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Abstract—With today’s rapidly-evolving cloud landscape em-

bracing continuous integration and delivery, users of cloud

systems must monitor software running on their containers
and virtual machines (VMs) to ensure compliance, security,

and efficiency. Traditional solutions to this problem rely on

manually-created rules that identify software installations and

modifications, but these require expert authors and are often

unmaintainable. Recently, automated techniques for software dis-

covery have emerged. Some techniques use examples of software

to train machine learning models to predict which software

has been installed on a system. Others leverage knowledge of

packaging practices to aid in discovery without requiring any

pre-training, but these practice-based methods cannot provide

precise-enough information to perform discovery by themselves.

This paper introduces Praxi, a new software discovery method

that builds upon the strengths of prior approaches by combining

the accuracy of learning-based methods with the efficiency of

practice-based methods. In tests using samples collected on real-

world cloud systems, Praxi correctly classifies installations at

least 97.6% of the time, while running 14.8 times faster and using

87% less disk space than a similar learning-based method. Using

a diverse software dataset, this paper quantitatively compares

Praxi to systematic rule-, learning-, and practice-based methods,

and discusses the best uses for each.

Index Terms—Solution monitoring, software discovery, ma-

chine learning, cloud analytics.

I. INTRODUCTION

In today’s rapidly changing business landscape, the speed at
which software solutions can adapt to new business needs has
become a critical factor in determining the success or failure
of enterprises. To meet these market demands, developers are
often given ample freedom to choose the technologies and
components they use to build applications. As a consequence,
in tandem with common software usage models shifting
from vendor-supplied proprietary software to open-source soft-
ware [1], there are numerous sources of software components
for building applications. Other trends in the cloud, such as
serverless computing [2], continuous deployment [3], and two-
pizza teams1 making independent decisions also cause typical
software applications to end up with far more component
diversity compared to that of software observed just a few
years ago.
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1Amazon CEO Jeff Bezos introduced his famous two-pizza team rule,

meaning that teams should not be larger than what two pizzas can feed [4].

Many of these changes have made organizations nimble
and more responsive to market needs, but they also present
new problems for businesses needing to maintain security or
legal compliance. For example, the integration of third-party
components often forces organizations to keep track of many
different software licenses and security bulletins so that their
systems remain in compliance and free of vulnerabilities. The
big migration to the cloud by corporate IT departments [5] and
the emergence of micro-service architectures have increased
application diversity and caused a tremendous explosion in
the size and scale of cloud deployments over the past decade.
This increased diversity has forced both organizations and
individual developers to abandon manual methods of server
administration in search of more automated and robust means,
including a way of searching for a specific piece of software
among a large set of VMs or containers. With rapid develop-
ment and deployment cycles often moving too fast for proper
documentation, it is all too easy to lose track of what software
is installed on a system, leading to inadvertent hosting of non-
compliant or buggy applications. Awareness of these issues is
a must for proper protection of high-value cloud deployments,
and with constant iteration, one-time scans are not enough –
continuous awareness is necessary for security assurance in the
cloud [6]. Therefore, being able to continuously identify what
software exists in a given system, i.e., “software discovery,”
is becoming a core requirement for ensuring security and
compliance.

Initial efforts for software discovery began with a basic
need to determine whether a given system has any known
vulnerabilities. To accomplish this, administrators often wrote
rules detecting software that had been cataloged in knowl-
edgebases like the National Vulnerability Database (NVD) [7].
A triggered rule would indicate a vulnerable system, which
would then be quarantined and manually patched. Ideally,
the next scan of the system would declare the system free
of that particular vulnerability. However, this was not always
the case: the rules themselves often required manual updating
to ensure they recognized the applied patch and suppressed
the vulnerability warning. This fragile, labor-intensive nature
of rule-based methods became the motivation for more novel
software detection systems.

Towards the goal of generating more comprehensive and
robust software discovery methods in the cloud, our recent
work [8] introduced a “learning by example” approach, which
classifies unlabeled software installations using machine learn-
ing models trained on fingerprints generated from recorded
examples of software installations. Fingerprints can be created

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on March 02,2020 at 00:04:57 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2975439, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, SEPTEMBER 2019 2

using simple hashes [8], or using more elaborate natural
language processing (NLP)-inspired learning techniques [9].
Using this method, we observed software detection success in
real-life cloud systems with over 90% accuracy [9]. We also
studied how to classify system changes in near-real-time by
building a “discovery service,” DeltaSherlock, which contin-
uously samples the system and analyzes events of interest at
fixed intervals [10].

Instead of relying on a corpus-based machine learning
mechanism of software detection, another approach known
as Columbus leverages knowledge of software packaging
practices (such as naming conventions) to aid in software
discovery without need pre-training [11]. Such a method has
the advantage of not having to spend time building a database
of known software, but the disadvantage of requiring human
involvement to interpret the loosely-defined output strings.

In this paper, we present a novel hybrid method of au-
tomated software discovery, Praxi, that combines aspects
from both learning- and practice-based approaches. Praxi
uses Columbus to generate informative tags without requiring
any pre-training and then employs fast incremental learning
methods to quickly update discovery models as new software
packages become available. Praxi significantly reduces training
time and the overhead associated with incremental training
compared to existing learning-based approaches, while still
providing highly accurate software discovery that requires no
human involvement. More specifically, contributions of this
paper can be listed as follows:

• We propose a novel hybrid discovery method called Praxi
that can learn to perform automated software discovery
using small numbers of training samples with over 99%
accuracy in simulated production settings. Praxi quickly
adjusts when the software corpus expands, as it supports
incremental training and does not require any pre-training
to extract system fingerprints.

• We provide a detailed comparison of Praxi’s performance
to that of state-of-the-art discovery approaches consid-
ering manually- and repository-installed packages. Con-
sidering systems that have observed single and multiple
software installations, we report accuracy, runtime per-
formance, and storage requirements of Praxi and contrast
these with rule-, practice-, and learning-based approaches.

• We also provide an automated method of systematic
rule-based software discovery to serve as a baseline for
comparison to other discovery methods we evaluate.

The rest of the paper first provides background information
about select previous approaches to software discovery in Sec-
tion II, followed by an explanation of our proposed approach
in Section III. We design and execute a set of experiments to
evaluate the performance of Praxi in Sections IV and V. We
discuss the results of those experiments and their potential
applications in Section VI. Finally, we explore related work
and conclude with an overview of future directions for our
work in Sections VII and VIII.

