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a b s t r a c t

Energy consumption is an increasingly important concern in data centers. Today, nearly half of the energy
in data centers is consumed by the cooling infrastructure. Existing policies on thermally-aware workload
allocation do not consider applications that include many tasks (or threads) running on a large set of
nodes with significant communication among the tasks. Such jobs, however, constitute most of the
cycles in high performance computing (HPC) domain, and have started to appear in other data centers
as well. Job allocation strongly affects the performance of such communication-intensive applications.
Communication-aware job allocation methods exist, but they focus solely on performance and do not
consider cooling energy. This paper proposes a novel job allocation methodology to jointly minimize
communication cost and cooling energy consumption in data centers. We formulate and solve the joint
optimization problem using binary quadratic programming. Our joint optimization algorithm reduces
cooling energy by 16.4% on average with only a 2.66% average increase in application running time
compared to solely performance-aware allocations. To further optimize the communication cost, we
develop a Charm++ based framework that extracts the communication behavior of applications. We
then integrate our job allocation policy with recursive coordinate bisection (RCB) based task mapping
method to place highly-communicating tasks in close proximity. Experimental results show that task
mapping further decreases the communication cost by up to 20.9% compared to assuming all-to-all
communication, a popular assumption in much of the prior work.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Over the last decade, energy consumption of data centers has
become a first class concern on par with their computational
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capacity and may be the most formidable challenge in achieving
continued performance scaling. World-wide data center energy
requirements doubled from 2007 to 2011, and further increased
by 63% in just the next year [49]. Cooling costs have increased in
parallel and now constitute 25%–50% of the overall energy cost
of a data center [40]. A lot of effort has been given to decrease
data center Power Usage Effectiveness (PUE, the ratio of the total
data center facility power to the power delivered to computing
equipment) recently. According to a recent report, the average
PUE reduced from 2.5 in 2007 to 1.89 in 2011, reaching 1.65 in
2013 [42]. However, even a PUE of 1.65 means that 40% of the
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total power is consumed by non-IT equipment (including cooling),
which indicates significant room for improvement. Recently, free
cooling strategies have been proposed to achieve PUE values in the
range of 1.1–1.3, however, free coolingmay not be a feasible option
for many data centers due to the geographical location, seasonal
changes, and the required infrastructure costs.

The temperature of the computer room air conditioner (CRAC)
is a fundamental parameter in determining the amount of cooling
power consumed in current data centers. Therefore, one key factor
in efficient cooling is to keep the CRAC supply temperature as
high as possible [34]. A number of techniques focus on decreasing
the inlet temperatures of data center nodes through thermally-
aware job allocation so that a higher CRAC supply temperature is
sufficient to cool the data center [34,44].

Performance is another first-order constraint in data center
design and management. Communication-intensive parallelized
applications constitute most of HPC workloads, and have started
to occupy more cycles in other data centers following the
efforts in designing parallelized large-scale applications in many
domains. These applications run on multiple nodes with intensive
communication between the threads, with job running times in
the range of minutes, hours, or even days. In particular, the
performance of a communication-intensive application is sensitive
to the specific allocation and mapping onto the compute nodes.
In other words, communication cost has a significant impact
on system performance [28,33,8], with long communication
distances and communication resource contention increasing the
overall delay. Leung et al. have shown a 2X slow down for two
communication-intensive jobs when hand-placing them such that
their communication paths overlap significantly [28].

Most of the existing performance-aware job allocation algo-
rithms focus on minimizing the average number of communica-
tion hops between communicating nodes (e.g., [33,8,10,43]). For
data centers running transactional enterprise loads, performance-
aware job allocation algorithms focus on satisfying the response
time constraints imposed by service level agreements (e.g., [38]).
However, the workload and performance models of such algo-
rithms do not apply to parallel HPC applications as they do not con-
sider the impact of communication among the tasks.

