fingerprinted dataset used for SAFE, so fingerprinting runtime
shown is interpolated from runtime reported by [15].

5 Discussion
The evaluation detailed in Section 4 leads to a few key in-
sights. First, the results of the code injection experiment show
that the function fingerprints ACE creates are in most cases
identical for code-identical functions, evenwhen themachine
instructions for those functions differ. As discussed in Sec-
tion3, thisfingerprint similarityproperty iskey toa successful
execution-based function fingerprinting tool, meaning ACE
shows serious potential as a serverless software component
discovery method.

Second, we highlight the sizable (5.2x) difference in speed
betweenACEandSAFEdescribed inTable 1.Wealsonote that
unlike SAFE and other learning-basedmethods, ACE requires
no expensive pre-training, further reducing overhead and the
need for frequent model updates. These qualities make ACE
well-suited for use as a just-in-time serverless software com-
ponent discovery tool, as its use would cause only minimal
impacts to cold start latency or deployment delay compared
to other methods.

Third,wefindthatACE’s recall followsa logarithmicgrowth
trend (with respect to increasing values of 𝑘) largely sim-
ilar to that of the state-of-the-art method in the function
search experiment, described in Section 4.3. This indicates
thatACE is responsive to sensitivity threshold “tuning,”which
is important for suiting different users’ levels of security-
consciousness, as mentioned in Section 3.
Lastly, we note that there is room for accuracy improve-

ments to ACE, especially when it comes to reducing “finger-
print collisions.” These occur when ACE generates identical
fingerprints for two or more similar-but-not-identical func-
tions, leading to lower recall in function search scenarios as
false-positive fingerprints “crowd out” true-positive ones.We
note that there are many tuning variables under our control,
such as initial aVM state, register file size, and memory data
usage, that could be customized for better accuracy.

6 Conclusion
In this paper, we propose Approximate Concrete Execution
(ACE), a method of generating binary function fingerprints to
facilitate thediscoveryofundesirable software components in
serverless container images. Our experiments show that ACE
has significant promise as a very-low-overhead fingerprint-
ing method that could be used as a just-in-time component
discovery tool while only minimally impacting performance.

Acknowledgments
This work is partially funded by IBM Research.
References
[1] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-

Agnostic Function Detection in Binaries. In 2017 IEEE Euro. Symposium
on Sec. and Priv. IEEE, 177–189. https://doi.org/10.1109/EuroSP.2017.11

[2] M. S. Day and C. A. Jennings. 2018. 22 Thompson’s Hack. 263–272.
https://ieeexplore.ieee.org/abstract/document/8555305

[3] Debian Project. 2019. Binaries. https://perma.cc/22DT-ZDZV
[4] DWARF Committee. 2017. The DWARF Standard. http://dwarfstd.org
[5] Manuel Egele,MaverickWoo, PeterChapman, andDavidBrumley. 2014.

Blanket execution: Dynamic similarity testing for program binaries
and components. In Proc. of the 23rd USENIX Sec. Symposium. 303–307.

[6] Free Software Foundation. 2020. Freqently Asked Questions about the
GNU Licenses. https://www.gnu.org/licenses/gpl-faq.html

[7] Yu Gan et al. 2019. AnOpen-Source Benchmark Suite forMicroservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proc. of the 24th Intl. Conf. on Arch. Support for Prog. Langs. and Op-
erating Sys.ACMPress, 3–18. https://doi.org/10.1145/3297858.3304013

[8] Laune C. Harris and Barton P. Miller. 2005. Practical analysis of
stripped binary code. ACM SIGARCH Computer Architecture News 33,
5 (Dec. 2005), 63. https://doi.org/10.1145/1127577.1127590

[9] Jingxuan He et al. 2018. Debin: Predicting Debug Information in
Stripped Binaries. In Proc. of the 2018 ACM SIGSAC Conf. on Comput.
and Comms. Sec. (CCS ’18). ACM, New York, NY, USA, 1667–1680.
https://doi.org/10.1145/3243734.3243866

[10] Hex-Rays SA. 2020. IDA F.L.I.R.T. https://perma.cc/JVC8-E3A9
[11] Thomas Hofer. 2010. Evaluating Static Source Code Analysis Tools.

