BOSTON Runtime Power Estimation for Mobile CPUs with Fl)Ell\CL/I\B
i —

UNIVERSITY
Performance Monitoring Counters and Machine Learning

Eilleen Zhang'?, Onur Sahin?, Victor Ly?, Prof. Ayse K. Coskun?
Hillsdale High School, 3115 Del Monte St, San Mateo, CA 944031
Electrical and Computer Engineering Department, Boston University, 8 St. Mary’s Street, Boston, MA 022152

Introduction

e Applications for mobile devices are becoming
increasingly complex and power hungry, calling for
improved energy-saving techniques due to limited
battery capacity. Understanding power
consumption in these devices requires accurate
power estimation of mobile systems.

In this project, we investigate how to utilize
selected Performance Monitoring Counters (PMCs)
and machine learning to predict power
consumption of a mobile device during runtime.

Performance Monitoring Counters (PMCs) are
hardware counters that collect events from the
processor and memory system during runtime.

Machine learning
with scikit-learn

e A Python machine learning library.

Preprocessing

1e9 jpeg-dec power and counters before preprocessing jpeg-dec power and counters after preprocessing OLS r2 with different moving average sizes

| ‘ 1 / 1 A I 1.01

y— CPU 5 (id:0x0F) cntr 0 (0x1B) J[

50 100 150 200 Y0 50 100 150 200 4 6 8
index (time each 200ms) index (time each 200ms) moving avg size

= o

(@) (00)
o o
o) ©
N o

ylw,r) = wp +wyT) + ... + Wplp

r2 score (%)

o
I

counter value

o
O
N

o
N

Figure 16 (above): Scikit-learn trains and tests
linear models to find target value y. Each x is a
feature and each w is a coefficient.!?

— 1b-73-7 IV —— r2 score

Preprocessing data for machine learning: Figure 5 (left): Event 1B on core 5 for jpeg-dec
e Cumulative events — events per 200ms workload, before preprocessing.

Separate values for inst_spec and dp_spec Figure 6 (middle): The same event after
Normalize data to a range between 0-1 preprocessing.

Align power and events by initial spike Figure 7 (right): Comparing r* values when varying
Make a separate training set with the window size on averages, used to choose the window
averages of every 5 data points size for averaging.

e Ordinary Least Squares (OLS): a linear
regression that minimizes the residual sum
of squares between the predicted and actual
power values.

Lasso linear model: minimizes coefficients,
examining the tradeoff between accuracy
and reducing parameters.

M h d I e Accuracy is examined with the mean

Et o o Ogy absolute error and the r? value.

e KFold: a cross-validation technique that

e We use the ODROID-XU3 mobile development P r e d iCt i o n examines the stability of the model.
board with ARM big.LITTLE core clusters. | | | o separates the data into n number of
e 8 cores total: OLS with entire dataset OLS with averaged (5) dataset “folds”, trains the data with n-1 folds, and
o 4 LITTLE cores (A7 cores 0-3) maximize =101 ¢ r2score: 0.94914 . =197 o r2score: 0.98972 » tests the data with the last fold. Repeat
power efficiency = = o with other folds.
o 4 big cores (A1l5 cores 4-7) maximize g 0.8- g 0.8- B vtdnionse
performance. We focus on the big cores o 3 | T Figure 17 (left):
because they consume significantly higher = 0.6 . = 0.6 . i o o . How KFold splits a
power than the smaller cores. e .o e o® dataset based on
¢ A maximum of 6 PMCs can be collected _r§ 0.4- § 0.4 - i i i ! the specified
simultaneously on the board while running a - oo - number of folds.3!
benchmark. % 0.2 -lg 0.2 acorscy | 93% 90% 91% 95%
e Power is measured at the cluster level -- g | " g %e e ey 7 Ao ot
counters are measured at the per-core level. 205 & 200! e
00 02 04 06 08 1.0 00 02 04 06 08 1.0
testing data for power (W) testing data for power (W)

Figure 1 (right):
ODROID-XU3 mobile
development board

e e
Comparison of the linear regression, actual power vs. predicted power D I Sc u S S I O n

Figure 8 (left): Prediction when using individual data points as training values.

. . L Conclusions:
Figure 9 (right): Prediction when using a moving average with window size 5.