Existing algorithms for job allocation in HPC data centers ad-
dress cooling efficiency and performance separately [33,8,34,44].
Treating these problems separately, however,may incur significant
inefficiencies. For example, allocating jobs solely tominimize cool-
ing cost may map communicating tasks of an HPC application to
distant nodes. Increased communication distance increases com-
munication delay which, in turn, increases the running time. This
may in fact cause a larger cooling energy consumption. Thus, a so-
lution that considers both performance and cooling energy for HPC
applications running in data centers is truly essential for improv-
ing energy efficiency. In this paper, we formulate and solve a joint
optimization problem that simultaneously considers the cooling
power and communication latency for parallel HPC applications
with highly communicating threads. Our specific contributions are
as follows:

• We propose a two-level job allocation policy. The first level
policy allocates the jobs to the nodes of a data center to jointly
optimize the communication cost of communication-intensive
applications and the cooling energy. We formulate and solve
the first level joint optimization problemusing binary quadratic
programming.

• The second level policy maps the tasks of a job onto specific
nodes. It takes communication patterns of applications into
account to further reduce communication cost by minimizing
the distance between tasks with frequent communication. Our
taskmapping techniqueuses amodified version of the recursive
coordinate bisection (RCB) algorithm [21].
• We expand the Charm++ run-time environment [22] to au-
tomatically extract communication patterns from HPC ap-
plications during simulation. Our framework-instrumented
approach does not require modification of the application code.

• Our joint optimization algorithm reduces the cooling energy
by 16.4% on average compared to the performance-aware
job allocation policy, while achieving similar performance.
Solely optimizing for cooling energy results in 19.6% higher
communication cost in comparison to the performance-aware
allocation. Our task mapping policy decreases communication
cost by up to 20.9% compared to a generic all-to-all pattern.

The rest of the paper starts with a discussion of related work.
Section 3 presents the experimental methodology for performance
simulation, communication pattern extraction, as well as data
center temperature and cooling powermodeling.We introduce the
proposed job allocation and task mapping strategies in Section 4.
We provide experimental evaluation in Section 5 and conclude in
Section 6.

2. Related work

This section first reviews data center job allocation and task
mapping algorithms for optimizing the performance of HPC
applications. It then discusses existing approaches for reducing
data center cooling energy costs. The section also highlights
distinguishing features of our work.

2.1. Job allocation for optimizing performance of communication-
intensive jobs

Most of the performance-aware job allocation algorithms
designed for HPC data centers and supercomputers focus on
minimizing the average number of communication hops among
the nodes that run the application. Some of the algorithms
allocate only a contiguous (i.e., adjacent) sets of processors to
each job (e.g., [10,43,13]), as contiguous node allocation provides
significant reduction in execution time for communication-
intensive parallel programs. For example, Bhattacharya et al.
use a look-ahead method that analyzes the job queue and
design an algorithm to detect free sub-mesh area for efficient
allocation [10]. Contiguous allocation, however, may result in
external fragmentation (i.e., available nodes that are separated
from each other cannot be utilized) and reduce the achievable
system utilization.

A number of recent communication-aware job allocation
techniques allow discontiguous allocation of processors. Mache
et al. present the MC allocation strategy for mesh-connected
parallel computers. Their method yields compact allocations by
containing the jobs in the smallest rectangular area possible [33].
Motivated by the MC allocation strategy, Bender et al. propose an
MC1x1processor-allocation algorithm, inwhich the first sub-mesh
is a 1X1 shell and subsequent sub-meshes grow in the same way
as in MC [8]. Walker et al. discuss fast job allocation algorithms
for mesh-connected clusters [50]. Their method is based on space-
filling curves, where processors are ordered according to a given
curve. None of these approaches consider the impact of job
allocation decisions on the data center cooling power.