II. BACKGROUND

Several solutions to the software discovery problem have
been proposed over the years. Some solutions, such as rule-

based approaches, are straightforward and easy to implement,
but suffer from poor accuracy due to the rigid, fragile na-
ture of rules. Other solutions, such as some learning-based
approaches, can achieve very high accuracy but require long,
complex training processes. Still others, such as practice-
based approaches, solve the rigidity and training problems by
eschewing the need for a corpus, but have an output that is
geared more towards manual human analysis than automated
software discovery.

In this section, we briefly explain the workings of several
of these kinds of methods, as they form the basis for our
hybrid method, Praxi, as well as their individual advantages
and disadvantages.

A. Rule-based approaches

Traditional approach to detect installed software is to manu-
ally define rules. System engineers design rules that verify the
presence of specific files and predefined properties to detect
misconfigurations and system changes [12], [13]. An example
of such a rule may state that the existence of a file named
SIGFILESDKXA64.SYS2 with a file size of 100 bytes in a
system indicates that IBM SDK 5.0 is installed. This tech-
nique have been used for years to detect intrusions, viruses,
and non-compliance with license agreements, among other
uses. When well-written, a rule can achieve very high detection
accuracy, even in “noisy” system environments where other
methods have been shown to struggle.

A rule’s effectiveness, however, is totally dependent on
the author’s ability to consider every possible scenario in
which the target (the software being detected) could exist.
Continuing the example from above, a patch could change
the size of SIGFILESDKXA64.SYS2 from 100 to 105
bytes, which would prevent the rule from being triggered and
would therefore produce a false negative. To prevent this, the
rule would either have to be updated by the author every
time a patch is released, or be made general enough that
it detects the IBM SDK 5.0 regardless of version without
creating additional false positives. Even if an expert rule writer
could write such a rule, modern development practices (agile
software development [14], continuous integration/continuous
delivery [15], etc.) have accelerated today’s software release
schedules, and inevitably a manually-defined rule will have to
be rewritten. When faced with a software catalog numbered
in the hundreds of thousands, the human resources required to
write rules to discover every version and variation of software
that could potentially be installed becomes prohibitively costly.

Despite their disadvantages, the simplicity and ease of
implementation of rule-based approaches make it likely that
they will remain in use for many years. Thus, we introduce an
automated method of rule generation. This approach attempts
to locate file-tree segments (i.e., partial or absolute paths)
that are unique to individual applications and uses them to
build one or more rules that can detect that application. The
rules check for the existence or absence of certain files or
a combination of files. When enough rules are satisfied for
a particular application by a filesystem sample, we conclude
that the sample contains an installation of the said application.
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TABLE I
DISTRIBUTION OF MYSQL SERVER FILE SYSTEM FOOTPRINT.

Namespace File Count
/usr/share/man/man1 27
/usr/bin 26
/etc 24
/var/lib/dpkg/info 24
/usr/share/doc 7

The exact algorithm and implementation details are given in
Appendix A.

Although this automated method does not require the ex-
tensive human effort involved with rule-making, it needs to
be executed every time new software is introduced into the
corpus, and its algorithmic runtime complexity (O(m3

n
2)

where m is the number of unique software labels, and n is
the number of unique files across the entire corpus) makes
it unsuitable for real-world deployments covering very large
numbers of software applications. Nevertheless, we use this
automated method whenever we discuss “training” in the
context of rule-based methods, and it will serve as a baseline
when analyzing experimental results as it is systematic and
provides good accuracy.

B. Columbus: a practice-based approach
On the opposite end of the spectrum, with respect to the

strict and definite rule-based discovery method, sits practice-
based discovery. Unlike rule-based approaches that require
rule regeneration after every corpus update, practice-based
approaches require no prior analysis and can be applied on any
system. However, practice-based approaches do not perform
software discovery directly, and the output of this approach
can only be used to aid in software discovery, not complete
the task itself.

Practice-based discovery aims to exploit the generalized
textual system state indicators by relying on the observation
that, across most software installation mechanisms, a number
of common naming and packaging practices exist. Specifically,
most software has a unique filesystem footprint that is typically
organized across unique namespaces and has the name of the
software embedded into the footprint. By identifying these
namespace clusters, it is possible to provide generic identifiers
for installed software packages.

Broadly, a software package consists of a set of binaries,
libraries, documentation, and configuration files. A typical
software installation stores files in the filesystem under a
namespace that is unique to that software. A standard practice
is to name all the binaries with common software name pre-
fix, such as mysql, mysqld, mysqldump, mysqladmin
for the software MySQL, while another practice is to store
configurations, libraries, logs under a directory named after
the software. These naming conventions are no coincidence —
they are efforts to ensure easy access to the user and simplify
software management.

For example, the filesystem footprint for the
mysql-server package installed on Ubuntu 16.04
contains 131 files. This footprint is distributed across the
different namespaces as shown in Table I. Below are some
sample entries in selected namespaces.

m,5

a,1 y,4

n,1 s,4

q,4

l,4

d,3 a,1

b,1 u,1 d,1

m,1

p,1

m,1

i,1

n,1

Fig. 1. A frequency trie for the inputs [man, mysqld, mysqldb,

mysqldump, mysqladmin]. The non-trivial tag with the highest fre-
quency is mysql, followed by mysqld.

/usr/share/man/man1/mysql.1.gz

/usr/bin/mysqldump

/usr/bin/mysqloptimize

/usr/bin/mysql

/etc/mysql/conf.d

/etc/mysql/mysql.cnf

/var/lib/dpkg/info/mysql-server-5.7.list

Inspired by this most fundamental and deterministic system
characteristic of a software, we proposed Columbus [11],
a generic software discovery technique that is agnostic to
platform and software installation method. Columbus explores
the filetree information provided in the form of a list of file
paths to discover software installed in systems.

Each filepath is first tokenized to get a list of directory
and file names. For example, /etc/mysql/conf.d is
tokenized into the list ["etc", "mysql", "conf.d"].
Common system tokens like etc, usr, etc. are removed
from the list. Remaining tokens are indexed into a frequency
trie or FT described in detail by Nadgowda et al [11], and
an example FT is given in Fig. 1. Columbus uses FTs to
discover tags, defined as the most-frequent longest-common-
prefix among the list of all tokens in the filesystem tree. In
an FT, when the frequency of any child node is found to be
smaller than its parent node, then the trie path from the root
to the parent node is concatenated and identified as a new
tag with frequency of the parent tail node. Columbus builds
two frequency tries: FTname that stores all segments of a file
path, and FTexec that stores only the basename of executable
files. Tags in each frequency trie are ranked based on their
relative frequency. Then only top k tags are selected, where k
is set heuristically. The results are then merged as described
by Nadgowda et al [11].