(2010). http://infoscience.epfl.ch/record/153107
[12] Emily R. Jacobson, Nathan Rosenblum, and Barton P. Miller. 2011.

Labeling library functions in stripped binaries. In Proc. of the 10th ACM
SIGPLAN-SIGSOFTWorkshop on Prog. Analysis for Software Tools. ACM
Press, 1. https://doi.org/10.1145/2024569.2024571

[13] Jeff Luszcz. 2018. Apache Struts 2: How Technical and Development
Gaps Caused the Equifax Breach. Network Security 2018, 1 (Jan. 2018),
5–8. https://doi.org/10.1016/S1353-4858(18)30005-9

[14] Tim Mackey. 2018. Building open source security into agile
application builds. Network Security 2018, 4 (April 2018), 5–8.
https://doi.org/10.1016/S1353-4858(18)30032-1

[15] Luca Massarelli et al. 2019. SAFE: Self-Attentive Function Embeddings
for Binary Similarity. In 16th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA 2019).
Springer, Cham, 309–329. https://doi.org/10.1007/978-3-030-22038-9

[16] Shripad Nadgowda, Sahil Suneja, and Canturk Isci. 2018. RECap:
Run-Escape Capsule for On-demand Managed Service Delivery in
the Cloud. In 10th USENIXWorkshop on Hot Topics in Cloud Computing
(HotCloud 18). USENIX Association, Boston, MA, USA.

[17] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020.
Backstabber’s Knife Collection: A Review of Open Source Software
Supply Chain Attacks. In Lecture Notes in Computer Science. Vol. 12223
LNCS. 23–43. https://doi.org/10.1007/978-3-030-52683-2_2

[18] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow,
and Thorsten Holz. 2015. Cross-Architecture Bug Search in Binary
Executables. In 2015 IEEE Symposium on Security and Privacy. IEEE,
709–724. https://doi.org/10.1109/SP.2015.49

[19] E. C. R. Shin, D. Song, and R. Moazzezi. 2015. Recognizing Functions
in Binaries with Neural Networks. In Proceedings of the 24th USENIX
Security Symposium. USENIX Association, Washington, D.C., 611–626.

[20] Xiaojun Xu et al. 2017. Neural Network-based Graph Embedding for
Cross-Platform Binary Code Similarity Detection. In Proc. of the 2017
ACM SIGSAC Conf. on Comput. and Comms. Sec.ACM Press, 363–376.
https://doi.org/10.1145/3133956.3134018

[21] Zynamics. 2011. REIL. https://perma.cc/LW4F-ZSYW

https://doi.org/10.1109/EuroSP.2017.11
https://ieeexplore.ieee.org/abstract/document/8555305
https://perma.cc/22DT-ZDZV
http://dwarfstd.org
https://www.gnu.org/licenses/gpl-faq.html
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/1127577.1127590
https://doi.org/10.1145/3243734.3243866
https://perma.cc/JVC8-E3A9
http://infoscience.epfl.ch/record/153107
https://doi.org/10.1145/2024569.2024571
https://doi.org/10.1016/S1353-4858(18)30005-9
https://doi.org/10.1016/S1353-4858(18)30032-1
https://doi.org/10.1007/978-3-030-22038-9
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1145/3133956.3134018
https://perma.cc/LW4F-ZSYW

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Function Fingerprinting
	2.2 Software Component Discovery

	3 ACE: Approximate Concrete Execution
	3.1 Binary Preparation
	3.2 Intermediate Representation
	3.3 Approximate Virtual Machine

	4 Evaluation
	4.1 Datasets
	4.2 Code-injection Experiment
	4.3 Function Search Experiment

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