2.2. Task mapping for communication-intensive applications

Task mapping techniques consider intra-application commu-
nication patterns while assigning specific tasks or threads of an
HPC application to nodes. Hoefler et al. present several mapping
algorithms including a greedy algorithm, a recursive bisection
mapping algorithm, and a new mapping strategy based on graph
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similarity [21]. They demonstrate that the proposed algorithms
achieve significant reduction of congestion for various network
topologies and communication patterns. Bhatelé et al. introduce a
framework based on heuristicmodels tomap an application’s com-
munication graph to either 2D or 3D mesh-based topologies [9].
Wu et al. propose a hierarchical task mapping for cosmological
simulations, taking both the inter-node and intra-node mappings
into account [52]. Chung et al. also propose a hierarchical mapping
strategy that achieves O(n log n) complexity by grouping heavy-
communicating processes together [14].

Existing performance-aware job allocation and task mapping
strategies focus on improving the performance and reducing
the communication overhead, without considering the potential
impact of job allocation on the data center energy consumption or
temperature. Next, we review the related work on cooling energy
management.

2.3. Cooling energy management

A number of thermal modeling and management techniques at
the data center level have been proposed to decrease data center
cooling costs. Simpler thermal models either use a linear formula
to compute steady state server temperatures [26] or a first order
RC-network to model transient server temperature [51]. These
models take thermal resistance, thermal capacitance, server power
consumption and the ambient temperature as input. The disad-
vantage of these models is that they do not take the recirculation
phenomena into account. Some work evaluate temperature us-
ing computational fluid dynamics (CFD) simulations, which pro-
vide high accuracy at the cost of long simulation times [34]. Recent
research provides more accurate thermal models for data centers
based on the layouts and thermal sensor data from real-world data
centers. Heath et al. introduce a data center temperature emula-
tion suite named Mercury that estimates temperatures based on
the data center layout, hardware, and component utilizations [19].
Tang et al. propose a linear model to compute data center tem-
peratures and cooling power fast and accurately [44]. Their model
considers recirculation effect and is validated by comparing against
CFD simulations.

Workload allocation and scheduling have been used for
managing data center temperatures [44,34,6]. Moore et al. present
two temperature-aware workload placement algorithms: the first
one assigns power inversely proportional to the server’s inlet
temperature and the second one minimizes the heat recirculating
within the data center [34]. Tang et al. solve an optimization
problem for minimizing the peak node inlet temperatures through
job allocation [44]. Other work proposes spatio-temporal job
scheduling with dynamic thermostat setting [6].

Another group of work propose techniques that target min-
imizing data center power consumption through dynamic volt-
age–frequency scaling (DVFS) and consolidation. Sarood et al.
present algorithms to prevent thermal hot spots using DVFS and
frequency-aware load balancing [39]. Pakbaznia et al. propose the
Minimum Total Data Center Power algorithm to minimize the to-
tal server and cooling power by turning off part of the servers
and applying DVFS [35]. Other works such as PowerTrade and
TACOMA reduce the total power by trading-off idle power and
cooling power [4,1]. These algorithms dynamically decide on how
many and which servers to keep in active/idle states depending
on the load and cooling demands [4,1]. Sansottera et al. propose
the Greedy Least Power (GLP) algorithm to minimize the power
consumption while satisfying response time constraints imposed
by service level agreements [38]. Other research focuses on op-
timizing performance under temperature and power constraints
[5,12]. Al-Qawasmeh et al. assign performance states to computing
cores to maximize the number of tasks completed by their dead-
line [5], while Chen et al. implement dynamic resource allocation
and workload migration in virtualized data centers [12].

Recently, data center management techniques using renewable
energy or free cooling has been gaining attention [53,17,30,29,27].
The main focus of these techniques is to select the most efficient
source of energy to minimize the energy consumption. They
use various approaches such as predicting the IT demands and
allocating the IT resources based on varying power supply [30],
dynamically choosing the source of energy among the renewable
energy, batteries or the grid [17], coordinating liquid cooling and
free cooling for power optimization [29], and distributing the
workload in geo-distributed data centers with cost and energy-
efficiency considerations [53,27].

