MODULE 1: INTRODUCTION SUMMER CHALLENGE

Electrical Engineering: Smart Lighting

Prachi Shukla
PhD Student
Boston University
prachis@bu.edu

Overview

- Welcome!
- Introductions
- Course Structure and Objectives
- What is Electrical Engineering?
- Devices, Networks, Communication

Introductions

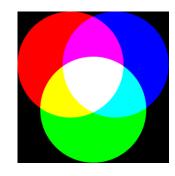
- Instructor: Prachi Shukla (<u>prachis@bu.edu</u>)
- Teaching Assistants
 - Anirudh Watturkar
 - Sean Nemtzow
- Students...
 - Introduce yourself
 - Share 2 facts about yourself
 - Remember what is said! (We will come back to this later)

Introductions

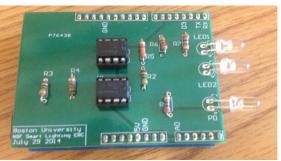
- The Multimedia Communications Lab (MCL)
 - Primary Focus: "Ubiquitous distributed computing."
 - Various data communication techniques for a variety of content.
- The Engineering Research Center for Lighting Enabled Systems and Applications (LESA)
 - 10 years \$18M+ from National Science Foundation
 - Core Academic Members

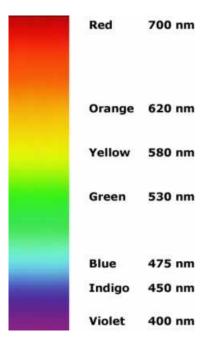
Engineering Light for a "brighter" future!

http://lesa.rpi.edu/
http://www.bu.edu/smartlighting/



Course Objectives


- Become familiar with:
 - The basic electrical components, circuits, signals and tools
 - Networking and communications concepts
 - Lighting and Light Emitting Diode (LED) technology
 - Visible Light Communication (VLC) technology



Course Overview

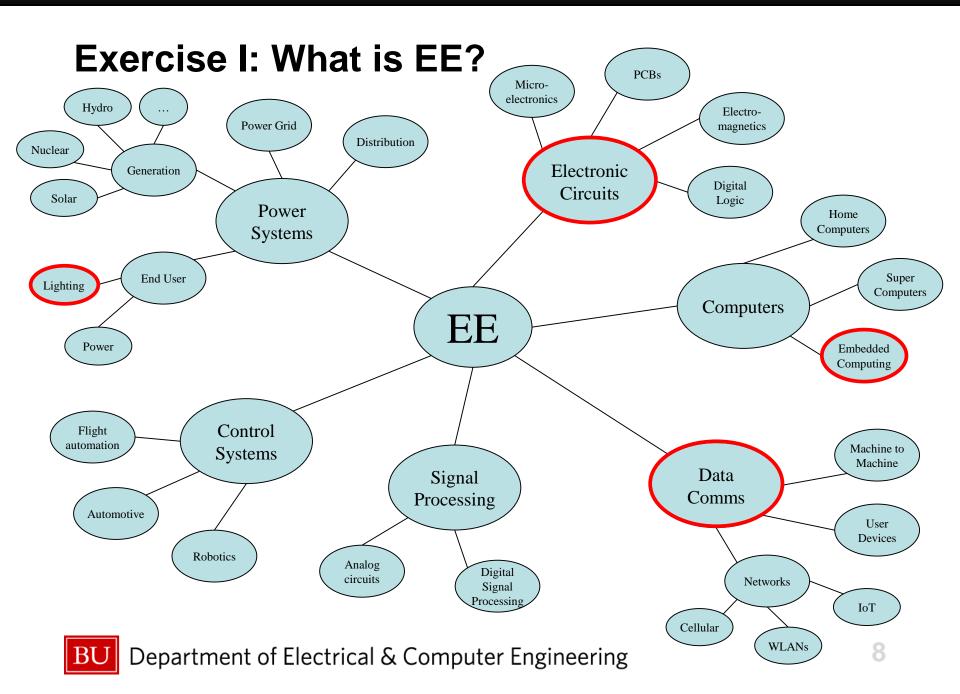
- PC Login: <login id> password: <Kerberos password>
- Course website: http://www.bu.edu/peaclab/BUSC19/
- Course Schedule:

N	odule	Topic	Activities
	1	Introduction	Electrical Engineering, Networks, Data Communication, and Smart Lighting
	2	Analog Discovery Board	Operating the Analog Discovery Board, Electricity, and Signals
	3	Basic Circuits	Investigate the operation of resistive and capacitive circuits
	4	LEDs	LED operation and Electrical Characterization
	5	PDs and VLC links	PD Operation and Optical Channel Characterization
	6	The Smart Lighting Board	VLC Transceiver PCB assembly Assignment: Presentation Topic Decision
	7	Analog Transmission	Investigate VLC transmission using analog signals
	8	Digital Transmission	Investigate VLC transmission using digital signals
	9	VLC Applications	Arduinos, VLC text messages, and presentation rehearsal
	10	Presentations	Student presentations

