
RANDR: Record and Replay for Android
Applications via Targeted Runtime Instrumentation

Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse K. Coskun, Manuel Egele
Electrical and Computer Engineering Department, Boston University, Boston, MA, USA

{sahin, aliyevaa, hrhrnm, acoskun, megele}@bu.edu

Abstract— The ability to repeat the execution of a program
is a fundamental requirement in many areas of computing from
computer system evaluation to software engineering. Reproduc-
ing executions of mobile apps, in particular, has proven difficult
under real-life scenarios due to multiple sources of external
inputs and interactive nature of the apps. Previous works that
provide record/replay functionality for mobile apps are restricted
to particular input sources (e.g., touchscreen events) and present
deployment challenges due to intrusive modifications to the un-
derlying software stack. Moreover, due to their reliance on record
and replay of device specific events, the recorded executions
cannot be reliably reproduced across different platforms.

In this paper, we present a new practical approach, RANDR,
for record and replay of Android applications. RANDR captures
and replays multiple sources of input (i.e., UI and network)
without requiring source code (OS or app), administrative device
privileges, or any special platform support. RANDR achieves
these qualities by instrumenting a select set of methods at runtime
within an application’s own sandbox. In addition, to enable
portability of recorded executions across different platforms
for replay, RANDR contextualizes UI events as interactions
with particular UI components (e.g., a button) as opposed to
relying on platform specific features (e.g., screen coordinates).
We demonstrate RANDR’s accurate cross-platform record and
replay capabilities using over 30 real-world Android apps across
a variety of platforms including emulators as well as commercial
off-the-shelf mobile devices deployed in real life.

I. INTRODUCTION

Reproducibility of the execution of a program is a core
capability necessary in many areas of computing: workload
characterization for computer architecture [1], system software
optimization for performance or energy [2], or software de-
bugging and testing [3]. For instance, for software testing and
quality assurance, it is often desirable to reproduce the high-
coverage test cases obtained via human input [4]. Similarly,
for OS-level power or performance optimization, the same
execution of a program is often repeated under different
scheduling or power management policies to explore energy
and performance tradeoffs on real-life devices [5]. Meeting
this core reproducibility requirement, however, has proven
particularly challenging for mobile applications (i.e., apps) [6],
[7]. Unlike traditional “run-to-completion” type applications
with minimal interaction found in desktop/server systems,
execution of mobile apps are heavily influenced by non-
deterministic input sources such as user interactions, network,
sensors, or random numbers.

Prior record and replay tools for desktop and server plat-
forms based on low-level events (e.g., system calls [8], CPU

instructions [9], [10]) are not readily useful for real-life mobile
systems and apps due to their high overhead [6]. Beyond
the need for reproducing multiple non-deterministic factors
such as UI and network events, accurate record and replay of
Android apps also require preserving the timing of events [11].
For instance, the timing between the UI events, the primary
input source in mobile apps, is crucial to determine the type
of the UI interaction (e.g., (long) click, swipe etc.) [6], [12].

While various approaches are specifically geared towards
record and replay of mobile apps, several limitations impair
their accuracy and practicality. First, most prior work [6], [7],
[12], [13] rely on platform-specific raw screen coordinates
of UI inputs which restricts the replay capabilities only to
one specific device [13] or screen resolution [6]. Moreover,
some approaches focus purely on UI events [12], [13], [14]
and cannot handle execution variations that arise due to
other common factors such as network or random number
inputs. Second, many of the prior approaches incur practical
drawbacks as they require access to the app source code [14],
[15], [16] or require intrusive modifications to the underlying
OS or virtual machine [6]. Most real-world apps in Android
markets (e.g., Play Store) are closed-source. Modifying the OS
is tedious to implement and maintain [7] due to the fragmented
Android ecosystem with many software versions and custom
devices [12] and require a device with an unlocked boot
loader to install new images. Thus, existing approaches achieve
limited applicability to real-life off-the-shelf mobile devices
due to manufacturer imposed restrictions against unlocking
boot loaders and gaining administrative privileges (i.e., root).

This paper proposes a record and replay system, RANDR,
that provides cross-platform and timing sensitive record and
replay of multiple sources of inputs without imposing the
restrictions that undermine practicality. RANDR determinis-
tically replays mobile apps by recording and replaying app
inputs (i.e., UI, network, and random numbers) by dynamically
instrumenting 1 a set of target methods within an app’s own
sandbox. RANDR solves the deployment challenges of existing
tools [6], [12], [13] since it does not require any persistent
modifications to the system that would need elevated privileges
(i.e., RANDR only requires minuscule generic app-rewriting
to trigger our dynamic instrumentation). Through strategic
selection of the target instrumentation points, RANDR retains
sufficient contextual information about inputs (e.g., the partic-

1We use the term hooking and dynamic instrumentation interchangeably.

ular UI widget a user interacts with) to enable cross-platform
replayability without sacrificing generality.

We implement a prototype of RANDR for Android. RANDR
hooks into a set of target Java methods to capture UI inputs as
well as the random numbers that cause variant app behavior if
not kept deterministic across record and replay. By intercepting
the UI inputs in Java APIs within the Android framework,
RANDR automatically associates UI events as interactions
with a particular UI widget (i.e., widget-sensitive) irrespective
of where these UI components appear precisely on screen, pro-
viding cross-platform replay capability. In addition, RANDR
intercepts the network traffic at the system call layer by
hooking into standard C libraries. Capturing and reproducing
network traffic at the system call boundary gives RANDR
generality to handle different network library implementations
or network protocols. By accurately capturing these multiple
data and event streams and performing timing sensitive and
widget-sensitive replay of UI interactions, RANDR success-
fully reproduces the behavior of popular Android apps across
different devices. We evaluate fidelity of RANDR qualitatively
through the visual similarity between record and replay of over
30 apps as well as quantitatively by comparing the similarity
of methods executed by each app during record and replay.

In summary, this paper makes the following contributions:
• We propose a dynamic instrumentation approach (§ III)

for record and replay of mobile apps. Our approach
effectively captures UI, network, and random number
inputs within an apps’s own sandbox without requiring
any elevated privileges or persistent system modifications.

• We propose a widget-sensitive UI replay methodology
that provides cross-platform replay capabilities (§ IV-B2).

• We propose a native library level record and replay
methodology that can reproduce popular network proto-
cols (e.g., HTTP, HTTPS, FTP) (§ IV-B3).

• We implement a prototype of RANDR. We show
RANDR’s replay success with over 30 real-world apps
across different devices and Android versions (§ V).

II. BACKGROUND

This section briefly reviews the Android concepts that are
relevant to our record and replay system. More specifically, we
discuss how apps are distributed and executed on the Android
platform. We also describe Android’s input handling mecha-
nism as well as the principles of dynamic instrumentation.

Android System. Android apps are mainly written in Java
on top of the APIs provided by the Android framework,
compiled into Dalvik bytecode and executed by the Android
Runtime (ART). Android apps can also implement a part of
their functionality in native code (e.g., in C/C++). These apps
are distributed in the form of APK files that contain an app’s
bytecode (.dex), resources, assets, and a manifest file. The
manifest file declares a set of permissions that grants the apps
access to additional functionality (e.g., network, storage).

The Android platform is built upon a modified version of the
Linux kernel and provides each application with an isolated

execution sandbox. Each application runs in its own process
and with its own instance of the ART. To provide low-level
system functionalities to the apps, the Android framework
consists of a set of native libraries (e.g., libssl for SSL
support, libc for standard C library operations).