The existing techniques on cooling energy management gener-
ally target transactional data center loads such as web applications
and short requests [1,4,38] rather than communication-intensive
parallel HPC applications. They use performance metrics such as
average response time and QoS [1], user estimated job turnaround
times [6], estimated computing time based on the P-state [5], and
service level agreements (SLAs) [30,27,12]. However, none of these
works on cooling-aware management consider the performance
impact of the location of communicating tasks as part of their
placement or scheduling algorithms.

2.4. Distinguishing aspects from prior work

Ourwork differentiates fromprior research as our job allocation
policy simultaneously optimizes the application performance (in
terms of the communication cost) and the cooling energy of HPC
data centers. We demonstrate that for jobs involving intensive
communication between the nodes, application performance
becomes an important factor in determining the total cooling
energy consumed.

In comparison to the heuristic solver we proposed in our recent
work [24], we formulate and solve the joint optimization problem
using binary quadratic programming method, which provides a
faster and scalable solution to the joint optimization problem.
Additional contributions include the integration of task mapping
with our job allocation policy to further reduce the communication
cost of communication-intensive applications, and considering a
more accurate communication model. To automatically obtain
communication patterns from real HPC applications, we extend
Charm++’s performance analysis tool, Projections. Our work is
the first to perform task mapping based on real communication
patterns along with job allocation optimization for minimizing
both the communication cost and cooling energy.

3. Experimental methodology

The target system in this work is a small data center with two
rows of industry standard racks arranged in the layout shown in
Fig. 1. In this arrangement, rack inletswhere the cool air is supplied
are facing the outer aisles forming cold aisles at the sides. Rack
outlets, where the hot air exits, are facing each other forming a
hot aisle in between the two rows. Each row is composed of five
racks and each rack has four compute nodes. In our experiments,
we assume that each node includes 10 servers and each server
has two processors. This layout corresponds to a total of 800
processors across the two rows of the data center. The proposed
data center setup has been commonly used in recent work and is
representative of the organization in today’s data centers [38].

Our simulation infrastructure is composed of two main parts:
performance and cooling. Performance simulation setup is used
to determine the communication delays between communicating
nodes in the data center. Cooling energy simulation involves server
power model and data center thermal model. Using the server
powermodel and themaximumnode inlet temperature estimates,
we compute the CRAC unit cooling power.
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Fig. 1. Layout of the target data center.

3.1. Performance simulation infrastructure

In this paper, we target communication-intensive parallel ap-
plications that use high-level communication middleware such as
Charm++ andmessage passing interface (MPI). For suchworkloads,
the communication overhead in the data center is one of themajor
performance bottlenecks [33].We evaluate our job allocation algo-
rithms for data centers with 3D-mesh networks. Mesh-connected
networks for message passing are commonly used in many data
centers, especially in HPC data centers and supercomputers. Some
examples include Cplant, a commodity-based supercomputer de-
veloped at Sandia National Laboratories [28], IBM Blue gene/l
supercomputer [3], and Cray XT4 distributed memory multipro-
cessor by Google [2]. As for supercomputers, torus network (a form
of 3D-mesh) is the first choice since it has no network edges and
provides high bandwidth nearest-neighbor connectivity [3]. Torus
network is also applicable tomany scientific anddata-intensive ap-
plications; therefore, it requires no extra network-specific changes
to programs.

The simulation infrastructure used in this paper is a cluster-
level simulator, SST/Macro [20], which is designed by Sandia
National Laboratories. SST/Macro performs coarse-grained simula-
tion of HPC applications. It is configurable to simulate data centers
with various sizes and network topologies. The simulation results
of SST/Macro have been validated using the performance data from
real-world data centers.