used for data Power consumption can be modeled from

. 1 0
collection. Lasso regression r2 scores with entire dataset Lasso regression r2 scores with averaged (5) dataset the.se 6 PMCs with at least 91% accuracy.
1.0 Using the the average of every 5 data points
r2 score r2 score increases the accuracy to 98%.
0.8 0.8- Lasso regression shows that certain PMCs
P Qe COnSLUAMBLIN AUEEE T WonkoEd with zero coefficients can be removed from
. FRmET a0 v 0.6- v 0.6 the prediction without impacting accuracy.
S S o The model is accurate up to an alpha
Figure 2 (left): We "o % value of 0.01
. (d 0.4 (d 0_4_
= chose 11 Caveats:
g benchmarks with 0.2 0.2 e Using the averaged data creates more
O . .] . T . .
= varying power extreme coefficients and increases the
consumption 00 00 number of negative coefficients.
levels. g , , . . . g - . . l . . o May be due to reduced size of dataset
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 The lower r2 score from 3 KFolds compared
N g o ow o alpha value alpha value o
E 3 c g g é 303 é = P P to OLS in Figure 8 and 9 demonstrates
3 £ 58 ° 5 ;f T B Lasso linear model used to reduce the number of coefficients in the linear overfitting in the model. However, the
° o © regression. Graphs of r* values when using lasso on multiple alpha values. accuracy remains at more than 90%.
oAt e Figure 10 (left): Lasso linear model with the entire dataset. Applications:
Sl E“’"f e ‘ Figure 11 (right): Lasso linear model with averaged dataset. ® These results demonstrate feasibility of
Figure 3 (right): We Ox11 CYCLE_COUNT predicting power consumption with more
g 8 - " 0x1B INST_SPEC Coefficients vs alpha for multiple events — cycecounts Coefficients vs alpha for multiple events — cycecounta PMC(s, and using [.asso to determine the most
refer to Walker et all*! to 0x50 L2D_CACHE_LD with entire dataset o gceconts with averaged (5) dataset o Gyeecount C
. Y . — czcle count-7 — czcle count-7 Slgnlflcant faCtorS'
choose 6 PMCs most 0x6A UNALIGNED_LDST_SPEC = Eventsos 00! “= Eventso4 Future steps:
correlated to power. 0x73 DP_SPEC — tensos = 7 — tansos ps: . s
= 11 CACHE_ACCESS) et @ 015] F% = E;ggtga;: Reduce overfitting with other fitting and
0x19 BUS_ACCESS 2 o R | -~ manaes cross validation methods
Choose and Install our flow: ’ g 200107 Tt Experiment with more linear modeling
benchmarks | ur flow: 7 o Benzs | . o Bvenrae techniques from scikit-learn
¢ ® Run benChmarkS on = * Event14-4 = : Event14-4 . . .
_ 3 Eenies @ - Event1a:s Experiment with a larger quantity of PMCs,
- the board using the S a8 0.00q f i - - -
Shell scripts and _ . Lventas : e using Lasso to determine the most important
Python scripts android debug T Dennos e features in power prediction
I bridge (adb) shell. ey 7005 o v
S e Make four copies of 000 001 002 003 0.04 005 0.06 i 000 001 002 003 0.04 005 0.06 i
benchmark for 50s each benchmark alpha value alpha value
J__J__ T e Use taskset to assign
2 Y Y Y ebenchmark to Impact of varying alpha values on coefficients for each counter with Lasso. REfe re n Ce S
Core 4 l Core 5 l Core6 | Core7 cores 4-7 Figure 12 (left): Comparing coefficients of multiple events with the entire dataset. |
| | | - | ' Figure 13 (right): Comparing coefficients of multiple events with the averaged [1] Walker, M.]; Diestelhorst, 5.; Hansson, A.; Das, A. K.; Yang,
T Wt Y b b e (ollect data every & (right) P 5 dataset b 5 S.; Al-Hashimi, B. M.; Merrett, G. V. Accurate and Stable
200ms and save the atdset. Run-Time Power Modeling for Mobile and Embedded CPUs.
Dat?)epn%\r(r:griach CSV files. IL?EE ?’ransactions on Computer-Aided Design of Integrated
= ° Preprocess the data Circuits and Systems 2017, 36(1), 106-119. |
® ® [2] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V,;
to prepare for C ross Va I I d a t I O n Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R;;
. . an))) ") ")) ")) ")
o Deitas of+counters ‘ machine learning Dubourg, V.; Vanderplas,].; Passos, A.; Cournapeau, D.; Brucher,
< = with scikit-learn. OLS with 3 kfolds, entire dataset OLS with 3 kfolds, averaged (5) dataset M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in
§ :gni)ower e Use machine aell 1.0 - Python. Journal of Machine Learning Research 2011, 12,
5 inst_spec - dp_spec | learning to make a 2825-2830.
&’ (b - : : 3] Bronshtein, A. Train/Test Split and Cross Validation in
J linear regression .
_ o Python Towards Data Science,
Normalize and find coefficients https://towardsdatascience.com/train-test-split-and-cross-vali
! | for each value. V0 v dation-in-python-80b61beca4b6 (accessed Aug 6, 2018).
| f | e Check the accuracy S O
‘Machine leaming with with the r? score and (:’ (:]
scikit-learn -~ 0.4 —
¢ | mean squared error.
o | e Getthe average of k I
k=
' every $ rows and Acknowledgements
p | save It as a separate B overall r2 score: 0.91124 Bl overall r2 score: 0.95465 . .
E Lassolv“near training set Thanks to Victor Ly, Onur Sahin and Prof. Coskun,
- . .
é model e Use machine ' 2 ' 2 as well as PEAClab group for their support and
J, learning on the kfold number kfold number guidance throughout this project. Thanks to the
ngl'g:{igf\s' entire and averaged KFold cross-validation method used to analyze the machine learning model’s stability. B.os.ton University RISE [nternship Progr.am for
L data sets. Figure 14 (left): using 3 folds with linear regression on the entire dataset. giving me the opportunity to do research in a lab

F-igure 4 (above):
Workflow for the project.

Figure 15 (right): using 3 folds with linear regression on the averaged dataset. setting.

