MODULE 7: Analog Transmission

SUMMER CHALLENGE Electrical Engineering: Smart Lighting

Prachi Shukla PhD Candidate Boston University prachis@bu.edu

Overview

- Visible Light Communication
- Audio Signals
- Amplitude Modulation
- Digital Sampling and Binary Representation
- Experiment
 - Analog Modulation with VLC Transceivers

Visible Light Communication (VLC)

Radio spectrum is congested, visible spectrum has potential!

Visible Light Communication Transceiver

Audio Signals

- Audio Signals
 - Acoustic Input (e.g., microphone) converts air pressure variations into an electrical signal.
 - ADC converts to digital data representing the sampled electrical signal.
 - DAC converts digital samples back into a continuous time electrical signal
 - Acoustic output (e.g., speaker) converts voltage back to air pressure variations.
- AM Radio? FM Radio?
 - AM: Amplitude Modulation
 - FM: Frequency Modulation
 - Sirius Satellite Digital Radio

Electrical signal is transmitted via electromagnetic signals at a specified *carrier frequency.*

Amplitude Modulation

- Carrier Modulation: "Placement" of input signal onto a high frequency carrier for transmission
- Carrier Demodulation: Retrieving the baseband or low frequency signal from the carrier-modulated signal

Digital Sampling

- To convert an analog signal into a digital representation:
 - Discrete time samples
 - Discrete value amplitude

Binary Representation

- We typically consider numbers in decimal, *base-10* 39512 = 3(10000) + 9(1000) + 5(100) + 1(10) + 2(1)
- Binary is a numeric system with *base-2*
 - Value of any digit (or *bit*) can either be '0' or '1'
 - Each digit is a power of 2 rather than a power of 10

1(16) + 1(8) + 0(4) + 1(2) + 0(1) = 26

A byte is a set of 8 bits

Digital Sampling

Digital sample values are stored in binary

Binary Form					Decimal Form
16	8	4	2	1	
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	1	0	2
0	0	0	1	1	3
0	0	1	0	0	4
0	0	1	0	1	5
0	0	1	1	0	6
0	0	1	1	1	7
0	1	0	0	0	???
1	0	0	0	0	???
1	1	1	1	1	???

Nyquist Sampling Theorem

- Reconstruction of a signal is possible when sampling frequency is greater than twice the maximum frequency of the signal being sampled
- Human hearing can recognize frequencies up to 20kHz
- The typical sampling rate for audio is 44.1kHz. Why?
- Digital Storage Example:
 - How much space is needed for 70 minutes of music with 16 bit resolution?

$$(2 \text{ channels}) \left(16 \frac{\text{bits}}{\text{sample}}\right) \left(44.1 \text{k} \frac{\text{samples}}{\text{second}}\right) \left(60 \frac{\text{seconds}}{\text{minute}}\right) (70 \text{ minutes})$$
$$= 5,927,040,000 \text{ bits}$$

Teams

- Team 1: Ricky and Sean
- Team 2: Becca and Yutong
- Team 3: Charlotte and Genie
- Team 4: Eliza and Madeline
- Team 5: Tucker and William
- Team 6: Krish and Mark
- Team 7: Ethan and Bing
- Team 8: Ian and Youtai

Visual Light Communication Resistors and Capacitors

LEDs

Resistors

Analog signals

Soldering

Parallel and series circuits

Photo-diodes

Experiment

- Generate analog signals between VLC transceivers
 - Observe on oscilloscope and spectrum analyzer
 - Transmit audio file (<u>bu.edu/peaclab/busc19</u>)

Recap

What did you