In our implementation on SST/macro, we use two skeleton
applications to extract the communication time between each pair
of nodes within the data center: a test application to send and
receivemessages between each pair of nodes in the data center and
a noise application to generate random congestion on the network.
We conduct simulations for each pair of nodes within the data
center in presence of randomized network congestion, and then
collect the average communication latencies. For example, for the
3D mesh network, we observe that the communication latency
for a pair of nodes is linearly correlated with the total X–Y–Z
(3D-Manhattan) distance between the nodes as expected. The
simulation results are used for constructing the communication
cost matrix,H , of the data center. TheH matrix, which contains the
relative communication latencies for each pair of nodes, is used in
the optimization formulation in Section 4.2.

3.2. Workloads and extraction of communication patterns

We use two categories of workloads in this paper: (1) generic
communication-intensive jobs with various sizes, where each job
requests a number of nodes to run on; (2) jobs that are based on
real-life HPC workloads. We use (1) for evaluating our policies
for a large number of dynamic scenarios and (2) to investigate
the benefits of communication pattern-awareness in our proposed
technique.
To obtain realistic workloads in category (2), we study eight
Charm++ applications that are actively used at multiple HPC cen-
ters (or closely resemble such workloads). We selected the follow-
ing applications (unless otherwise noted, they are obtained from
Charm++ web site [48]): An implementation of the Fast Fourier
Transform (FFT ). CharmLU, a linear solver operating on sparse ma-
trices, is representative of applications operating on sparse data
sets. NAMD is a widely used parallel molecular dynamics simula-
tor for large molecular systems [37]. We investigate two variants.
NAMD-noPME omits the long-range force computation and uses
only range-limited electrostatics resulting in primarily local com-
munication. Conversely, NAMD-PME includes the long-range force
computation, which results in additional communication when
transforming into vector space aswell as the addition of a FFT stage.
Barnes-Hut [7] and ChaNGa (Charm N-body Gravity solver) [16]
are celestial body simulations with a tree-based implementation.
OpenAtom [11], a quantum chemistry simulation framework, has a
number of interdependent heterogeneous phases including sparse
and dense FFTs, as well as non-square matrix multiplications. Fi-
nally, the adaptive mesh refinement AMR adaptively refines com-
putation through repartition and data migration.

We use an extended version of Charm++’s performance analysis
tool, Projections [23], to measure an application’s communication
volume (bytes) and number of messages between each pair
of processing elements (PEs). The correctness of this extension
has been validated through the use synthetic benchmarks with
controllable payloads as well as manually instrumenting NAMD at
application level [25].

Fig. 2 shows the communication volumes between PE pairs
for the eight applications (source on x-axis, destination on y-axis)
which is visualized by color, with red indicating a higher volume.

Overall, communication among neighboring PEs is most
common among all applications (visible as a diagonal line with
some spread). It is most noticeable in OpenAtom. CharmLU has
mostly local, but irregular communication. In addition, PE-0 acts as
a coordinator sending more messages to all other PEs. Barnes-Hut
has a distinct pattern with source PE index being two times of the
destination PE index. In addition, it has an all-to-all communication
for PEs-0 through 17. ChaNGa uses Barnes-Hut for much of its
computation, but has drastically different communication. There
is much local communication, but also more communication
between complementary PEs. NAMD-noPME mostly exhibits local
neighbor communication. Including long-range electrostatics,
NAMD-PME significantly increases communication with mostly
an all-to-all background, but also increases the distance and
volume of neighbor communication. AMR is dominated by local
communication, but with a wider range compared to the other
applications. Similarly to CharmLU, PE-0 acts as a coordinator.

Most applications exhibit communication patterns that signif-
icantly differ from the commonly assumed all-to-all pattern, mo-
tivating pattern-aware task mapping optimization (i.e., placing
highly communicating tasks in close proximity to each other in
the cluster). One exception is FFT (Fig. 2(g)), which shows a uni-
form all-to-all communication from the matrix transposition op-
erations, yielding limited optimization potential.