Android UI System and Input Handling. User interactions
over the touchscreen are the primary source of input for
Android apps. Android describes UI events using MotionEvent
and KeyEvent classes, each extending the InputEvent class.
MotionEvents specify the user input in terms of an action code
(e.g., ACTION_UP, ACTION_DOWN) and screen coordinates.
A sequence of MotionEvents can describe any user gesture
such as long press, fling, and pinch. KeyEvents describe a key
that has been pressed (e.g., volume, virtual keyboard).

To facilitate user interactions with an application, the An-
droid framework provides a rich set of UI elements (widgets)
such as Buttons, TextViews, ImageView, or ScrollView. More-
over, developers can implement custom widgets. To ensure
compatibility with the Android framework, every widget must
be derived from the View or ViewGroup class. Views are
UI elements that represent interactive objects on the screen,
while a ViewGroup is responsible for organizing Views and
other ViewGroups into a layout tree. An application can
chose to define its layout tree statically (i.e., at design time),
dynamically (i.e., at runtime), or using a combination of both.

In Android, the Activity class describes a single screen of
an app’s UI. An Activity is given a rectangular area on the
screen (i.e., a Window) on which to draw its user interface. All
UI components in a Window form one layout tree hierarchy
with the root view defined by the ViewRootImpl class. This
class describes the behavior of the window and has two main
functions relevant to RANDR. First, each ViewRootImpl class
instance registers an InputEventReceiver, a low level mecha-
nism to deliver all InputEvents to an app’s window. Second,
this class is responsible for traversing the view hierarchy to
determine which View will receive user input.

Dynamically Instrumenting Java APIs in ART. Each Java
class is internally represented by a Class object in memory
in ART. A virtual method table (i.e., vtable) within a Class is
used to resolve virtual methods and implement polymorphism.
In ART, the ArtMethod structure corresponds to the internal
C++ representation of both static and virtual Java methods.
Thus, the vtable of a Class essentially holds pointers to
ArtMethod objects in memory. Each ArtMethod object
contains an entry point which essentially points to a code that
performs the necessary set-up and clean-up, and executes the
target method’s code. Hooking in ART can be accomplished
either by modifying an entry in the vtable to point to a different
ArtMethod object [17] or by modifying the entry point
within an ArtMethod to point to a different location [18].
The former approach allows to hook only into virtual methods.
RANDR adopts the latter entry point hooking approach which
works with both static and virtual methods.

The reflection API supported in the Java Native Interface
(JNI) can be used to obtain a handle to ArtMethod object

entry_point_*

ArtMethod
....

....

Class
vtable_
....

....

Trampoline

entry_point_*

ArtMethod
....

Class
vtable_
....

....

Method Code

entry_point_*

ArtMethod
....

Detour Code

Virtual Memory Layout
(Before Instrumentation)

Virtual Memory Layout
(After Instrumentation)

....

Target Class for
Instrumentation

Original
ArtMethod

Struct

Detour
ArtMethod

Struct

Detour logic

Original
Method

Method Code

Fig. 1: Dynamic instrumentation in memory. Green regions represent
the original class and method structures in memory while red regions
highlights the dynamically injected components.

for a target Java method of interest. Once the address of
the ArtMethod struct corresponding to the target method
is known, the entry point can be accessed by a fixed offset
and modified to point to a different address. Modifying the
address within the entry point enables executing a hook method
upon invocation of the target Java method. Once control is
diverted to the hook function, the target method arguments can
be recorded or modified. The original target method can also
be invoked from the hook function to implement the original
method behavior. Once the original target method is executed,
the return value can also be recorded or modified as necessary.
Figure 1 summarizes this process by illustrating the state of
the virtual memory layout of an app before and after hooking.

III. RANDR OVERVIEW

The goal of RANDR (Figure 2) is to provide the capability
to reproduce the executions of mobile apps recorded on one
platform across different devices (i.e., cross-platform replay)
in a practical manner. RANDR achieves practical merits by
providing record and replay capabilities without requiring any
administrative device privileges or source code modifications
(i.e., OS or app). RANDR realizes these capabilities through
a combination of static app rewriting and dynamic framework
instrumentation that allows to capture and reproduce the inputs
to a set of target method calls (i.e., both Java and C APIs) in
the Android framework. This section serves as an overview of
these static and dynamic instrumentation components. We also
describe RANDR’s cross-platform replay methodology along
with an overview of the working principles of RANDR.

Dynamic instrumentation is the key component of RANDR
that hooks into a set of target methods in memory to capture
(i.e, for record) or modify (i.e., for replay) input arguments
or return values. Our aim is to capture and reproduce the
inputs to the app that originate from external non-deterministic
sources such as UI interactions, network, and random numbers.
We detail our specific instrumentation targets to handle these
non-deterministic sources in § IV and proceed with working
principles of RANDR during record and replay stages.

Record Stage (2): During the recording phase, we direct
the control flow from instrumented methods to custom hook

Static
Instrumentation

Original
App

UI
Events

Modified
App

D
e
v
ice

Hook Target
Methods

Record
Inputs

D
e
v
ice

Hook Target
Methods

Inject
Inputs

Network
Data

Random
Numbers

Replay

Record
1

2

3

Fig. 2: Macro view of our RANDR record and replay approach.

methods that record inputs into a trace file. RANDR also
records timestamps to ensure that the timing between the
method invocations can be preserved during replay. For the
case of user interactions, simply recording the fields of input
arguments (e.g., raw screen coordinates from InputEvent)
does not provide sufficient information to reproduce execu-
tions on a different platform where the positions of UI widgets
can differ. RANDR addresses this problem by generating stable
(i.e., platform-independent) identifiers for each UI widget and
contextualizing each UI event as an interaction with respect to
a particular UI widget. Simply recording the received network
data also may not be sufficient for replay due to underlying
cryptographic protocols establishing secure communication
based on non-deterministic inputs (e.g., TLS session keys
derived from external entropy sources [19]). To address this
challenge, we study Android’s SSL implementation to identify
sources of non-determinism for network replay and determine
the instrumentation points for enabling reproducibility of
network sessions. § IV details how RANDR addresses these
challenges concretely.

Replay Stage (3): RANDR’s replay logic differs depending
on whether the target method invocation is initiated from the
app or the Android runtime (i.e., a callback) while recording.
For callbacks, RANDR directly invokes the original method
with saved arguments for replay. For instance, UI events are
asynchronously delivered to an app by the Android runtime
during record (i.e., a callback) and RANDR directly invokes
the necessary target methods during replay. RANDR adds
sleep intervals between method invocations according to the
recorded timestamps to preserve timing. For the method calls
that originate from the app (e.g., a call to Math.random()),
once the app invokes the target method, RANDR replaces the
original method arguments with those from the trace file.

RANDR requires only minimal static instrumentation on the
app (1). The purpose of this static instrumentation stage is to
trigger our dynamic framework instrumentation from within
the app. RANDR decodes the app resources and dex files,
rewrites application’s bytecode such that the app loads and
executes our dynamic instrumentation component during app
launch. RANDR exclusively injects code into app-startup and
does not rewrite any of the app’s code beyond that. The output
of this stage is a new instrumented APK file.

