MODULE 3: Basic Circuits - Resistance

SUMMER CHALLENGE Electrical Engineering: Smart Lighting

Prachi Shukla PhD Candidate Boston University prachis@bu.edu

Overview

- Circuits Review
- Resistance and Resistors
- Ohms Law
- Breadboards
- Capacitance
- Experiments
 - Resistive Circuit
 - Voltage Divider
 - RC Circuit

Recap - What is a Circuit?

- In a circuit, how are the start and end related?
 - They're the same!
- What happens if there isn't a continuous path?
 - Open Circuit No flow of charge (or electrons)
- What happens when a conduit connects two points?
 - Charge (and electrons) can flow between the points
 - Short Circuit Directly connecting two points of different voltage
- Switch
 - Device that can open or close a circuit

Resistance

- As charge flows from high to low V, energy is released
 - Where does it go??
- As electrons flow, they encounter *resistance*
 - Generate heat as a result of this opposition
 - Resistance is a function of material, length, and cross-sectional area
 - Resistance is measured in Ohms [Ω]
- Wires have resistance, but it is minimal and a direct connection between different voltage levels is a *short*
- The filament in an incandescent light introduces resistance
 - The heat energy causes the filament to "glow" white-hot and produce light

Resistors

- What happens in the case of an open circuit (i.e., $R \approx \infty$)?
- What happens in the case of a short circuit (i.e., $R \approx 0$)?

Series vs Parallel

Series Resistance

 $I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{V}{R_1}$ Parallel Resistance $|\mathbf{I}_1| \neq |\mathbf{R}_1| |\mathbf{I}_2| \neq |\mathbf{R}_2| \quad |\mathbf{I}_2| \neq |\mathbf{R}_2| \quad |\mathbf{I}_2| \neq |\mathbf{R}_2| \quad |\mathbf{I}_2| \neq |\mathbf{R}_2| \quad |\mathbf{I}_1| \neq |\mathbf{I}_2| \neq |\mathbf{I}_2| \quad |\mathbf{I}_2| \neq |\mathbf{I}_2| \neq$

Breadboards

- Why do we use breadboards?
 - Temporary Circuits
 - Prototyping
 - No Soldering

Anatomy of a Breadboard

Schematics and Breadboards

Connect nodes of a schematic to a connected row of the breadboard

Schematics and Breadboards

Connect nodes of a schematic to a connected row of the breadboard

Module 3: Basic Circuits

Module 3: Basic Circuits

SHORT EXERCISE

- 1. Copy the schematic.
- 2. Label where each of the numbers are.

Voltage Divider Circuit

Experiment I

- Voltage Divider
- Resistive Circuits

Recap

What did you