3.3. Server power model

A server’s power consumption is the dominant factor in
determining its temperature and the required cooling energy
to maintain operation within safe temperatures. The power
consumption of the servers varies with their activity. We assume
that a server consumes 300 W during computationally-intensive
phases, 230 W during communication-intensive phases, and
100 W when idle, based on reported power consumption values
of several data center servers [38,31]. Power consumption is
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(a) CharmLU. (b) Barnes-Hut. (c) OpenAtom. (d) NAMD-noPME.

(e) NAMD-PME. (f) AMR. (g) FFT. (h) ChaNGa-cosmo.

Fig. 2. Communication patterns in total Mebibytes (MiB).
lower during the communication phases due to the lower CPU
activity and the time spent in I/O. We target large communication-
intensive jobs and assume that each job fully occupies a set of
nodes (i.e., all of the servers in a node would be assigned to the
same job). Therefore, for each node (each containing 10 servers),
the total power of the node is 3000 W, 2300 W, or 1000 W,
depending on the activity and regardless of the application.

In this work, we specifically focus on data centers running
communication-intensive parallel workloads, where the applica-
tions highly utilize the nodes. Therefore, we assume the same node
power consumption for each application. We observe that these
jobs spend a large percentage of time in communication, and the
ratio of the communication time to total running time typically
varies between 20% and 40% [41,15]. We select the ratio of com-
munication time to running time as 30% in this work. Thus, 30% of
the workload running time is spent in the communication phase,
representing an average case. Based on the allocation decision, the
communication latency of the application changes. We reflect this
change by adjusting the communication portion of the running
time. We compute the node’s total power consumption while exe-
cuting a job as the weighted sum of the computation and commu-
nication power.

Our experimental choices are based on real-life scenarios in
today’s large scale computing clusters. Without loss of generality,
the proposed techniques are applicable to data centers with
different server power levels and applications with different
communication to computation ratios. We discuss how the results
vary as the power and communication activities change in
Section 5.

3.4. Cooling energy model

Weuse a typical data center layout [38] as shown in Fig. 1. In this
layout, cold air enters the room from the floor tiles into rack inlets
and gets hotter within the racks. Hot air exits from the back to the
center aisle and leaves the room from the ceiling. This hot aisle/cold
aisle arrangement avoids mixing cold supply and exhaust air.

In order to compute the cooling energy consumption of the
data center during job allocation, we use the model proposed and
validated by Tang et al. [45]. Their model combines a linear, low-
complexity heat recirculation model with a linear power model.
This model is more practical than most existing models as it
requires only one set of CFD simulations to characterize the data
center. Once we have the measured data center parameters, the
vector of inlet temperatures, Tin, for all the nodes is computed by
the following linear equation:

Tin = Tsup + DP (1)

D = [(K − ATK)−1
− K−1

] (2)

where Tsup is the CRAC unit supply temperature vector, D repre-
sents the heat distribution matrix and P is the node power vector.
K is the thermodynamic constantmatrix,which is calculated as fol-
lows:

K = diag(Ki), Ki = ρficp (3)

where ρ = 1.19 kg/m3 is the density of air, fi = 0.2454 m3/s
is the flow rate of node i (assumed fixed for all nodes), and cp =

1005 J/kg K is the specific heat of air [44].
Matrix A is the heat cross-interference coefficient matrix

representing the recirculation phenomena of a data center. It
represents the fraction of output heat from each node that is
recirculated to the inlet of the other nodes. It is an N × N matrix
for a system with N nodes with each term aij representing the
fraction of heat at node i recirculating back into node j. Matrix A
just needs to be obtained once for a particular data center through
CFD simulations or sensor measurements [45].