Overall, performing the framework instrumentation at run-
time and from within the app provides RANDR with unique

advantages. First, the target method structures can be identified
and patched in memory at runtime without requiring any
static OS modifications or access to any device software.
Second, since target method structures are modified by the
app in its own process address space, RANDR does not
require any privileged mode of operation or root permissions.
Therefore, RANDR is able to capture multiple input sources
across different software layers to provide record and replay
capabilities on unmodified Android devices.

IV. RANDR IMPLEMENTATION

This section describes our implementation of the RANDR
system. § IV-A details the static application instrumentation
necessary to trigger our dynamic instrumentation. In § IV-B,
we describe the hooking mechanism along with how we
leverage this mechanism to enable record and replay of UI,
network, and random number inputs for Android apps.

A. Static Application Instrumentation

RANDR’s static instrumentation component modifies the
application resources and bytecode such that the app loads
our dynamic instrumentation library (§ IV-B) at app-launch.
We use apktool [20] to disassemble the bytecode from
the application’s dex files and obtain the manifest file
(AndroidManifest.xml). The disassembled bytecode is
in readable and editable smali [21] representation. To ensure
our hooks are in-place before the app starts to execute,
RANDR injects a small stub code into the Application
subclass of the app. We choose this approach as the
Application subclass is the first class to be instantiated
for each application. The small stub code simply invokes
System.loadLibrary() to load our native hooking li-
brary, which we insert into the APK. RANDR also modifies
the manifest file to add storage access permissions to allow
the application to read and write trace files.

B. Dynamic Runtime Instrumentation

This section details how RANDR realizes record and replay
capabilities for Android apps by dynamically hooking into a
set of target methods. We first describe the implementation
of our hooking library in § IV-B1. RANDR intercepts UI and
random number inputs by instrumenting a set of Java APIs as
detailed in § IV-B2 and § IV-B4. RANDR achieves network
record and replay by hooking at system call wrappers in libc,
which provides generality to our framework (e.g., RANDR can
seamlessly support third party network libraries or different
protocols). § IV-B3 describes our network replay approach.

1) Hooking into Java and Native APIs: We build our Java
API instrumentation setup on top of an open-source hooking
framework for ART (i.e., YAHFA [22]). As per the entry point
hooking process described in § II, YAHFA creates a backup
of the original ArtMethod object and replaces the target of
the entry point with a trampoline that simply jumps to the
entry point of the ArtMethod object corresponding to our
hook method. Performing the original method call behavior
simply requires invoking the backed-up version of the original

ArtMethod from our hook functions. During record, in
addition to logging the method arguments and return values,
RANDR invokes the original methods to allow the application
to execute in its default behavior.

Our implementation of this hooking infrastructure is fully
contained in a shared native library and leverages the reflection
API support in JNI to obtain references to method instances
at runtime (i.e., via GetStaticMethodId()). Our frame-
work uses dynamic class loading capabilities provided by the
Android framework (i.e., via DexClassLoader) to dynam-
ically load hook methods as well as other replay components
into the virtual address space of the target application. The
hook methods are written in Java, which provides ease of use
and makes RANDR easily extensible to add other instrumen-
tation points as necessary.

Our implementation of the native library hooks uses the
AndHook framework [23] which provides a hooking interface
for various Application Binary Interfaces (ABIs) including
armeabi-v7a, arm64-v8a, x86 and x86 64. AndHook locates
the image of a given shared library in the process address
space, parses the ELF structure to identify the address of the
target functions we wish to instrument, and inserts necessary
jumps at this address to realize method hooking. RANDR
uses the AndHook framework to hook into bionic and crypto
libraries for recording and replaying the network events.

2) Recording and Replaying UI Inputs: RANDR records
and replays UI inputs by hooking into a set of Java APIs
in the Android framework. Performing the interception at
the framework layer provides RANDR with the generic UI
input capture capabilities while retaining sufficient contextual
information in the Android framework to associate these
events with their target UI widgets. By recording and replaying
UI events with respect to their target widgets, RANDR achieves
cross-platform reproducibility of UI events independent of
where these widget appear on a particular device screen.

RANDR needs to uniquely identify widgets in an application
in a manner that is stable and consistent across multiple
application runs and across different devices. To address
this problem, RANDR first hooks into the onDraw() and
draw() methods in the View class. This allows RANDR
to monitor all widgets that appear on the screen before the
users can interact with them and enables RANDR to work with
both statically defined and dynamically created widgets. As a
second step, RANDR assigns each widget a stable identifier
that is derived using a combination of widget properties. More
specifically, RANDR collects information such as the private
fields of the View class instances that describe whether a
widget is enabled, will draw or scrollable. We found that other
properties that can be used for widget identification such as
focusableness and clickability are often changed at runtime
and, are thus, not suitable for cross-platform widget identi-
fication. In addition to the View class properties, RANDR
obtains any text displayed by a widget. Finally, RANDR uses
the position of the widget in the UI tree. Since the full
path to the widget’s node in the UI layout (i.e., the XPath)

TABLE I: Main target Java instrumentation points for UI
replay used in RANDR during record (left) and replay (right).

Record Replay
View.onDraw()

View.draw()
InputEventReceiver.dispatchInputEvent()

View.onTouchEvent()
Activity.onAttachedToWindow()ViewGroup.dispatchTouchEvent()

View.onAttachToWindow()

can change across different devices, RANDR only uses the
relative position of a widget. We empirically established that
acquiring a widget’s 5 ancestors nodes and their classnames
in combination with other widget properties described above
is sufficient to generate cross-platform stable identifiers.

During recording, RANDR intercepts the MotionEvents
received by a widget and records the widget’s identifier,
MotionEvent action, timestamp and the relative position of the
MotionEvent within a widget. RANDR also registers listeners
to every Editable widget to record any entered text.

During replay, RANDR first finds the location of the target
widget on the screen. RANDR generates MotionEvents with
coordinates adjusted to the new position and size of the
identified UI widget on the screen. To inject newly gener-
ated MotionEvents, RANDR keeps track of currently active
ViewRootImpl class instances that are responsible for handling
and managing View hierarchies in a window presented to a
user. RANDR injects the MotionEvents back into the windows
that the identified view resides in the order corresponding to
event timestamps. By replaying the UI interactions through
generation of adjusted MotionEvents, RANDR lets the Android
framework handle the invocation of correct callback methods
depending on the type of the UI widgets. To keep the app
responsive during replay, RANDR sends the UI events from
a dedicated background thread. Table I summarizes RANDR’s
instrumentation points in Java APIs for UI record and replay.

RANDR includes cross-device support for the scrolling ges-
ture as this gesture is often required to explore an application.
We implemented scrolling using the following method. During
recording, we log the timestamp, the identifier of the scrollable
widget as well as the direction of the events. Moreover, we
identify the last visible widget to the user at the moment when
the scrolling gesture ended. During replay, we simply inject
scrolling events into the recorded scrollable widget until the
recorded (last) visible widget is drawn on the screen.

3) Recording and Replaying Network I/O: RANDR inter-
cepts network communications by hooking into the system
call wrapper methods in Android’s standard C library (libc)
implementation called Bionic. By performing the record and
replay at the native system call wrapper layer, RANDR is
agnostic to different network libraries (e.g., OkHttp, Volley
or Picasso) or protocols (e.g., HTTP, HTTPS or FTP).