Columbus aids in software discovery by identifying in-
formative tags. Discovery is performed manually by admin-
istrators who use these tags to aid the discovery process.
Considering the number of cloud instances operated by large
organizations, this manual approach is not scalable.
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C. DeltaSherlock: a learning-based approach

Our recent work [8], [9], [10] introduced a learning-based
method of “software discovery by example” called DeltaSher-
lock. The main idea of this approach is to observe examples
of system changes (mainly changes to the filesystem) made
when known software installations take place, generalize these
observations into a numerical vector representation, and detect
software in different settings using machine learning mod-
els trained with these “generalizations.” This is achieved by
recording all filesystem changes (i.e., creation, modification,
or deletion of a file) during the changes caused by software
installation to a “changeset”, generating condensed numerical
“fingerprints” from those changesets using shallow neural
networks, and then applying machine learning algorithms to
train models based on the generated fingerprints for discovery.
Fig. 2 provides a general overview of the DeltaSherlock
method (top two rows), and Section III-A provides more
details on the changeset recording process.

DeltaSherlock’s changeset generalization or “fingerprinting”
process is described in 3 parts: generation of an ASCII
character histogram, analysis of the relationships between files
in a directory, and the analysis of the tree structure of the
filesystem.

The first step, generation of the ASCII histogram, places
the ASCII numerical codes for all characters of the basenames
of every changed file recorded in the changeset into the bins
of a histogram and then normalizes, to produce the first 200
elements of the fingerprint vector.

The second and third parts of the fingerprinting process
utilize techniques originating in the field of natural language
processing (NLP) to capture the “meaning” of the names of
these changed files. In these two steps, known as generation
of the “filetree” and “neighbor” vector elements, changesets
are analyzed using the shallow neural network training tool
word2vec (w2v), which was originally designed to encode the
syntactic and semantic relationships between words in sen-
tences of human natural languages. When creating “filetree”
fingerprint elements, the “sentences” fed to w2v are made up
of the full absolute paths of each changed file in a changeset.
Similarly, during the generation of “neighbor” fingerprint
elements, w2v is fed “sentences” made of the basenames
of each changed file and its neighbors (i.e files residing in
the same directory). After analysis of all changesets in the
training corpus has completed, w2v creates a “dictionary”
mapping words (file and directory names) to vectors, and this
dictionary is used to generate the remaining 400 elements of
the fingerprint vector based on the words contained within the
original changeset [9].

Concatenating and normalizing two or more of these “ele-
mental” fingerprint types (histogram, neighbor, and filetree)
results in a “combined fingerprint.” We chose to primarily
use the combination of histogram and filetree fingerprinting
methods in our experiments for this paper because this com-
bination typically performed better when compared to other
fingerprinting methods.

Recently, we extended these fingerprinting and machine
learning methods from single software installation discovery to

multiple system event discovery, and proposed a DeltaSherlock
system daemon that can capture system states on-demand and
detect multiple system changes between them [10]. This prior
work demonstrated DeltaSherlock’s real-world usefulness by
testing the system with “noisy” changesets that included mul-
tiple application installations randomly spaced throughout one
recording interval, which introduced background noise from
things like system caching and log rotations. DeltaSherlock
was then further upgraded to include additional features like
a client/server architecture that enabled distributed changeset
collection and processing, enhanced backend database man-
agement (for efficient storage of changesets and fingerprints),
and a web-based user interface.

Despite its positive performance, DeltaSherlock presents
overhead issues with regards to its time and storage require-
ments. In previous work using DeltaSherlock [10], training an
SVM-RBF model with 13,650 changesets took approximately
5 hours and 50GB of disk space. This does not include the
time and disk space required to generate and store the change-
sets themselves, and DeltaSherlock requires constant storage
of all training changesets so that the w2v dictionaries and
corresponding fingerprints can be regenerated, as incremental
training is not supported. In our most recent experiments,
although we were able to eliminate some of the overhead
associated with DeltaSherlock by eschewing the “neighbor”
elements of the fingerprint, we hypothesized that a hybrid
method could further reduce overhead and increase scalability
while maintaining high accuracy. Thus, resolving these over-
head concerns became one of our primary motivations for
developing our new hybrid method: Praxi.

III. PRAXI: A NEW HYBRID APPROACH FOR SOFTWARE
DISCOVERY IN THE CLOUD

We propose a new hybrid discovery method called Praxi
that combines the strong points of practice- and learning-
based approaches while alleviating their weaknesses. Our
proposed approach replaces the fingerprint generation phase
of DeltaSherlock, which requires training systems dictionaries
via word2vec, with Columbus, which does not require prior
training. It also replaces the machine learning engine used
in DeltaSherlock, which does not support working with free-
form text as features, with Vowpal Wabbit (VW), which not
only supports free form text as features, but also incremental
training (enabling minimal-cost model updates when new
packages are released) and faster overall training and testing.

This new approach, shown in Fig. 2 (bottom two rows),
starts in much the same way as the other approaches covered in
this work: by taking in as an input a set of filesystem changes
observed during some time period, known as a changeset.
The changeset is analyzed using the practice-based method,
Columbus, which reduces the changeset down to the set of
strings (tagset) that appear most frequently in the filepaths
contained within it. We then use the tagset (labeled with the
name of system event that occurred) as features to train a
machine learning model in the training phase. Finally, during
the evaluation phase, we present unlabeled tagsets to the
trained model for classification.
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Fig. 2. A comparison of the overall training and evaluation processes for DeltaSherlock and Praxi. Praxi requires fewer steps and less disk space during its
training process, and does not require the periodic dictionary regeneration and classifier retraining required by DeltaSherlock.