The heat cross-interference coefficient matrix has been used by
many others to carry out large scale thermal simulations rapidly
and accurately [35,39,38]. We utilize the heat cross-interference
coefficients for the data center given in recent work [38]. Fig. 3
shows the cross-interference coefficient matrix for the 40-node
system in a 3D map.

Data centerswith different layouts andheat flow characteristics
have different A matrices. However, the equations to calculate the
inlet temperatures are independent of the data center. This linear
thermal model using the cross-interference matrix [44] is so far
one of the most practical models available for data center thermal
simulations.

After deriving the heat cross-interference of the target data
center, we are able to model the impact of job allocation on the
cooling energy cost. The power values of the nodes are used in
Eq. (1) to calculate the inlet temperatures resulting from different
allocation schemes.

We perform node-level allocation in this paper, which is a
reasonable hierarchical level for data centers that run long jobs
with large number of threads. Assume that a job has size n, which
corresponds to the total number of nodes the job requires. xi is an
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Fig. 3. Cross-interference coefficient matrix A.

integer {1,0} variable showing whether node i is assigned a job or
not. The power consumption of a node i can be expressed with a
linear model as follows:

Pi = Pidle,i + xiPactive,i (4)

where Pidle,i is the node idle power and Pactive,i is the power
consumed when running a task. Pactive,i is dependent on the
communication to computation ratio of the job, as discussed
earlier. We focus on the steady-state power consumption and
use a constant Pactive,i during job execution, as the server power
fluctuations are limited compared to the total node power. Also,
the average power consumption determines the cooling need
because of the large thermal time constants involved in data center
cooling.

After computing the inlet temperatures, we use a cooling power
model to estimate the power consumed by the cooling unit, which
depends on the efficiency of the CRAC unit. A common CRAC unit
efficiency metric is the coefficient of performance (CoP). CoP is the
ratio of the heat removed from the system to the energy spent on
cooling: CoP = Pc/PAC , where Pc is the total computing power
(sum of the values in the P vector) and PAC is the cooling power.
CoP increases with higher CRAC supply temperature (Tsup). In this
work, we use the CRAC unit CoP model given by [34] as follows:

CoP(Tsup) = 0.0068Tsup2 + 0.0008Tsup + 0.458 (5)

where Tsup is in Celsius. The upper limit on how much the
supply temperature (Tsup) can be increased depends on the
difference between redline temperature (Tred), which is the highest
allowed temperature at the node inlets, and maximum node inlet
temperature (Tin,max). In other words, we can use this temperature
slack to increase the supply temperature and operate at higher
CRAC efficiency without violating the temperature constraints.
A new supply temperature can be computed by adding this
difference to Tsup, and the cooling cost is calculated as follows:

Tsup′ = Tsup + Tred − Tin,max (6)

PAC =
Pc

CoP(Tsup′)
. (7)

This model provides fast results and it is able to capture the
effect of recirculation. The accuracy of the temperature model is
verified in prior work [45].
4. Proposed joint optimization methodology

In this section, we present our optimization algorithm for
minimizing the communication cost and the cooling energy
cost of data centers through job allocation and task mapping.
Our goal in allocation optimization is to simultaneously reduce
the communication cost for each job and the cooling energy
spent in the data center. We solve this problem using binary
quadratic programming. The final part of this section discusses the
integration of job allocation with task mapping. After we assign
a set of nodes to each job, we allocate each task of the job to a
specific node so as to reduce the communication cost, taking the
job’s communication pattern into account.

4.1. Formulation of the joint optimization problem

We formulate the job allocation problem to reduce both
communication cost and cooling energy cost at the same time.
Moreover, we provide an optimization algorithm with adjustable
weighting factors between communication and cooling energy
cost. In this way, we enable optimizing the overall cost of data
centers for various preferences of performance or cooling energy
savings.