Unlike protocols such as HTTP and FTP, recording and
replaying the results of system calls is not sufficient to
reproduce HTTPS traffic, which is widely popular among

apps. The challenge stems from the underlying cryptographic
protocols (e.g., TLS) used in HTTPS which establish new
cryptographic keys for each network session. Thus, it is not
possible reproduce network sessions by simply replaying the
recorded encrypted content through system calls as the data
cannot be decrypted with the new session keys generated
during replay. Our key insight for tackling this problem is that
the root cause of non-determinism is due to the client- and
server-side random numbers used for generating the session
keys during the TLS handshake. RANDR inherently captures
the server-side random inputs by intercepting the system calls.
Our observation is that the client (i.e., the Android device that
RANDR runs on) receives the server-side random numbers via
the system calls (e.g., read()) which RANDR records and
replays. To handle the client-side random numbers, RANDR
hooks into the cryptographic libraries. Specifically, during
both record and replay, RANDR fills the buffer argument
of the RAND_bytes() method in the libcrypto library
containing random data with a fixed sequence of bytes.

TABLE II: Target native instrumentation points in RANDR.

Instrumented Lib Instrumentation Points

libc.so
socket(), connect(), read(), write(), close(),
poll(), sendto(), recvfrom(), shutdown()

libcrypto.so RAND bytes()

Table II provides the specific set of methods RANDR
instruments for network record and replay. The libc library
contains the wrapper methods for system calls. We determined
the set of system call wrappers listed in Table II by the
following approach. First, we manually analyzed the system
calls to identify the ones relevant for networking. Next, to
identify which of these network related system calls are used
in Android apps, we analyzed a set of system calls that are
collected (i.e., via strace) by exercising 400 real-world apps
with Android’s monkey exerciser [24].

During record, once a connect() call is made on a socket,
we generate a trace file associated with the target address
and log the arguments and return values of the subsequent
system calls (e.g., read(), recvfrom()) on this socket to
the generated trace file. We extract the target address from the
sockaddr type argument of the connect() method. The
target address corresponds to an IP address for AF_INET or
AF_INET6 type sockets while corresponding to a local file
path for AF_UNIX type local sockets. RANDR also invokes
the original methods to obtain and record the return values.

During replay, once a connect() method is called on
a socket, RANDR finds the trace file associated with the
target address and subsequent system calls on this socket
retrieve their data from the corresponding trace file. For
instance, during replay, read() system calls fills data into
its buf argument from the recorded bytes in our trace files,
as opposed to fetching data over the network. Due to multiple
potential connections to the same address during record,
RANDR may need to disambiguate the trace logs to read from.

For such cases, RANDR relies on the ordering between the
connect() system calls.

An application may attempt to fetch data from the same
address through multiple connections from different threads.
Since RANDR may not be able to disambiguate the connec-
tions between such threads whose execution order may vary
between runs, we limit the level of concurrency during record
and replay. Specifically, RANDR hooks into the constructor,
setMaximumPoolSize() and setCorePoolSize()
methods of the ThreadPoolExecutor class to ensure that
the size of a thread pool does not exceed one. Note that enforc-
ing a schedule order between threads requires modifications to
the kernel [25] which would change the nature of RANDR.

RANDR is also able to reproduce DNS resolutions by
recording and replaying the system calls to a local DNS
deamon (i.e., \dev\socket\dnsproxyd). For DNS res-
olutions, RANDR uses the target host name to identify the
correct log file to replay from. The target host name is sent
to the DNS deamon through a local socket using a write()
system call. Thus, to obtain the target host name for a DNS
resolution, RANDR uses the buf argument of the write()
system call to the local DNS deamon.

4) Recording and Replaying Random Numbers: Random
numbers present another significant source of non-determinism
in Android apps which, if not captured and replayed, can lead
to different app behaviors [26]. We note that such random
input dependent variations could even be intentional from the
developer’s perspective (e.g., 2048 game app).

RANDR hooks into the pseudo-random number generator
in the Java API. Specifically, we record the return values from
the next() method in the java.util.Random class.
We choose this specific instrumentation point since it is the
common subroutine among other public random number APIs
(e.g., Random.nextInt(), Random.nextBytes(),
Math.random()). During replay, return values of the
next() method is overridden by the next number in the
sequence of recorded values.

V. EVALUATION

This section provides our evaluation of RANDR. Specifi-
cally, we seek to answer the following research questions.
RQ1 Does RANDR accurately capture UI, network, and ran-

dom number inputs and achieve cross-platform replaya-
bility of real-world apps?

RQ2 Does RANDR’s generic network replay approach handle
different network protocols?

RQ3 How much effort is needed to port RANDR to different
platforms?

RQ4 Does RANDR incur slowdown on apps that may disrupt
the replay accuracy?

We first describe our evaluation setup in § V-A. § V-B
addresses RQ1 and RQ2 by describing our fidelity metrics
and assessing RANDR’s replay capabilities. We also highlight
the portability of our approach (RQ3) by evaluating RANDR
across different Android versions and quantifying the changes

needed to support a new platform. § V-C evaluates RANDR’s
overhead to verify the practical nature of our approach (RQ4).
In § V-D, we illustrate two case studies that highlight the
importance of handling multiple non-deterministic inputs and
the benefits of accurate replay for workload characterization.

A. Evaluation Setup

Our experimental setup for evaluation consists of devices
with diverse characteristics (e.g., emulator, real device, dif-
ferent software versions, and screen resolutions). Our aim is
to highlight the ease of deploying RANDR across different
platforms and assessing its cross-platform replay capabili-
ties. Specifically, we evaluate RANDR on a real Pixel XL
smartphone (running Android 8.0) and two Android x86-64
emulators with different device specifications: Nexus 4 and
Pixel 2 XL running Android 8.1 and 8.0, respectively. We
choose these specific emulators due to a significant difference
in their screen resolution (i.e., 768x1280 px for the Nexus 4,
1440x2880 px for the Pixel 2XL).

B. Fidelity of RANDR
This section evaluates the replay capabilities of RANDR.

First, we provide our methodology for establishing the replay
accuracy. Next, we evaluate RANDR’s replay abilities for both
UI and network events. Finally, we show RANDR’s ease of
portability to real devices and different Android versions.
Fidelity Metrics: We use two metrics to evaluate the accuracy
of our replay using RANDR with respect to the original
execution during record. First, as in much of the prior work
[6], [7], [13], [14], we use the user visible visual states of the
app as a proxy for replay accuracy. Due to the subjective nature
of this visual similarity comparison, we also use the Jaccard
similarity between the set of methods executed during record
and replay. This Jaccard similarity metric provides us with a
finer granularity (in comparison to visual output similarity)
way to quantify RANDR’s replay accuracy. We modified the
ART source code [27] in both emulators to extract the set
of executed methods. Note that these modifications to ART
are only used to assess the fidelity of RANDR and are not
necessary to use or deploy RANDR.

Cross-Device UI Replay with RANDR: To test RANDR’s
cross-platform UI replay capabilities, for each app, we record
UI inputs with RANDR on the Nexus 4 emulator and replayed
the recorded traces on both Nexus 4 and Pixel 2 XL emulators.
We exercise each app for approximately 90 seconds manually
to evaluate RANDR’s ability to reproduce realistic real-life
app interactions not provided by randomized UI exercisers
(e.g., Android Monkey) [24]. We re-install the app before each
execution since we also want to test whether RANDR’s replay
functionality is self-contained. Note that RANDR’s network
replay functionality is disabled for this particular experiment.