A. System Change Recording

Similiarly to DeltaSherlock, Praxi operates on changesets
— collections of filesystem changes observed within a closed
time interval, in which one or many system events, such as an
application installation, update, or removal, may have occurred
[10]. In our implementation, these changes are collected using
the Linux kernel’s inotify feature, which notifies a change
recording daemon running in the background on the target
system of the creation, modification, or deletion of any file
or directory that has an inotify “watch” placed on it. A
graphical overview of this process is shown in Fig. 3. We
found that this method introduces the least amount of overhead
into the system while ensuring that all changes are captured,
but other mechanisms of system change collection could
also be used to suit other system configurations, such as
the FindFirstChangeNotification function present
in the Windows API or the periodic filesystem crawl approach
used by Turk et al [10].

Upon notification of a filesystem change, the daemon
records several attributes to a changeset record: the file’s
absolute path and UNIX permissions octal, the kind of change
that occurred (i.e., creation, modification, or deletion), and
the UNIX timestamp at which it occurred. The changeset
record is then appended to the currently open changeset. In
our implementation, this process occurs entirely in-memory
in order to reduce disk I/O overhead.

After a certain amount of time or upon some user-
configurable event, the recording daemon “closes” the change-
set by sorting its changeset records by time of occurrence,
removing any duplicate entries, setting the close_time

attribute, and either saving the changeset to a file on-disk or
uploading the changeset to a remote server for processing. The
daemon then “opens” a new empty changeset for writing.

B. Practice-based Analysis & Changeset Reduction
After a changeset has been closed, it is analyzed using a

practice-based method called Columbus. As detailed in Section
II-B, Columbus uses a frequency trie to discover a set of tags
made up of the most frequent longest-common-prefix string
tokens found in a filesystem tree, relying on the organizational
conventions in place among today’s software developers and
package maintainers. Instead of using Columbus to scan an
entire filesystem tree (as it was used by Nadgowda et al. [11]),
our approach uses Columbus to scan the “tree” of file-change
records within a changeset.

The resulting tagset is therefore representative only of the
system changes that occurred while that changeset was open
and being written to, eliminating the possibility of noise
produced by events occurring before the recording period.
Conversely, because Columbus places only the tags that occur
more than once in the resulting tagset, noise arising from
irrelevant stimuli (such as log file rotations, caching, etc.)
during the recording period is also filtered out.

Beyond noise reduction, the practice-based analysis step
also offers several practical benefits. By condensing changesets
(which vary in size from a few kilobytes to tens of megabytes,
depending on number of changes captured) down to tagsets
(which are typically less than a kilobyte), Praxi requires
much less storage space than other methods. The simple data
structure of tagsets (basic space-separated-value strings) also
makes them easy to store in both “flat” text file datastores
and fully-featured database systems. Further advantages of this
analysis and reduction technique are discussed in Section VI.

C. Model Training & Classification
In our evaluation implementation, we chose to use the Vow-

pal Wabbit (VW) tool [16] to train our classifiers. This tool

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on March 02,2020 at 00:04:57 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2975439, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, SEPTEMBER 2019 6

Fig. 3. A general overview of the system change recording process used in
our experiments.

was chosen instead of other machine learning engines because
of three main advantages: flexibility, speed, and incremental
learning capability. In terms of flexibility, the VW tool offers
input feature hashing using the Murmurhash v3 [17] algorithm,
allowing the use of variable-length sets of plain-text strings
(i.e., tagsets) as input features.

After a tagset has been produced, it is used as a feature to
train a machine learning model using sparse gradient descent
on a hinge loss function. The tagset is treated as if it was a “bag
of words,” much in the same way that human-readable sen-
tences are processed by natural language classification models.
We use the Vowpal Wabbit tool to generate a single multi-
class classifier for our experiments with single-label change-
sets. For experiments involving multi-label changesets, we
use Vowpal Wabbit’s cost-sensitive one-against-all (CSOAA)
method. Internally, VW’s CSOAA classifier evaluates each
sample against n regression functions based on sparse gradient
descent on a hinge loss function, where n is the number of
unique labels (application names) present in the corpus. Each
regression function returns a “cost” representing the likelihood
of a particular label being present in the sample. A high cost
(1) is assigned if the package is not present in the sample,
whereas a low cost (0) is assigned if the sample contains that
package.

In terms of both model training and sample classification
speed, VW vastly outperforms other machine learning engines,
as shown in Sec. V-C. Finally, unlike many traditional learning
engines, VW supports incremental or “online” learning, where

trained machine learning models can be updated with new
data without requiring a full retraining. The ability to update
models incrementally instead of training from scratch is very
critical, considering there are hundreds of thousands of known
software packages and with many new packages becoming
available on any given day.

In addition to its input format flexibility, the Vowpal Wabbit
tool allows for flexible parameterization and performance
tuning. To optimize the learning model for the task of classi-
fying tagsets, we parameterized our models based on discrete
parameter sweeps and prior experience with machine learning
tools. Although we found Vowpal Wabbit to be the most
suitable tool for our implementation, any machine learning
system that supports variable-length string-based input features
could be used in its place.

IV. EXPERIMENTAL METHODOLOGY

In order to perform a comprehensive evaluation of Praxi, we
have designed and executed a set of experiments demonstrating
the method’s accuracy, runtime performance, and storage com-
plexity. Several of these experiments offer comparisons against
DeltaSherlock, a learning-based software discovery method,
while others demonstrate benefits unique to Praxi. In all of
these experiments, we use datasets based on popular software
installed via source code compilation, manual installation
scripts, and pre-built repository packages.

A. System Setup

All of our experiments use the following process (or some
slight variation of it, where specified) to prepare the environ-
ments in which they will run. To begin, a standard OpenStack
m1.small VM instance with 1 vCPU, 2GB RAM, and
20GB persistent disk is spun up on the Massachusetts Open
Cloud [18] using the latest “cloud image” of our target
platform: Ubuntu 16.04 Xenial. The images are updated so
that all pre-installed packages are at their latest versions, and
then their package managers are configured to be “frozen,”
meaning that the versions of installed packages will remain
consistent throughout our experiments. Our custom experiment
controller daemon is then installed and configured to run on
boot, allowing us to use the Linux kernel’s inotify feature to
monitor the filesystem for changes with little overhead (as
explained in Section III-A).

