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Introduction

e Applications for mobile devices are becoming
increasingly complex and power hungry, calling for
improved energy-saving techniques due to limited
battery capacity. Understanding power
consumption in these devices requires accurate
power estimation of mobile systems.

In this project, we investigate how to utilize
selected Performance Monitoring Counters (PMCs)
and machine learning to predict power
consumption of a mobile device during runtime.

Performance Monitoring Counters (PMCs) are
hardware counters that collect events from the
processor and memory system during runtime.

Machine learning
with scikit-learn

e A Python machine learning library.

Preprocessing

1e9 jpeg-dec power and counters before preprocessing jpeg-dec power and counters after preprocessing OLS r2 with different moving average sizes
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Figure 16 (above): Scikit-learn trains and tests
linear models to find target value y. Each x is a
feature and each w is a coefficient.!?
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Preprocessing data for machine learning: Figure 5 (left): Event 1B on core 5 for jpeg-dec
e Cumulative events — events per 200ms workload, before preprocessing.

Separate values for inst_spec and dp_spec Figure 6 (middle): The same event after
Normalize data to a range between 0-1 preprocessing.

Align power and events by initial spike Figure 7 (right): Comparing r* values when varying
Make a separate training set with the window size on averages, used to choose the window
averages of every 5 data points size for averaging.

e Ordinary Least Squares (OLS): a linear
regression that minimizes the residual sum
of squares between the predicted and actual
power values.

Lasso linear model: minimizes coefficients,
examining the tradeoff between accuracy
and reducing parameters.

M h d I e Accuracy is examined with the mean

Et o o Ogy absolute error and the r? value.

e KFold: a cross-validation technique that
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Figure 1 (right):
ODROID-XU3 mobile
development board
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Figure 8 (left): Prediction when using individual data points as training values.

. . L . . . . . Conclusions:
Figure 9 (right): Prediction when using a moving average with window size 5.

used for data Power consumption can be modeled from
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F-igure 4 (above):
Workflow for the project.

Figure 15 (right): using 3 folds with linear regression on the averaged dataset. setting.