To show RANDR’s cross-platform UI replay capabilities on
real-world closed-source Android apps, we collect a set of the
most popular apps from most Google Play Store categories.
From each category, we pick the apps with the highest num-
ber of downloads according to AppBrain rankings [28] that

TABLE III: The set of apps used for evaluating RANDR’s cross-platform UI replay capabilities.

Category App Name #Downloads Scrolling

V
is

ua
l

Su
cc

es
s

(N
ex

us
4)

V
is

ua
l

Su
cc

es
s

(P
ix

el
2X

L
)

Jaccard
Similarity
(Nexus 4)

Jaccard
Similarity

(Pixel 2XL)

Entertainment Mi Video 100M+ no 3 3 98.62% 98.74%
Finance Currency Converter 10M+ no 3 3 98.34% 98.38%
Parenting Baby Tracker 10M+ no 3 3 97.99% 97.71%
Comics Draw Cartoons 2 5M+ no 3 3 97.43% 97.43%
House & Home Zillow 10M+ yes 3 3 96.56% 91.00%
Maps & Navigation Kakao Bus 10M+ no 3 3 97.82% 97.97%
Travel & Local Where is my Train? 50M+ yes 7 7 69.96% 69.94%
Weather The Weather Channel 100M+ no 3 3 96.99% 96.60%
Art & Design Sketch 100M+ yes 3 3 99.08% 98.70%
Beauty Mirror Camera 10M+ yes 3 3 98.12% 95.40%
Medical Periods and Ovulation Tracker 100M+ no 3 3 95.17% 96.72%
Shopping Wish 100M+ no 7 7 96.56% 96.02%
Sports Onefootball 10M+ yes 3 3 99.23% 96.95%
Books & References Oxford Dictionary of English 50M+ no 3 3 96.56% 98.07%
Business OfficeSuite 100M+ yes 7 7 91.01% 84.21%
Communication Messages 100M+ no 3 3 95.86% 94.76%
Dating Hot or Not 10M+ yes 7 7 90.52% 90.68%
Education DuoLingo 100M+ yes 3 3 99.97% 99.51%
Events StubHub 5M+ no 3 3 98.90% 98.75%
Food & Drink FourSquare City Guide 10M+ no 3 3 99.23% 99.15%
Health & Fitness MyFitnessPal 50M+ yes 7 7 96.90% 99.08 %
LifeStyle Daily Zodiac Horoscope and Astrology 10M+ no 3 3 97.90% 97.80%
Music & Audio Amazon Music 100M+ yes 7 7 46.55% 46.58%
News & Magazines Flipboard 500M+ yes 3 3 96.97% 94.66%
Personalization Ringtone Maker 50M+ no 3 3 97.95% 98.06%
Photography Zero Launcher 50M+ no 3 3 97.58% 97.53%
Productivity MyJio 100M+ yes 7 7 97.54% 97.95%
Social Kakao Story 50M+ yes 7 7 65.81% 66.13%
Tools Clock 100M+ no 3 3 98.75% 98.69%
Video Players & Editors Dubsmash 100M+ no 7 7 96.76% 95.93%

RANDR can successfully instrument (i.e., some apps perform
tampering detection), that can execute in our emulators. We
excluded five categories (i.e., Wear OS, Daydream, Auto
and Vehicles, Games, and Libraries and Demo) for several
reasons. Apps from the Wear OS category require an external
device to operate, while the apps from the Daydream, Auto
and Vehicles, and Games categories often render their UI
components in native code. RANDR focuses on cross-platform
replay of apps that use Android’s UI toolkit. Apps in Libraries
and Demo category often provide system services and do not
provide a GUI to interact with the user. Table III lists the apps
we collected, whether we used scrolling to explore the apps’s
functionality along with our results for visual and method set
similarities on both emulators.

During our experiment, RANDR achieved visual similarity
for 21 of the 30 apps. The failure in the visual similarity for
the 9 remaining apps stems from different reasons. RANDR
failed to replay 2 apps due to an interaction with a customized
view, and 3 apps due to the presence of a WebView (see § VI).
We do not report visual success for 4 apps (i.e., Dubsmash,
MyFitnessPal, Wish, HotOrNot) because their user content is
determined by a server, and is not consistent between record
and replay. For example, RANDR was functionally able to
replay HotOrNot and MyFitnessPal correctly. However, during
replay on different devices, the HotOrNot app suggested the
profiles of different users. The MyFitnessPal app retrieved
several selected items entered during recording and saved in
our associated app account. In the Wish app, the remote server

tailors suggestions based on the information entered during
recording, hence breaking the replay visually and functionally.

The last two columns in Table III show the Jaccard sim-
ilarity between the set of methods recorded on the Nexus
4 emulator and the set of methods replayed on both the
Nexus 4 and Pixel 2XL emulators. RANDR achieves 93.54%
and 92.93% average Jaccard similarity on the Nexus 4 and
Pixel 2XL emulators, respectively. We report high Jaccard
similarities for all visually successfully replayed apps. For the
apps that RANDR failed to replay functionally (i.e., due to
a custom view or a WebView), we still observe high overall
Jaccard similarities (e.g. OfficeSuite, MyJio), since the replay
only diverged for a small portion of the execution. We find that
subtle differences between record and replay in the Jaccard
similarities for successfully replayed apps mainly stem from
the following sources. First, RANDR’s logic and instrumen-
tation points for record and replay are not identical, hence
different paths through the same code are executed. Second,
we also do not always inject the same amount of scrolling
events into both emulators, depending on whether the emulator
already displays the views we are interested in (see § IV). This
affects whether the app’s response to scrolling is triggered (e.g.
through Gesture Detector or View.OnScrollChangeListener).
Note that the exact quantity of deviation in Jaccard similarities
changes across the apps also due to the differences in the
nature and positions of the widgets the user interacts with
during the recording stage, triggering different execution paths
in RANDR’s implementation.

TABLE IV: The list of apps with network dependent functionalities and the different protocols used by each app. “#Sessions”
reports the number of network sessions. A session starts and terminates when a socket is opened and closed, respectively.

Application #Methods

H
T

T
P

H
T

T
PS

FT
P

#S
es

si
on

s

#Recorded
System Calls

Network Data
Volume (KB)

V
is

ua
l

Su
cc

es
s

(N
ex

us
4)

V
is

ua
l

Su
cc

es
s

(P
ix

el
2X

L
)

Jaccard
Similarity
(Nexus 4)

Jaccard
Similarity

(Pixel 2XL)

TripSit 10143 3 7 7 4 11 8.28 3 3 96.63% 96.73%
My FTP Client-FTP Server Manager 24855 7 3 3 53 888 638.75 3 3 92.82% 92.65%

MirrorCamera 25891 7 3 7 48 920 541.25 3 3 95.12% 93.91%
Anecdote 17259 3 3 7 17 200 17.26 3 3 95.58% 93.20%
eBooks 12563 7 3 7 7 656 445.47 3 3 95.57% 95.44%

Transports Rennes 12208 3 3 7 83 1237 814.84 3 3 94.42 % 94.47 %
BusTO 12315 3 7 7 15 197 1174.17 3 3 97.13% 96.49%

WorldWeather 13863 3 7 7 11 42 67.30 3 3 97.46% 96.75%
OpenManga 14958 3 7 7 14 186 878.63 3 3 98.96% 97.89%

LeMonde 16413 7 3 7 4 681 1633.99 3 3 96.91% 96.15%

Reproducing Network Sessions with RANDR: RANDR pro-
vides a generic approach for replaying network traffic within
the apps via system call layer interception, and thus, can
complement cases where the success of UI replay relies on
the network data. To evaluate our current prototype imple-
mentation, we select apps that 1) use different protocols (i.e.,
HTTP, HTTPS, FTP) to show the generality of RANDR to
different application-layer network implementations; 2) pos-
sess network-dependent functionalities. Note that our current
implementation of RANDR cannot replay apps that use various
features such as WebViews and multi-threading as described
in § VI. Thus, we manually analyzed the presence of these fea-
tures in apps retrieved from the Play Store and F-droid markets
[29] to determine the set of apps described in Table IV. We
also list the number of system calls and the total volume of
network data RANDR records for each app. Identical to the
previous section, we also report the Jaccard similarities.