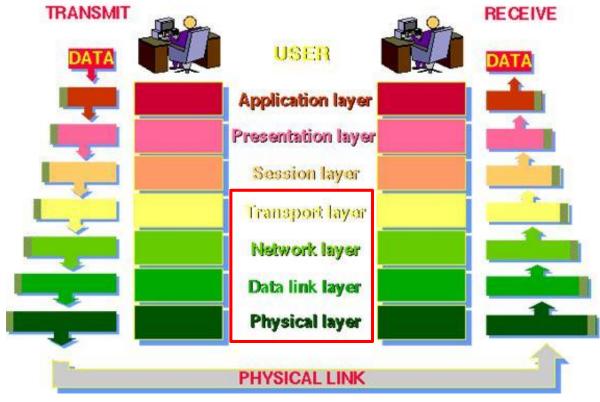
Jul. ^{29th}

Department of Electrical & Computer Engineering

Lab Notebooks


Entries:

- Name / Group Members Names
- Date of Entry
- Experiment overview & hypothesis
- Sketches of experimental setup
- Measurements
- Calculations
- Results & observations
- Open questions



Networks and Device Communication

- What are some devices that communicate?
- Open Systems Interconnection (OSI) Reference

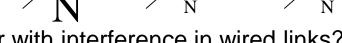
THE 7 LAYERS OF OSI

Physical Layer

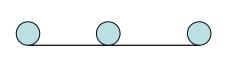
- How can information pass from point to point?
 - Audio waves

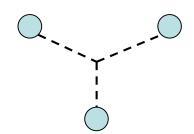
Radio Waves

Vibrations


Light Signals

Electrical Signals

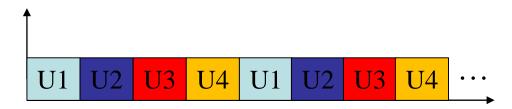

- Attenuation
 - What happens when the signal is passed over a longer distance?

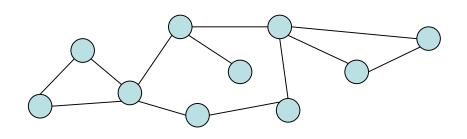


- Signal-to-Noise Ratio (SNR)
- Interference

- What considerations occur with interference in wired links?
- What about with wireless links?

Data Link Layer

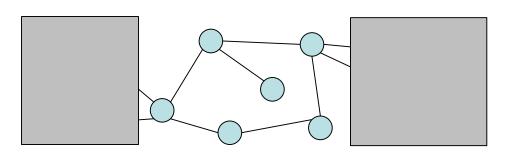

- Simplex / Duplex
- $\bigcirc \longrightarrow \otimes$


 $\bigcirc \Longrightarrow \otimes$

- Handshake Message / Acknowledgement
- Full duplex vs half duplex
- Multiple Access
 - Resource Allocation Techniques: TDMA, FDMA, CDMA
 - Probabilistic Multiple Access Technique: CSMA

Network Layer

Nodes, Links, and Graphs

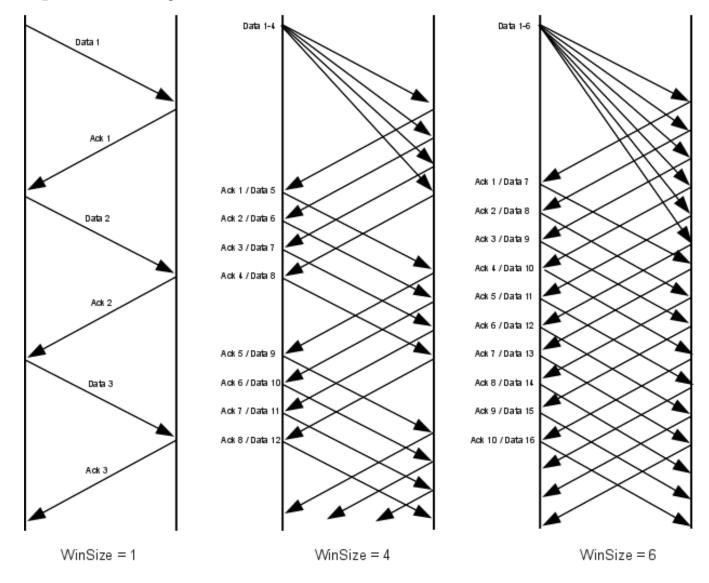


Addressing

• If you pass the message, how does the next device know the destination of the message?

Message passing

- Full vs Partial knowledge
- Internet Protocol (IP)



Wireless Mesh Network

- Fully wireless networks also use routing concepts.
- Small conversations can occur simultaneously with minimal interference!

Transport Layer

Sliding Windows, bandwidth 6 packets/RTT

Think - Pair - Share

What did you

today?