B. Dataset Generation

We collect changesets using two different experimental con-
figurations: one designed to produce “clean” changesets and
another designed to produce “dirty” ones. Clean changesets
represent installations performed under conditions ideal for
collecting the “purest” possible filesystem footprint of an
application. Before clean changesets are collected, the experi-
ment controller executes a “pre-run” where all applications are
installed and then removed, leaving their dependencies pre-
installed on the system so that the observation process only
captures the software application(s) in question.
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Dirty changesets, on the other hand, represent installations
performed under conditions designed to model realistic filesys-
tem noise and installation practices. Unlike clean changesets,
the preparation for the collection of dirty changesets does not
include a pre-run step, so many application dependencies are
not pre-installed. As a result, dependency installations occur
within the changeset recording period, and vary based on the
order of the application list used in a particular run.2

Finally, we generate changesets that contain multiple ap-
plication installations by combining two or more single-
application changesets.

a) Collecting “clean” changesets: After the experi-
mental environment has been prepared (including the pre-
installation of dependencies) and the VM rebooted, the con-
troller places inotify “watches” on the files and directories
in the filesystem, excluding special and device files like those
typically found under /proc/ or /dev/. The controller then
begins recording any file creations, modifications, or deletions
reported by the kernel to a changeset.

As soon as recording begins, the first application is installed
using the APT package manager (if the application is a
repository package) or a vendor-recommended installation
script (if the application is a manual installation). As soon
as the installation (or installations, if collecting multi-label
changesets) completes, the changeset is closed and “ejected”
from the controller, meaning that no more changes can be
recorded to that particular changeset. The changeset, which
now contains a list of all files changed during the installation
period, is labeled with the name of the software application(s)
installed and sent back to a central server for processing. The
controller replaces the ejected changeset with a fresh, empty
one, restarts recording, and begins installation of the next
package(s) on the list.

This process is repeated throughout the run, which ends
when the software application list is exhausted. After a run
ends, all applications are uninstalled, the application list is
randomly shuffled, and a new run begins. Runs are performed
until at least 150 samples of each label are obtained.

b) Collecting “dirty” changesets: The dirty changeset
collection process proceeds in much the same way as that
of clean changeset, except dependencies are not installed
in a “pre-run”, nor they are removed between application
installations. As mentioned above, this results in dependency
installations being captured within an applications changeset.
Secondly, random waiting periods between 10 and 30 seconds
are inserted before and after a package is installed (during
which the controller still records changes), meaning that more
random system noise (log rotations, caching, etc.) is captured.
Other than these differences, the “dirty” data collection is
identical to the “clean” data collection process detailed before.

c) Generating multi-application changesets: Changesets
containing two or more application installations are required
for evaluating the multi-label classification performance of our

2As an example, say application A shares a set of dependency packages
D with application B. In one run, A is installed before B, so the installation
of packages in D are captured by A’s changeset. In a subsequent run, the
application list might be shuffled such that B is intalled before A, so the
filesystem changes caused by D are instead captured within B’s changeset.

TABLE II
NUMBER OF UNIQUE APPLICATIONS IN OVERALL CORPUS

Apps Clean C.Sets Dirty C.Sets
Repository Packages 73 10,950 10,950
Manual Installations 10 1,500 1,500

method. Instead of creating these changesets “organically”
by allowing the controller daemon to observe many instal-
lations within a single recording period, we “synthesized”
multi-application changesets by concatenating several single-
application changesets together in order to save time. We found
that these “synthetic” changesets were almost identical to those
created “organically” with the same applications.

Each multi-label changeset used in our experiments was
synthesized from between 2 and 5 single-application change-
sets randomly chosen (without replacement) from the overall
“dirty” corpus (including both repository packages and manual
installations). Controls were put in place to ensure that two
or more changesets containing the same application were not
included in the same multi-application changeset. A total of
3,000 multi-application changesets were synthesized.

C. Application Sources
In order to better reflect the wide variety of software instal-

lation methods in use today, we selected 83 applications from
various sources. These applications can be roughly split into
two categories: repository packages and manual installations.
The total number of collected changesets for different software
categories are presented in Table II.

a) Repository Packages: The repository package list
consists of 73 packages that can be found the Ubuntu official
default repositories (full list of packages used can be found
in Appendix B). The packages in this list are diverse in
terms of category, popularity, and installed size. 150 clean
and 150 dirty changesets are generated for each target in this
list using the standard installation process, resulting in 21,900
total changesets.

b) Manual Installations: The manual installation list
consists of 10 applications that aim to simulate the occasions
when a user needs to use software that is not included in
their distribution’s package repository (full list of applications
used can also be found in Appendix B). These applications
are installed via source compilation, a self-installation script,
or some combination of the two. Seven of the applications
in the list involve some sort of source compilation step in
their installation process. Once again, 150 clean and 150
dirty changesets are generated for each application in this list
using the standard installation process, resulting in 30,000 total
changesets.

D. Performance Metrics
To measure performance, all experiments are evaluated

using the standard measures of precision, recall, and F1 score.
To account for variations in number of samples per unique
label (class imbalance) in our cross-validated experiments, we
use support-weighted macro-averaged F1 scores instead of the
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standard micro-averaged F1 measure. That is, we calculate the
weighted F1 score for an application app as follows:

F
app
1 = 2 · P

app ·Rapp

P app +Rapp
· S

app

T
, (1)

where P
app and R

app are (respectively) the per-label precision
and recall for app, S

app is the ground-truth number of
samples of app present in the testing set, and T is the total
number of samples (of all labels) in the testing set.

To then calculate the average support-weighted F1 score for
all labels, we take the simple arithmetic mean of the results
of Eqn. 1 for all applications in the testing set as follows:

F1 =

P
app2TestSet F

app
1

|TestSet| . (2)

V. RESULTS

To evaluate the performance of Praxi, we have designed and
executed a set of experiments measuring the accuracy, runtime,
and overhead of the approach in different scenarios. In all
experiments, we compare Praxi’s results to that of other recent
software discovery methods to provide points of reference for
the reader. Unless otherwise noted, all experiments utilize the
system setup, dataset generation techniques, and performance
metrics detailed in Section IV.

A. Single-label Classification
We begin with a comparison of Praxi’s single-label classi-

fication accuracy to that of two other methods: DeltaSherlock
and the automated rule-based method detailed in Appendix A.
In these experiments, each changeset is guaranteed to contain a
single application installation, and all three methods are trained
and tested on the same disjoint datasets.

The training set consists of 1,000 dirty changesets and
n clean changesets, where n varies between 0 and 10,000
(inclusive) in increments of 2,500. The testing set consists
of 2,000 dirty changesets. We perform a modified form of
3-fold cross validation by swapping out which 2,000 of the
3,000 total dirty changesets are used for testing and averaging
the results. This methodology was designed to demonstrate
each discovery method’s performance when the number of
training samples per label is relatively low. All changesets
were chosen randomly from our overall corpus and contain
varying quantities of samples of every repository package and
manually installed application. The experiment was repeated
15 times per discovery method (3 folds of dirty changesets ⇥
5 increments of clean changesets).