Our native system call layer interception along with the
capability to capture the random numbers used to generate the
TLS session keys allows RANDR to reproduce network traffic
that use different common network protocols (i.e., HTTP,
HTTPS and FTP as shown in Table IV). Similar to the majority
of the cases in our UI replay evaluation (i.e., Table III),
RANDR achieves accurate replay across both emulators as
indicated (Table IV) by the high method similarity as well
as the visual similarity between the record and replay stages.

Portability of RANDR: RANDR is highly generic and can
be easily ported to different platforms. For instance, RANDR
can be deployed on unmodified off-the-shelf devices and
requires only marginal changes to support different Android
framework versions. To evaluate RANDR in this respect, we
conducted an experiment where we recorded 10 random apps
from our PlayStore dataset (Table III) on a Nexus 4 emulator
running Android 8.1, and replayed on a commercial Pixel
XL smartphone running Android 8.0. RANDR successfully
reproduced all the executions. Note that we cannot report
Jaccard similarity as the device runs an unmodified ART (i.e.,
not modified for method profiling). To add the required support
for Android 8.1 in RANDR, we modified only 9 (2 in Java, 7
in C) lines of code due to the differences in method signatures.

C. Overhead Evaluation

We perform our overhead characterization with a custom
app with timing functionalities and two basic features: (1) a
button to measure the overhead of our instrumentation at Java
APIs; (2) fetching the contents of a given URL to measure the
overhead of our native layer instrumentation. Due to inherent
measurement variations, we repeat our experiment consisting
of fetching craigslist.com upon a button click 20 times.
We experiment on the Pixel XL smartphone (Android 8.0).

The primary performance overhead of RANDR stems from
the dynamic framework instrumentation performed during
the app launch. We measure the duration of this one-time
instrumentation to be 64.35 ms which is negligible as com-
pared to app launch times (i.e., orders of seconds). Next, we
measure any impact of RANDR on the latency of UI events
which we quantify by measuring the time difference between
the dispatchInputEvent (invoked upon click) and the
onClick (invoked when the event is delivered to the app)
methods. To quantify the overhead of RANDR’s interception
at the native layer, we also measure the time to read the
content from the given URL. We measure the latencies when
RANDR is both disabled (i.e., RANDR OFF) and enabled
(i.e., RANDR ON) during recording. As shown in Figure
3, RANDR does not introduce any significant measurable
performance overhead. We also quantify that RANDR’s static
instrumentation increases the size of APK files by 864K.

D. Case Studies

This section provides specific case studies to show several
use cases and benefits of our RANDR system.

Ran
dR

_O
FF

Ran
dR

_O
N

0
10
20
30
40
50

C
lic

k
La

te
n
cy

 (
m

s)

Ran
dR

_O
FF

Ran
dR

_O
N

20
30
40
50
60
70
80

P
a
g
e
 L

o
a
d

La
te

n
cy

 (
m

s)

Fig. 3: Evaluating the performance impact of RANDR.

(a) Recorded (b) RERAN (c) RANDR

Fig. 4: Comparison of Reran [13] to RandR for 2048 app.

Behavior Variation due to Random Numbers: We demon-
strate the importance of handling non-deterministic input
sources other than touchscreen (i.e., random numbers) events
with a specific case study using the 2048 game. We choose
this specific app for illustration due to its popularity (+1M
downloads in PlayStore) and randomized nature. We record a
session of the game using both Reran [13] and RANDR where
the game reaches the “Game Over” state and renders a new text
on the screen as shown in Figure 4a. UI-only replay (i.e., using
Reran) fails to reproduce the same state due to randomized
location of numbers during replay. RANDR replays the same
sequence of random numbers as in recording and, as seen in
Figure 4c, the replay reaches the correct final state.

Impact of Accurate Replay on Performance Measure-
ments: RANDR enables real-life experimentations on mobile
systems with off-the-shelf mobile apps and, thus, can be used
in power or performance characterization studies [1], [30].
In such a use case, RANDR can substantially improve the
quality of measurement by reducing the execution variations
caused by non-deterministic input sources. In Figure 5, we
show the significance of replaying network traffic (i.e., using
RANDR), as opposed to UI-only replay [13], [14]. In our
specific case study, we measured the latency distribution over
20 executions of fetching a web page whose content changes
over time (i.e., thefakenewsgenerator.com) using our
custom app described in § V-C. RANDR replays the same
recorded content each time (as opposed to fetching new data
over the network) and, thus, is not effected by the network
speed fluctuations or the web content changes on the server.
This allows RANDR to significantly reduce the measurement
variations and enable accurate characterization of mobile apps.
Note that BBench [31], a popular browser benchmark suite,
provides recorded contents of various websites for accurate
workload analysis. RANDR, however, provides such analysis
capabilities in a more generic way for a wider set of apps with
network-dependent functionalities by automatically recording
and replaying UI and network inputs under real-life use cases.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Measured Latency (sec)

UI Replay Only

UI+Network Replay
(RandR)

Fig. 5: Performance variance with and without network replay.

VI. LIMITATIONS AND FUTURE WORK

In this section, we state the limitations of our current im-
plementation of RANDR and discuss potential improvements.

RANDR currently does not support record and replay of var-
ious inputs (e.g., GPS, sensor or audio data) or system events
(e.g., Broadcast) that may also influence the program
behavior. This limitation can be addressed by identifying the
correct instrumentation points in the Android framework (e.g.,
in LocationManager and SensorManager classes) and
providing RANDR with the necessary stubs for logging (for
record) and overriding (for replay) input arguments.

Although RANDR supports complex UI gestures triggered
with one finger (e.g., long-press or swipes), it does not provide
cross-platform replayability of complex multi-finger gestures
(e.g., pinch, zoom). Since the particular sizes of UI elements
before and after such gestures are highly device specific,
cross-device replay of such inputs is a challenging problem.
Similarly, RANDR does not provide cross-platform replay
for apps that perform customized rendering (commonly in
games) as opposed to using Android’s UI toolkit (i.e., using
widgets) as RANDR cannot associate UI inputs with any
widget. RANDR can, however, replay the UI events based on
coordinates on the same device (as in most prior work [6],
[7], [13]) with only small modifications to disable the widget
sensitive replay and use raw MotionEvents. As RANDR relies
on the timestamp of UI events, significant distortions in the
timing behavior of an app (e.g., due to slower device) may
impair RANDR’s fidelity. In addition, the apps that override the
Android Framework methods that RANDR uses for monitoring
the user interactions and do not call the original supertype
method, may not be successfully replayed. This limitation can
also be addressed by identifying other instrumentation points
in the Android framework to intercept the UI events.

