
● Applications for mobile devices are becoming
increasingly complex and power hungry, calling for
improved energy-saving techniques due to limited
battery capacity. Understanding power
consumption in these devices requires accurate
power estimation of mobile systems.

● In this project, we investigate how to utilize
selected Performance Monitoring Counters (PMCs)
and machine learning to predict power
consumption of a mobile device during runtime.

● Performance Monitoring Counters (PMCs) are
hardware counters that collect events from the
processor and memory system during runtime.

[1] Walker, M. J.; Diestelhorst, S.; Hansson, A.; Das, A. K.; Yang,
S.; Al-Hashimi, B. M.; Merrett, G. V. Accurate and Stable
Run-Time Power Modeling for Mobile and Embedded CPUs.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 2017, 36(1), 106–119.
[2] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher,
M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 2011, 12,
2825-2830.
[3] Bronshtein, A. Train/Test Split and Cross Validation in
Python Towards Data Science,
https://towardsdatascience.com/train-test-split-and-cross-vali
dation-in-python-80b61beca4b6 (accessed Aug 6, 2018).

Figure 1 (right):
ODROID-XU3 mobile
development board
used for data
collection.

Figure 2 (left): We
chose 11
benchmarks with
varying power
consumption
levels.

Our flow:
● Run benchmarks on

the board using the
android debug
bridge (adb) shell.

● Make four copies of
each benchmark

● Use taskset to assign
the benchmark to
cores 4-7.

● Collect data every
200ms and save the
CSV files.

● Preprocess the data
to prepare for
machine learning
with scikit-learn.

● Use machine
learning to make a
linear regression
and find coefficients
for each value.

● Check the accuracy
with the r2 score and
mean squared error.

● Get the average of
every 5 rows and
save it as a separate
training set.

● Use machine
learning on the
entire and averaged
data sets.

Comparison of the linear regression, actual power vs. predicted power
Figure 8 (left): Prediction when using individual data points as training values.
Figure 9 (right): Prediction when using a moving average with window size 5.

Preprocessing data for machine learning:
● Cumulative events → events per 200ms
● Separate values for inst_spec and dp_spec
● Normalize data to a range between 0-1
● Align power and events by initial spike
● Make a separate training set with the

averages of every 5 data points

KFold cross-validation method used to analyze the machine learning model’s stability.
Figure 14 (left): using 3 folds with linear regression on the entire dataset.

Figure 15 (right): using 3 folds with linear regression on the averaged dataset.

Lasso linear model used to reduce the number of coefficients in the linear
regression. Graphs of r2 values when using lasso on multiple alpha values.

Figure 10 (left): Lasso linear model with the entire dataset.
Figure 11 (right): Lasso linear model with averaged dataset.

Thanks to Victor Ly, Onur Sahin and Prof. Coskun,
as well as PEAClab group for their support and
guidance throughout this project. Thanks to the
Boston University RISE Internship Program for
giving me the opportunity to do research in a lab
setting.

Impact of varying alpha values on coefficients for each counter with Lasso.
Figure 12 (left): Comparing coefficients of multiple events with the entire dataset.

Figure 13 (right): Comparing coefficients of multiple events with the averaged
dataset.

● A Python machine learning library.

● Ordinary Least Squares (OLS): a linear
regression that minimizes the residual sum
of squares between the predicted and actual
power values.

● Lasso linear model: minimizes coefficients,
examining the tradeoff between accuracy
and reducing parameters.

● Accuracy is examined with the mean
absolute error and the r2 value.

● KFold: a cross-validation technique that
examines the stability of the model.
○ separates the data into n number of

“folds”, trains the data with n-1 folds, and
tests the data with the last fold. Repeat
with other folds.

Figure 4 (above):
Workflow for the project.

Figure 3 (right): We
refer to Walker et al[1] to
choose 6 PMCs most
correlated to power.

Figure 17 (left):
How KFold splits a
dataset based on
the specified
number of folds.[3]

Conclusions:
● Power consumption can be modeled from

these 6 PMCs with at least 91% accuracy.
● Using the the average of every 5 data points

increases the accuracy to 98%.
● Lasso regression shows that certain PMCs

with zero coefficients can be removed from
the prediction without impacting accuracy.
○ The model is accurate up to an alpha

value of 0.01
Caveats:
● Using the averaged data creates more

extreme coefficients and increases the
number of negative coefficients.
○ May be due to reduced size of dataset

● The lower r2 score from 3 KFolds compared
to OLS in Figure 8 and 9 demonstrates
overfitting in the model. However, the
accuracy remains at more than 90%.

Applications:
● These results demonstrate feasibility of

predicting power consumption with more
PMCs, and using Lasso to determine the most
significant factors.

Future steps:
● Reduce overfitting with other fitting and

cross validation methods
● Experiment with more linear modeling

techniques from scikit-learn
● Experiment with a larger quantity of PMCs,

using Lasso to determine the most important
features in power prediction

● We use the ODROID-XU3 mobile development
board with ARM big.LITTLE core clusters.

● 8 cores total:
○ 4 LITTLE cores (A7 cores 0-3) maximize

power efficiency
○ 4 big cores (A15 cores 4-7) maximize

performance. We focus on the big cores
because they consume significantly higher
power than the smaller cores.

● A maximum of 6 PMCs can be collected
simultaneously on the board while running a
benchmark.

● Power is measured at the cluster level --
counters are measured at the per-core level.

Figure 16 (above): Scikit-learn trains and tests
linear models to find target value y. Each x is a
feature and each w is a coefficient.[2]

Figure 5 (left): Event 1B on core 5 for jpeg-dec
workload, before preprocessing.

Figure 6 (middle): The same event after
preprocessing.

Figure 7 (right): Comparing r2 values when varying
window size on averages, used to choose the window

size for averaging.