Fig. 4(a) displays an F1 score comparison of Rule-based,
DeltaSherlock and Praxi for different training dataset sizes. As
seen in the figure, Praxi was able to correctly identify the vast
majority (98.7%) of changesets without any additional clean
training samples. Accuracy improves to 100% after adding just
2,500 samples to help the VW model learn to classify outlier
changesets, and stays perfect throughout further additions. In
comparison, DeltaSherlock was able to identify all samples
accurately in all trials, but as shown in Fig. 4(b), at the cost
of significantly longer runtime (more than double of Praxi).

(a) Accuracy of methods.
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(b) Runtime of methods.

Fig. 4. The results for single label classification. ‘D’ refers to the number of
dirty changesets, and ‘C’ refers to the number of clean changesets.

The automated rule-based method achieved a consistently low
runtime, but could only reach a peak accuracy of 91% after
adding 5,000 additional samples. Interestingly, the rule-based
method became less accurate as additional samples were added
beyond 5,000. This is due to the fact that the rules generated
by the rule-based method become more and more prone to
over-fitting as more training data becomes available.

In order to simulate an even more realistic server environ-
ment than could be modeled by the dirty changesets detailed in
Sec. IV-B, we recorded additional system noise from a variety
of sources, including a live web server, an active MongoDB
database server, a user’s web browser, and a random filesystem
noise generation script. We then randomly overlayed samples
of this noise atop the original dirty changesets and repeated
our experiments, increasing the size of each dirty changeset
by 8.8 kilobytes on average. After repeating our single-label
experiment with these “dirtier” changesets, we found that Praxi
experienced a slight drop in accuracy, with F1 scores ranging
from 96.3% without any clean training samples to 99.6% with
the addition of 10,000 clean training samples. By comparison,
DeltaSherlock and Rule-based experienced almost no changes
in accuracy, with still-perfect classification in the case of the
former and a peak accuracy of 92% with the same bell-curve-
like accuracy trend in the case of the latter.

B. Multi-label Classification
In a typical real-world use-case, a software discovery

method will often encounter more than one application instal-
lation within an observation period. To evaluate and compare
Praxi’s performance in this setting, we use synthesized dirty
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TABLE III
COMPARISON OF OVERALL OVERHEAD FOR MULTI-LABEL CLASSIFICATION

Praxi DeltaSherlock

Phase Operation Time (min) Disk (MB) Operation Time (min) Disk (MB)

Feature Reduction Columbus Tag Extraction 3.7 55 Dictionary Generation 13.1 370
Fingerprinting 55 24

Discovery VW Model Training 1.5 59 RBF Model Training 11 489
VW Model Evaluation 0.2 - RBF Model Evaluation 0.7 -
Overall 5.4 114 Overall 79.8 883

(a) Accuracy of methods.
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(b) Runtime of methods.
Fig. 5. The results for multi-label classification. The rule-based method cannot
be trained using multi-label data; therefore it is only trained using the single-
label training samples. ‘ML’ refers to the number of multi-label changesets,
and ‘SL’ refers to the number of single-label changesets.

multi-application changesets (as defined in Section IV-B) to
build the disjoint training and testing datasets.

The training set consists of 2,000 multi-application change-
sets and n dirty single-application changesets, where n varies
between 0 and 3,000 (inclusive) in increments of 1,000. The
testing set consists of 1,000 multi-application changesets. We
perform 3-fold cross validation by swapping out which 1,000
of the 3,000 total multi-application changesets are used for
testing and averaging the results.3 This methodology was
designed to explore the effectiveness of single-label training
samples in a multi-label setting.

All changesets were chosen randomly from our overall
corpus, and all multi-application changesets contain between
2 and 5 application installations. The ground-truth number
of applications in each changeset is provided to each dis-
covery method during testing; i.e., each discovery method is
forced to provide the correct number of applications. This
part of the methodology accounts for the lack of continuous

3Note that this cross-validation process is different from the one used in
Section V-A, where the larger fraction of the corpus was used for testing
instead of training

timestamps in synthesized multi-application changesets, which
breaks DeltaSherlock’s algorithm for inferring the number of
applications present in a changeset by counting local maxima
in the number of filesystem changes over time. For real-world
applications of these methods, prior work has shown that this
quantity prediction algorithm can be used on timestamped
changesets containing up to 10 applications with less than
1.6% error, and that overall classification accuracy degrades
much more slowly per additional application when quantity
data is provided [10]. All in all, we repeated the experiment
12 times per discovery method (3 folds of multi-application
changesets ⇥ 4 increments of single-application changesets).

While the general trend of the results, shown in Fig. 5(a),
largely matched that of the single-label classification experi-
ments, several interesting exceptions exist. Praxi was able to
identify 95% of samples accurately without any single-label
examples being present in the training set. Upon adding just
1,000 single-label training samples, however, Praxi’s accuracy
jumped to 98%, while adding additional single-label samples
beyond the first 1,000 had essentially no effect. In comparison,
DeltaSherlock again traded significant runtime for perfect ac-
curacy, as shown in Fig. 5(b). The rule-based method does not
support multi-label training samples, so it could not be used for
the first trial involving no single-label training samples. Once
single-label samples are introduced, however, its performance
becomes similar to what was observed in Section V-A, with
an average accuracy of 91%.

C. Runtime and Disk Usage
In order to promote adoption and scale to thousands of

applications and cloud instances, a software discovery method
must minimize its associated overhead. Table III compares
the runtime and disk usage of Praxi and DeltaSherlock while
performing the multi-label classification experiment described
in Section V-B on an m1.xlarge virtual machine with 8 vCPUs
and 16GB RAM. As shown in the table, Praxi is able to run
the overall experiment 14.8 times faster4 than DeltaSherlock
while using 87% less disk space. A large portion of these
savings is due to elimination of a dictionary generation step
in the feature reduction phase. Trained Vowpal Wabbit models
are also significantly smaller than RBF models, leading to
additional savings in the training step.