In our experience developing RANDR, we have faced chal-
lenges in replaying apps that make use of WebView objects.
As the contents of a WebView are rendered from a WebView
system component (commonly, Google Chrome), RANDR
cannot identify the UI components within the these objects. We
have also experienced that RANDR may not be able to replay
the network traffic from WebView’s rendering engine due to
further instrumentation necessary to ensure deterministic TLS
session keys. Addressing this challenge requires further effort
to dissect default rendering engine’s architecture.

Finally, to handle the non-determinism due to the ordering
of thread executions, RANDR currently limits the number of
threads per ThreadPoolExecutor to only 1 (§ IV-B3).
However, the ordering between the threads across differ-
ent ThreadPoolExecutor instances can still be non-
deterministic. We also find that limiting the size of thread
pools can cause some apps to hang due to long running tasks.
This problem may be resolved in the future by establishing
unique identifiers for the recorded network traces.

VII. RELATED WORK

The techniques we leverage in RANDR to achieve the
novel capability of device-independent zero-privilege record

and replay are related to works in two broad categories: GUI
testing and exploration, and record and replay tools. This
section briefly surveys the key aspects of these tools and
describes how RANDR distinguishes itself from them.

GUI testing and exploration. Various previous work in
academia [32], [33], [34], [35], [36] uses a combination of var-
ious widget properties (e.g., clickable or non-clickable) and/or
their position in the UI hierarchy to uniquely identify widgets
during the execution. Unlike these tools, RANDR recognizes
UI widgets across different platforms and provides record
and replay capability. Moreover, since RANDR monitors all
widgets that appear on the device screen at runtime, it gener-
ically handles both statically defined and dynamically created
widgets as opposed to various other tools [32], [33], [35] that
achieve limited accuracy [14] due to reliance on Android’s
accessibility framework. Another UI testing tool, Appflow[37],
synthesizes UI tests that are reusable across devices with
different screen resolutions. While Appflow leverages machine
learning to accurately identify widgets based on the set of
features similar to RANDR, the tool still requires a developer
to manually write customized UI flows for every app. RANDR
only requires a user to naturally exercise an app.

We also compare RANDR against open-source frameworks
that are frequently used by developers to test an app’s UI on
different platforms. Tools such as Robotium [38] and Espresso
[15] instrument the source code of an app under test to monitor
its execution and lifecycle. These tools are widget-sensitive
and provide developers with fine-grained functionality such as
specifying the interactions on widgets as well as the expected
runtime behavior. UIAutomator [16] allows developers to
monitor closed-source apps and track the interactions between
the app and the system or other apps. While these automa-
tion tools do not require Android OS modifications, they do
require manual effort as developers need to extract the GUI
hierarchy and create testing scripts. RandR, on the contrary,
can automatically record user interactions with an application,
thus reducing the cost of writing tests, and does not require
access to an application’s source code to operate.

Record and Replay tools. RANDR also provides advantages
over existing record and replay tools for Android. Automated
record and replay systems such as Reran [13], Valera [6]
and MobiPlay[7] rely purely on screen coordinates of user
interactions. Since the coordinates of UI elements in an app
often change according to screen resolution of a device, these
tools are not suitable for cross-device replay. Barista [14] aims
to provide an accurate cross-platform replay. However, due to
its reliance on the Espresso framework, the recorded traces
can only be integrated with open-source apps. In addition,
the designs of RERAN, MobiPlay and Barista do not account
for non-deterministic inputs beyond UI such as network and
random number inputs. RANDR captures these additional input
sources and provides an automated widget-sensitive replay
capability across different devices for both closed- and open-
source apps. While Valera also supports recording network
traffic, its design allows the tool to only intercept HTTP and

TABLE V: Comparison of Android test and replay frame-
works.

R
ob

ot
iu

m
[3

8]

E
sp

re
ss

o
[1

5]

U
I

A
ut

om
at

or
[1

6]

A
pp

Fl
ow

[3
7]

R
E

R
A

N
[1

3]

V
al

er
a

[6
]

B
ar

is
ta

[1
4]

M
ob

iP
la

y
[7

]

R
A

N
D

R

Automated record & replay 7 7 7 7 3 3 7 7 3

No root privilege 3 3 3 3 7 7 3 3 3

No custom OS 3 3 3 3 3 7 3 3 3

Support closed-source app 7 7 7 7 3 3 7 3 3

Replay randomized data 7 7 7 7 7 3 7 7 3

Replay network data 7 7 7 7 7 3 7 7 3

Cross-platform replay 3 3 3 3 7 7 3 7 3

HTTPs requests from Android’s OkHTTP library. RANDR
provides a generic network record and replay approach based
on native library instrumentation. Thus, RANDR is agnostic to
different network libraries or protocols (e.g., FTP). RANDR
also does not require any additional configuration on the device
(e.g., a Man-In-The-Middle proxy [39]).

The record and replay systems described above also ex-
hibit certain practical drawbacks. While Valera require static
modifications to an Android system image, Reran and Mo-
biPlay (when handling closed-source applications) require
root privileges to operate. Thus, to employ these tools, one
needs to unlock the bootloader on the device. Unlocking
can lead to system errors, security vulnerabilities [40] and
is generally not possible on some devices. Moreover, any
unverified modifications to the system components or file
system can also lead to a non-functional device state. RANDR
works on unmodified devices without any special privileges
by relying on dynamic modifications to the Android software
stack confined within the app process. Thus, RANDR provides
non-intrusive record and replay capability and can be easily
deployed across different Android versions and devices.

Table V summarizes the comparison of RANDR to existing
approaches considering the desirable features of a record and
replay system as described by Lam et al. [11].

VIII. CONCLUSION

This paper proposed the RANDR system to record and
replay multiple non-deterministic sources of inputs in mo-
bile apps in a practical and easy to use manner. RANDR
captures the inputs to an app by hooking into a specific
set of instrumentation points in the Android framework and
native libraries. By performing the instrumentation within an
app’s own sandbox, RANDR runs on unmodified devices and
works with real-world closed-source apps with only minimal
modifications to the app’s bytecode. RANDR captures UI and
random number inputs by hooking into a set of Java APIs in
the Android framework and provides widget-sensitive cross-
platform replay capabilities. RANDR also reproduces network
traffic in apps by intercepting the random inputs in the TLS
protocol as well as the system call wrappers methods in libc.
RANDR successfully replayed over 30 real-world Android
apps across different devices and Android versions.

REFERENCES

[1] D. Sunwoo, W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. D. Emmons,
and N. C. Paver, “A structured approach to the simulation, analysis
and characterization of smartphone applications,” in IEEE International
Symposium on Workload Characterization (IISWC), Sept 2013.

[2] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated cpu-gpu
power management for 3d mobile games,” in 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), June 2014, pp. 1–6.

[3] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” pp. 641–660, 2013. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509549

[4] K. Mao, M. Harman, and Y. Jia, “Crowd intelligence enhances
automated mobile testing,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE. Piscataway, NJ, USA: IEEE Press, 2017, pp. 16–26. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155569

[5] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile cpu’s rise to power:
Quantifying the impact of generational mobile cpu design trends on
performance, energy, and user satisfaction,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
March 2016, pp. 64–76.

