
● Applications for mobile devices are becoming 
increasingly complex and power hungry, calling for 
improved energy-saving techniques due to limited 
battery capacity. Understanding power 
consumption in these devices requires accurate 
power estimation of mobile systems. 

● In this project, we investigate how to utilize 
selected Performance Monitoring Counters (PMCs) 
and machine learning to predict power 
consumption of a mobile device during runtime.

● Performance Monitoring Counters (PMCs) are 
hardware counters that collect events from the 
processor and memory system during runtime.
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Figure 1 (right): 
ODROID-XU3 mobile 
development board 
used for data 
collection.

Figure 2 (left): We 
chose 11 
benchmarks with 
varying power 
consumption 
levels. 

Our flow:
● Run benchmarks on 

the board using the 
android debug 
bridge (adb) shell.

● Make four copies of 
each benchmark

● Use taskset to assign 
the benchmark to 
cores 4-7. 

● Collect data every 
200ms and save the 
CSV files.

● Preprocess the data 
to prepare for 
machine learning 
with scikit-learn.

● Use machine 
learning to make a 
linear regression 
and find coefficients 
for each value. 

● Check the accuracy 
with the r2 score and 
mean squared error. 

● Get the average of 
every 5 rows and 
save it as a separate 
training set. 

● Use machine 
learning on the 
entire and averaged 
data sets.

Comparison of the linear regression, actual power vs. predicted power
Figure 8 (left): Prediction when using  individual data points as training values. 
Figure 9 (right): Prediction when using a moving average with window size 5.

Preprocessing data for machine learning: 
● Cumulative events → events per 200ms
● Separate values for inst_spec and dp_spec 
● Normalize data to a range between 0-1
● Align power and events by initial spike
● Make a separate training set with the 

averages of every 5 data points

KFold cross-validation method used to analyze the machine learning model’s stability. 
Figure 14 (left): using 3 folds with linear regression on the entire dataset.

Figure 15 (right): using 3 folds with linear regression on the averaged dataset.

Lasso linear model used to reduce the number of coefficients in the linear 
regression. Graphs of r2 values when using lasso on multiple alpha values.

Figure 10 (left): Lasso linear model with the entire dataset. 
Figure 11 (right): Lasso linear model with averaged dataset.
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Impact of varying alpha values on coefficients for each counter with Lasso.
Figure 12 (left): Comparing coefficients of multiple events with the entire dataset.

Figure 13 (right): Comparing coefficients of multiple events with the averaged 
dataset.

● A Python machine learning library. 

● Ordinary Least Squares (OLS): a linear 
regression that minimizes the residual sum 
of squares between the predicted and actual 
power values. 

● Lasso linear model: minimizes coefficients, 
examining the tradeoff between accuracy 
and reducing parameters.

● Accuracy is examined with the mean 
absolute error and the r2 value. 

● KFold: a cross-validation technique that 
examines the stability of the model.
○ separates the data into n number of 

“folds”, trains the data with n-1 folds, and 
tests the data with the last fold. Repeat 
with other folds.

Figure 4 (above): 
Workflow for the project.

Figure 3 (right): We 
refer to Walker et al[1] to 
choose 6 PMCs most 
correlated to power. 

Figure 17 (left): 
How KFold splits a 
dataset based on 
the specified 
number of folds.[3]

Conclusions:
● Power consumption can be modeled from 

these 6 PMCs with at least 91% accuracy. 
● Using the the average of every 5 data points 

increases the accuracy to 98%.
● Lasso regression shows that certain PMCs 

with zero coefficients can be removed from 
the prediction without impacting accuracy.
○ The model is accurate up to an alpha 

value of 0.01
Caveats:
● Using the averaged data creates more 

extreme coefficients and increases the 
number of negative coefficients.
○ May be due to reduced size of dataset

● The lower r2 score from 3 KFolds compared 
to OLS in Figure 8 and 9 demonstrates 
overfitting in the model. However, the 
accuracy remains at more than 90%.

Applications:
● These results demonstrate feasibility of 

predicting power consumption with more 
PMCs, and using Lasso to determine the most 
significant factors.

Future steps: 
● Reduce overfitting with other fitting and 

cross validation methods
● Experiment with more linear modeling 

techniques from scikit-learn
● Experiment with a larger quantity of PMCs, 

using Lasso to determine the most important 
features in power prediction

● We use the ODROID-XU3 mobile development 
board with ARM big.LITTLE core clusters. 

● 8 cores total: 
○ 4 LITTLE cores (A7 cores 0-3) maximize 

power efficiency 
○ 4 big cores (A15 cores 4-7) maximize 

performance. We focus on the big cores 
because they consume significantly higher 
power than the smaller cores.

● A maximum of 6 PMCs can be collected 
simultaneously on the board while running a 
benchmark.

● Power is measured at the cluster level -- 
counters are measured at the per-core level.

Figure 16 (above): Scikit-learn  trains and tests 
linear models to find target value y. Each x  is a 
feature and each w is a coefficient.[2] 

Figure 5 (left): Event 1B on core 5 for jpeg-dec 
workload, before preprocessing. 

Figure 6 (middle): The same event after 
preprocessing. 

Figure 7 (right): Comparing r2 values when varying 
window size on averages, used to choose the window 

size for averaging.