It is also worth noting that it’s not necessary to run both
the Columbus tag extraction and the w2v dictionary generation

4The runtime shown in Table III for the “VW Model Training” operation
does not include time spent loading Columbus tags from disk. Columbus tags
are small enough that they could reasonably be kept in memory between
the tag extraction and model training operations, negating the need for disk-
caching in a production implementation of Praxi.
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(a) Accuracy of methods.

(b) Runtime of methods.

Fig. 6. The results for incremental classification. Both methods have good
accuracy as new labels are introduced but Praxi runs significantly faster.

every time models are to be retrained. In a production envi-
ronment, w2v dictionaries would be regenerated upon addition
of applications into the corpus that touch files that have yet to
be touched by any other application in the corpus. Columbus
tagsets, on the other hand, can be generated individually as
changesets are collected, since there is no interdependence
between two tagsets from different changesets. In other words,
Columbus tagsets never have to be regenerated. They are only
iteratively generated as new changesets are added, making the
cost of adding new applications to the corpus significantly
lower than that of DeltaSherlock and the rule-based method.

D. Scalability Analysis

As mentioned in Section III-C, Praxi was designed with
the ever-accelerating speed of software development in mind.
Today’s software discovery methods must be able to quickly
incorporate newly-written and updated software into its cor-
pus. Praxi handles these cases using incremental training, and
to evaluate Praxi’s performance in this area, we designed a
set of experiments that increases the number of applications
in the corpus from 20 to 80 in increments of 20. For each
increment, we add 20 dirty single-label changeset samples of
each application into the training set, and 10 of the same into
the testing set. At every increment, we measure the accuracy
and overhead of three approaches: Praxi trained incrementally,
Praxi trained from scratch (i.e., the VW model is completely
retrained, with no online training), and DeltaSherlock (which
did not support incremental training at time of writing) trained
from scratch. We cross-validated our results three-fold by
rotating which 10 changesets were used for training, running

the experiment three times, averaging results across the 12
runs. Results are shown in Fig. 6.

Fig. 6(a) shows that incrementally-trained learning-based
discovery is possible at the expense of a slight decrease in
accuracy. Adding the first 20 new labels to the dataset caused
a 3 percentage point drop in Praxi Incremental’s accuracy,
and successive iterations caused further drops. Overall though,
Praxi Incremental’s accuracy never drops below 92%. On the
other hand, the accuracy of standard Praxi (with full retraining)
and DeltaSherlock remained largely constant throughout the
experiment. As seen in Fig. 6(b), Praxi runs significantly faster
and scales better as more labels become available.

VI. DISCUSSION

Our goal in this paper is to compare and contrast differ-
ent classes of software discovery methods, identify the best
aspects of each (depending on the problem or use case) and
combine these best aspects into our “hybrid method” Praxi.
Table IV summarizes our observations of this comparison,
which we detail in this section.

Practice-based methods such as Columbus do not require
training and can discover applications that have never been
“seen” before. They use packaging and naming conventions to
discover software. In our experiments, Columbus discovered
tags such as mail and onecloud. These are not applications
in traditional sense (i.e., not distributed together as a package),
but rather the name given to a collection or category of
applications installed together. That Columbus manages to
discover them shows its semantic discovery capability. How-
ever, the output of practice-based methods is not well-defined
(i.e., a unstructured set of strings). For this reason, practice-
based software discovery cannot be fully automated, as human
intervention is required to interpret the output.

Rule-based methods are straightforward and easy to un-
derstand. In the past, rules had to be written by human
domain experts, making it impractical to write and maintain
rules for a large number of frequently-updated applications.
In this paper, we provided an automated mechanism for rule
generation, which removes this constraint. The main drawback
of rule-based approaches, even automated ones, is that they
cannot “learn” generalized definitions, only rigid heuristics.
We observed that this could lead to over-fitting on larger
datasets, often in the form of rules looking for unreliably-
present cache or log files, decreasing overall accuracy.

Learning-based methods, especially those that use intelli-
gent fingerprinting techniques to learn system context in a
concise manner, are great for generalizing observed character-
istics of software packages and identifying them in different
contexts in a fully-automated manner. They resolve the over-
fitting concerns present in rule-based methods, and the manual
effort requirements of practice-based methods. However, pre-
existing learning-based methods required regeneration of all
fingerprints and full retraining when new applications were
introduced to the corpus. This, when combined with long
training times, made these methods difficult to maintain.

All of the discovery methods mentioned share a common
feature: they operate on changesets, or filesystem deltas with
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TABLE IV
HOLISTIC RELATIVE COMPARISON OF AUTOMATED DISCOVERY

METHODS

Praxi DeltaSherlock Rule-Based
Classification Accuracy High Highest Fair
Model Training Time Low High Lowest
Overall Disk Usage Low High Low
Can Iteratively Train? Yes No No

known discrete start and ending times. In the experiments
detailed in this paper, the start and end times were controlled
so as to not fall in the middle of an application installation and
create “partial changesets” that would only contain some of the
filesystem changes caused by an application. Prior work has
found that most discovery methods perform poorly when used
to classify partial changesets, often because an installation
event can be split across changeset bounds in such a way
that neither the preceding nor the following changeset contains
enough information to uniquely identify the application [10].
Of course, in most real-world applications, the precise timing
of system changes is not known, but can be inferred using
the same algorithm used for quantity prediction discussed
in Section V-B. That is, if a peak in filesystem change
frequency is encountered at the end of one changeset, the
system could infer that a similar peak at the beginning of
the next changeset would necessitate merging and analyzing
the two changesets as one. Alternatively, the software agent
responsible for recording filesystem changes to changesets
could monitor change frequency and only stop recording after
a set period of inactivity.

This issue aside, having noticed the strengths and deficien-
cies of existing discovery methods, we set out to design a
fully-automated method that would combine the high accuracy
of learning-based methods with a practice-based fingerprinting
approach to greatly reduce overhead and improve performance
over existing methods. Furthermore, we found that utilizing
incremental-training-ready machine learning methods allowed
us to avoid the time-consuming process of retraining the mod-
els from scratch every time a new application is discovered.
That being said, incremental training does not come without a
cost: as detailed in Section V-D, each successive incremental
training led to a slight drop in accuracy when compared to a
“cleanly retrained” Praxi model. The largest drop in accuracy
occurred after the first incremental training, which doubled the
number of labels in the corpus. Each successive incremental
training caused a smaller and smaller accuracy loss, which
leads us to believe that the drop in accuracy is directly related
to the percent increase in the number of labels in the corpus
caused by each training increment.