[6] Y. Hu, T. Azim, and I. Neamtiu, “Versatile yet lightweight
record-and-replay for android,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA. New York,
NY, USA: ACM, 2015, pp. 349–366. [Online]. Available: http:
//doi.acm.org/10.1145/2814270.2814320

[7] Z. Qin, Y. Tang, E. Novak, and Q. Li, “Mobiplay: A remote execution
based record-and-replay tool for mobile applications,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE. New York, NY, USA: ACM, 2016, pp. 571–582. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884854

[8] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush,
“Engineering record and replay for deployability,” in USENIX Annual
Technical Conference (USENIX ATC). Santa Clara, CA: USENIX
Association, 2017, pp. 377–389. [Online]. Available: https://www.
usenix.org/conference/atc17/technical-sessions/presentation/ocallahan

[9] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “Pinplay: A
framework for deterministic replay and reproducible analysis of parallel
programs,” in Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’10.
New York, NY, USA: ACM, 2010, pp. 2–11. [Online]. Available:
http://doi.acm.org/10.1145/1772954.1772958

[10] M. Xu, R. Bodik, and M. D. Hill, “A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay,” in Proceedings of the
30th Annual International Symposium on Computer Architecture, ser.
ISCA. New York, NY, USA: ACM, 2003, pp. 122–135. [Online].
Available: http://doi.acm.org/10.1145/859618.859633

[11] W. Lam, Z. Wu, D. Li, W. Wang, H. Zheng, H. Luo, P. Yan,
Y. Deng, and T. Xie, “Record and replay for android: Are we there
yet in industrial cases?” in Foundations of Software Engineering, ser.
ESEC/FSE. New York, NY, USA: ACM, 2017, pp. 854–859. [Online].
Available: http://doi.acm.org/10.1145/3106237.3117769

[12] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi, “Mosaic: cross-platform
user-interaction record and replay for the fragmented android ecosys-
tem,” in IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), March 2015, pp. 215–224.

[13] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-
and touch-sensitive record and replay for android,” in Proceedings of
the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 72–81. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486799

[14] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, “Barista:
A technique for recording, encoding, and running platform independent
android tests,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), March 2017, pp. 149–160.

[15] “Espresso,” https://developer.android.com/training/testing/espresso/.
[16] “Android ui automator,” https://developer.android.com/training/testing/

ui-automator.
[17] V. Costamagna and C. Zheng, “Artdroid: A virtual-method hooking

framework on android art runtime,” in IMPS@ESSoS, 2016.
[18] M. Y. Wong and D. Lie, “Tackling runtime-based obfuscation in

android with tiro,” in Proceedings of the 27th USENIX Conference

on Security Symposium. Berkeley, CA, USA: USENIX Association,
2018, pp. 1247–1262. [Online]. Available: http://dl.acm.org/citation.
cfm?id=3277203.3277297

[19] S. H. Kim, D. Han, and D. H. Lee, “Predictability of android
openssl’s pseudo random number generator,” in Proceedings of the
Conference on Computer and Communications Security, ser. CCS.
New York, NY, USA: ACM, 2013, pp. 659–668. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516706

[20] “Smali/baksmali,” https://ibotpeaches.github.io/Apktool/.
[21] “Smali/baksmali,” https://github.com/JesusFreke/smali.
[22] “Yahfa,” https://github.com/rk700/YAHFA.
[23] “Andhook,” https://github.com/asLody/AndHook.
[24] “Android ui exerciser monkey,” https://developer.android.com/studio/

test/monkey.
[25] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,

and S. Narayanasamy, “Doubleplay: Parallelizing sequential logging
and replay,” in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XVI. New York, NY, USA: ACM, 2011, pp. 15–
26. [Online]. Available: http://doi.acm.org/10.1145/1950365.1950370

[26] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis,” in 24th Annual Network
and Distributed System Security Symposium (NDSS), March 2017.

[27] “Android open source project,” https://source.android.com.
[28] “Appbrain,” https://www.appbrain.com/stats/.
[29] “F-droid repository,” https://f-droid.org/en/.
[30] Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A mobile benchmark

suite for architectural simulators,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), March 2014,
pp. 45–54.

[31] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization of
interactive smartphone applications,” in IEEE International Symposium
on Workload Characterization (IISWC), Nov 2011, pp. 81–90.

[32] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement
learning for android gui testing,” in Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, ser. A-TEST 2018. New
York, NY, USA: ACM, 2018, pp. 2–8. [Online]. Available: http:
//doi.acm.org/10.1145/3278186.3278187

[33] Y. M. Baek and D.-H. Bae, “Automated model-based android gui testing
using multi-level gui comparison criteria,” International Conference on
Automated Software Engineering (ASE), pp. 238–249, 2016.

[34] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu,
and J. Klein, “Frauddroid: Automated ad fraud detection for android
apps,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 257–268. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236045

[35] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,
“Automated reporting of gui design violations for mobile apps,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 165–
175. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180246

[36] M. Fazzini, M. Prammer, M. d'Amorim, and A. Orso,
“Automatically translating bug reports into test cases for mobile
apps,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2018. New
York, NY, USA: ACM, 2018, pp. 141–152. [Online]. Available:
http://doi.acm.org/10.1145/3213846.3213869

[37] G. Hu, L. Zhu, and J. Yang, “Appflow: using machine learning to
synthesize robust, reusable ui tests,” 10 2018, pp. 269–282.

[38] “Robotium,” https://github.com/RobotiumTech/robotium.
[39] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,

and H. Balakrishnan, “Mahimahi: Accurate Record-and-Replay for
HTTP,” in USENIX Annual Technical Conference, July 2015.

[40] N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi,
E. Gustafson, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Bootstomp: On the security of bootloaders in mobile devices,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, 2017. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/redini

http://doi.acm.org/10.1145/2509136.2509549
http://dl.acm.org/citation.cfm?id=3155562.3155569
http://doi.acm.org/10.1145/2814270.2814320
http://doi.acm.org/10.1145/2814270.2814320
http://doi.acm.org/10.1145/2884781.2884854
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
http://doi.acm.org/10.1145/1772954.1772958
http://doi.acm.org/10.1145/859618.859633
http://doi.acm.org/10.1145/3106237.3117769
http://dl.acm.org/citation.cfm?id=2486788.2486799
https://developer.android.com/training/testing/espresso/
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
http://dl.acm.org/citation.cfm?id=3277203.3277297
http://dl.acm.org/citation.cfm?id=3277203.3277297
http://doi.acm.org/10.1145/2508859.2516706
https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://github.com/rk700/YAHFA
https://github.com/asLody/AndHook
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
http://doi.acm.org/10.1145/1950365.1950370
https://source.android.com
https://www.appbrain.com/stats/
https://f-droid.org/en/
http://doi.acm.org/10.1145/3278186.3278187
http://doi.acm.org/10.1145/3278186.3278187
http://doi.acm.org/10.1145/3236024.3236045
http://doi.acm.org/10.1145/3180155.3180246
http://doi.acm.org/10.1145/3213846.3213869
https://github.com/RobotiumTech/robotium
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini

	Introduction
	Background
	RandR Overview
	RandR Implementation
	Static Application Instrumentation
	Dynamic Runtime Instrumentation
	Hooking into Java and Native APIs
	Recording and Replaying UI Inputs
	Recording and Replaying Network I/O
	Recording and Replaying Random Numbers

	Evaluation
	Evaluation Setup
	Fidelity of RandR
	Overhead Evaluation
	Case Studies

	Limitations and Future Work
	Related Work
	Conclusion
	References

