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1 INTRODUCTION
Performance anomalies in High-Performance Computing (HPC)
systems can be defined as an issue which leads to sub-optimal ex-
ecution time but does not affect the correctness of the running
application. These anomalies are difficult to detect because often
a “healthy system” is vaguely defined and the ground truth for
how a system should be operating is evasive. As we move to ex-
ascale, however, detection of performance anomalies will become
increasingly important with the increase in size and complexity of
systems. Application performance can vary by 100% or more during
runtime[1, 2]. These variations affect HPC system efficiency and
therefore limit the amount of scientific work that can be achieved.
However, understanding anomalies in an HPC system is not a
straightforward task. There are very few accepted ways of detecting
anomalies in the literature and there are no published and labeled
sets of anomalous HPC behavior. HPC systems generate metadata
that could be used to signal performance anomalies, however sys-
tems can generate thousands of metadata features per second and
so data collection and analysis can be difficult. In this research,
we develop a suite of applications that represent HPC workloads
and use data from a lightweight metric collection service to train
machine learning models to predict future behavior of metrics. In
the future, this work will be used to predict anomalous runs in
compute nodes and determine some root causes of performance
issues to help improve the efficiency of HPC system administrators
and users.

2 METHODOLOGY
2.1 Canary Suite
We create a “canary” suite of applications that, if performing strangely,
could warn of system issues. These applications collectively exhibit
behaviors similar to a wide-range of real HPC workloads and they
are chosen by talking to system administrators and HPC users. The
suite includes HACC, HPCG, HPL, LAMMPS, miniAMR, Nekbone,
and QMCPACK. The suite is run on three different HPC systems:
Sandia’s Astra ARM Supercomputer, NERSC’s Cori Cray supercom-
puter, and NSCA’s Blue Waters Cray Supercomputer. Astra is a
2,592 node supercomputer with ARM-based Cavium Thunder-X2
processors. Astra is the world’s fastest Arm-based supercomputer

according to the TOP500 list, the supercomputer industry’s stan-
dard. Cori is a Cray XC40 computer with 2,388 Intel Xeon“Haswell"
processor nodes and 9,688 Intel Xeon Phi“Knight’s Landing" nodes.
We use only the Haswell nodes. BlueWaters is a Cray XE/XK hybrid
machine composed of 26,864 AMD 6276“Interlagos" processors.

We are running the suite periodically over the course of several
months. Runs occur on 64 nodes without multithreading with bi-
naries which run for 15-20 minutes with a maximum time of 30
minutes. This size was chosen so that we could collect data from
a sufficiently large portion of the system while also being able to
easily schedule our jobs on these busy machines. Configuration
parameters for each application are explained in the artifact de-
scription appendix. Our goal for this suite is not to have the most
optimized applications, although we do try to use the best optimiza-
tion flags and suggested compilers for each machine, but rather
to have static binaries to run consistently over the course of our
experiment.

Occasionally, we also inject synthetic anomalies which run along-
side the application using Boston University’s HPC Performance
Anomaly Suite (HPAS)[3]. HPAS is designed to provide researchers
with a foundation for reproducible anomaly injection and has sev-
eral types of anomalies to stress different subsystems of the HPC
architecture. These runs will be labeled anomalous for our machine
learning models in future work along with applications which have
runtime outliers.

2.2 System Data Collection
Application monitoring data is collected with a tool called Light-
weight Distributed Metric Service (LDMS)[4]. LDMS is able to
collect thousands of system features and hardware counters at
sub-second intervals with negligible overhead. These features are
collected in sets, called metric sets, and include memory usage,
kernel/system statistics, and Performance Application Progress In-
terface (PAPI) counters. In our research we collect over 1200 metrics
at 1 Hz for each application run.

2.3 Data Analysis & Model Training
We perform many steps in our data analysis routine to produce our
models. Our main goal is to forecast performance metric behavior
to characterize if the run is anomalous or not. First, metric sets from
PAPI counters, meminfo, vmstat and procstat are concatenated and
metrics with zero variance are dropped. We determine the absolute
value of the cross-correlation for the metric set and remove metrics
that are correlated more than 95% with other metrics. We take the
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absolute value because if two metrics are highly inversely corre-
lated, such as memory free and memory active, we only need one
to encapsulate that information. Each metric is tested with“Dickey-
Fuller Test” to understand whether metric data is stationary or not.
For non-stationary metric data, we used differencing method to
transform non-stationary data into stationary data. We use Long-
Short Term Memory (LSTM) networks for our machine learning
models. LTSM is used because it is powerful at extracting patterns
from long time sequences even with multiple input features. Figure
1 illustrates an example of LSTM framework.

Figure 1: LSTM model for time series input[5]

In the training phase, we form a 3D input vector that LSTM
networks accept. The vector’s dimensions are samples, timesteps
and features. We use rolling windows for each time point with
a window size of 30 data points. 80% of our dataset is used for
training and the remaining part as test set. We create a sequential
model which has the following order: a LSTM layer with 100 units,
a dropout layer with the dropout rate 0.1 and a densely-connected
Neural Network layer with 1 unit. The model is trained with two
different approaches. In the first approach, we train the model on
specific metrics that explain more than 90% variance in the dataset
and are determined by applying PCA. In the second approach, we
combine all metrics to train a model. To combine all metrics in a
format that LSTM accepts, for each time step, every metric and its
historic values are concatenated in the same row.

3 RESULTS
Our application suite is still periodically running and gathering
data on the supercomputers listed above and will continue to do
so for several months. Initial results from our small datasets show
that our all-metrics model predictions for the LAMMPS application
closely match the actual results as seen in Figure 2.

Figure 2: Metric forecasting with the all-metric model

As seen in Figure 3, individual-metric model follows the general
curve of the metric but do not capture the spikes. Further data
collection and analysis could improve these models and will reveal
insights about intra-application and intra-architecture performance
variation. We also showed that using our simple dimensionality
techniques was effective at selecting relevant system metadata in
Figure 4. We reduced our dataset from over 1200 features to about
150 by removing zero variance and highly correlated features. This
technique could be used for selective data collection in the future.

Figure 3: Instruction cache miss forecasting with the
individual-metric model

Figure 4: Metric set cross-correlation heatmap before and af-
ter removing highly correlated features; axes indicate the ID
of the metric

4 CONCLUSION AND FUTUREWORK
In this research we run a large set of HPC applications with high-
fidelity instrumentation that were run on a variety of high-end
supercomputers. We trained machine learning models on the data
to predict system behavior and saw success when training over all
metrics. We have several tasks for our future work. We would like
to improve our model considering scalability in different systems
using more data. From this data we would like to examine intra-
architecture and intra-application similarities of anomalies which
might shed light onto the root causes of performance variation
when combined with system logs. We could add new applications
to our suite, such as SPARTA, to mimic more aspects of HPC work-
loads. Finally, we would like to generate a system to collect appli-
cation input identifiers from users and get their direct feedback on
job quality to create an additional labeling method.
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