In most software discovery applications that would utilize
incremental training, the number of labels added by each incre-
ment would usually be quite small compared to the number of
labels already present in the corpus, just as the number of new
packages added to a software repository each day is usually
quite small compared to the number of packages already
present in the repository. Thus, it is reasonable to assume that
in practice, the drop in accuracy caused by each incremental
training would be quite small. Nevertheless, we acknowledge

that even small successive drops in accuracy may eventually
compound into an undesirably large error over time. As such,
we would advise users of Praxi to occasionally perform a full
retraining after multiple successive incremental trainings (e.g.,
one weekly full retraining would be recommended if a user
was performing daily incremental trainings).

In summary, we believe Praxi achieves our goals by trading
a slight decrease in accuracy (compared to learning-based
methods) for significantly faster runtimes, lower overall disk
usage, and the ability to incrementally train models when new
applications are discovered.

VII. RELATED WORK

The global software development ecosystem is quickly
expanding as developers focus on using pre-built, often open
source components in their products and services instead of
solely relying on in-house or specialized proprietary solutions.
This increase in “software diversity” creates problems for
system administrators who are in charge of keeping all their
software components secure and well-performing. Researchers
have been exploring several automated approaches for dis-
covering and classifying software systems. In this section
we explore previous work broadly in software and systems
analytics in the cloud as it relates to our work.

Of the approaches we consider in this paper, rule-based ap-
proaches are the usual choices for discovering and identifying
system changes in the cloud [13], [19], [20]. Traditionally,
system experts manually design lists of rules for change
identification and discovery, which check for the existence of
certain files and indicated properties, such as sizes of files,
some specific contents of configuration files, etc. Installation
logs and caches can be used as hints to a package’s existence
on a system, and the file change manifests provided by some
package managers can help designers find files unique to a
single package.

As the maintenance of rules has to be performed by system
experts with specific knowledge of systems and packages,
maintaining rules under the aforementioned breakneck pace of
release cycles and large-scale system deployments is expensive
and impractical. Furthermore, rules are fragile and have poor
re-usability. A rule for discovery of an old package release
can easily fail to discover a newer release, a phenomenon
that can occur multiple times per week for some packages.
In this paper, we propose and demonstrate an automated rule
generation approach that attempts to mitigate many of these
issues by reducing the effort needed to create a new rule.
However, the inflexibility of rules and the over-fitting nature of
rule-based approaches still stands and we showcase that Praxi
significantly outperforms rule-based approaches in discovery
accuracy.

There is a separate body of work that focuses on detecting
which applications are executing in the system [21], [22], [23].
While these methods may be used for discovering executing
software, our approach can detect any installed software and
does not need the software to execute first.

System discovery problems have been addressed in con-
texts other than software discovery as well. Several prior
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studies [24] investigate the system anomaly detection and
diagnosis problem by performing comparisons with existing
examples of a “healthy” or “base” system. In these approaches,
registry entries and system event logs have been used in
troubleshooting methods that identify problems on a given
system. Instead of focusing on discovering software directly,
other works [25] focus on data provenance, or discovering the
process by which data is formed. While these approaches are
appropriate for some applications, not all systems produce or
accept large amounts of data, making it less effective to track
data instead of the producing software directly.

Several tools exist to monitor the runtime behavior of cloud
applications. One example known as CLAMBS [26] monitors
several runtime attributes such as CPU & memory utilization,
uptime, and running services to monitor the health of appli-
cations in a cloud-platform-agnostic manner. CLAMBS, like
most tools, will only provide insight into applications it is
configured to monitor, and does not discover new software
without additional configuration.

While Praxi’s primary goal is to discover newly-installed
software, it could conceivably assist in the task of cloud foren-
sic data analysis, since it provides a method for identifying
filesystem activity over time. Tools such as ForenVisor [27]
serve a similar purpose, recording much more detailed forensic
data from more sources (including hardware I/O modules and
raw memory) at the cost of needing to add a hypervisor layer
to the system stack.

EnCore [28] learns configuration rules from a given set of
sample configurations, and then automatically detects devia-
tions from these “norms” as software misconfigurations.

Somewhat similarly to our practice-based methods, Min-
ersoft builds an inverted index file-tree structure using file
metadata, and uses the file-tree to discover software [29],
which provides an interface for the application of statistical
or machine learning techniques in identifying system state or
compliance. Most of these fingerprinting methodologies are
based on system performance metrics [30], [31].

Another system change discovery approach we compare
against is a recently-introduced learning-based method, also
known as “discovery by example” [8], [32], [33]. The state-
of-the-art discovery by example system is called DeltaSher-
lock [10]. The main philosophy behind this approach is to
record all the system metadata that is modified during the
changes caused by the system event, generate fingerprints
from them and apply machine learning algorithms to train
models for discovery. Comparing with rule-based approaches,
“discovery by example” eliminates the requirement of manual
or expert input. Furthermore, since this approach automatically
extracts abstracted semantics using the whole changed meta-
data set, it avoids sticking to any piece of a specific feature,
which makes this approach more robust to slight tweaks than
rule-based approaches.

The learning models in DeltaSherlock can be updated
with newly collected data to automatically keep pace with
software and systems updates, but these updates require full
regeneration of fingerprints and retraining of models, a slow
and storage-intensive process. While DeltaSherlock and its
predecessor learning-based systems offer fully automated dis-

covery, their inability to update themselves with new data and
their long training time requirements render them unfit for to-
day’s fast paced application development environments. Praxi
on the other hand, offers incremental training, significantly
outperforms DeltaSherlock in terms of runtime, and requires
significantly less storage.

VIII. CONCLUSION

We proposed Praxi, a framework for scalable and fast soft-
ware discovery in cloud instances. Praxi combines the strong
points of previously proposed practice- and learning-based
approaches while alleviating their deficiencies to offer a fully
automated discovery solution that does not require extensive
learning for feature reduction and prediction. Furthermore,
unlike any of the existing solutions, Praxi supports incremental
learning. This enables fast, accurate, incremental updating of
the discovery framework and avoids the need for re-training
from scratch when new applications are discovered.

Our experimental analysis revealed that Praxi can provide
over 97.6% accurate discovery with 14.8 times lower run-
time and 87% lower storage overhead than its counterparts.
In future work, we hope to explore to possibility of Praxi
detecting and differentiating between individual versions of
software, as well as further performance improvements in
“noisy” environments where multiple changes occur at the
same time.
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