The objective of our joint optimization problem is to allocate
a job on a set of idle nodes on the data center such that both the
communication delay of the application and the required cooling
power are jointly minimized. The formulation of the job allocation
problem with this joint goal is shown in Eq. (8):

minimize
Xjob

α · Costcomm(Xjob) + β · Costcool(Xjob)

subject to E · Xjob = n
(8)

where Xjob = {x1, x2, . . . , xN} is an N × 1 vector that represents
the job allocation decision. N is the number of total nodes within
the data center and xi are the integer variables denoting whether a
node is busy or idle. N = 40 in our target data center, as described
in Section 3.

When a new job arrives, we solve the optimization problem
to determine the idle nodes the job will be allocated to. Thus,
after allocating each new job, a set of nodes switch states from
idle to busy, and we modify the corresponding xi values from 0
to 1. Similarly, when a job finishes execution, the xi variables are
updated back to 0. Our algorithm is also able to allocate jobs onto
a partially utilized data center. If a new job arrives while some
other jobs are running, we resolve the optimization problem by
considering the busy nodes in our constraints. In this work, we do
not consider workload migration, following the current common
trends in HPC data centers.

In Eq. (8), E is a 1 × N vector with all of its elements set to 1. n
is the total number of nodes required by a job. In other words, we
can consider each job as having n high-level tasks, where each task
is allocated on a node. The linear constraint E ·Xjob = nmeans that
the job requires n nodes in the data center.

Costcomm(Xjob) and Costcool(Xjob) represent the communication
cost of the job and the cooling cost of the data center,
respectively. α and β are the corresponding weight factors for the
communication cost and the cooling cost. α and β can be adjusted
to adapt to optimization requirements in different data centers. A
larger ratio of α/β indicates that reducing the communication cost
is more significant compared to decreasing the cooling cost. For
example, when α = 1 and β = 0, the joint optimization problem
is converted to the job allocation problem that only considers the
communication cost.

In our work, we assign equal weights to the cooling and
communication costs. However, we apply scaling factors to both
parts of the goal function such that when we set α = β = 0.5,
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the two cost terms will contribute similarly to the goal. That is, the
cost function in Eq. (8) is updated as follows: α′

· Costcomm(Xjob) +

β ′
· Costcool(Xjob), where α′

= α · (scaling factorcomm) and β ′
= β ·

(scaling factorcool). The scaling factors are determined empirically.

4.2. Solving the joint optimization problem

In order to solve the joint optimization problem, we need to
formulate both the communication cost and the cooling cost. The
communication cost of each job arriving at the cluster can be
expressed as in Eq. (9):

Costcomm(Xjob) =
XT
job · H · Xjob

n
(9)

where H is an N × N matrix, whose elements represent the
communication delay between each pair of nodes within the data
center. Thus, Eq. (9) calculates the total communication cost among
all the nodes that are assigned to the current job. The total cost is
then normalized to the job size, n. This normalization step is added
because it is intuitive to have a higher overall communication delay
for a larger job; however, wewould like to give similar importance
to all the jobs in the optimization irrespective of their sizes.

The communication cost matrix H is determined by the data
center’s network topology. We construct the H matrix based on
average delays due to the number of network hops, which are
constant. We consider average traffic congestion, as our goal is
to optimize the steady-state costs. We leave the analysis on the
impact of time-variant congestion on the performance variations
to future work. We use SST/Macro to extract the H matrix,
as discussed in Section 3.1. Other methods of constructing this
matrix for mesh topologies include computing the pairwise L1
(Manhattan) distances across the communication nodes [28]. Our
simulation approach is capable of generating the H matrix for
various data center network topologies.

The cooling energy cost of the data center after the allocation of
a new job can be formulated as in Eq. (10), which is derived from
the cooling energy model presented in Section 3.4:

Costcool(Xjob) =
sum{D · (Pactive ◦ Xjob) + Tsup + D · Pidle}

U
(10)

where Tsup is the CRAC unit supply temperature vector and D is
the N × N heat distribution matrix. Pidle and Pactive are N × 1
vectors representing the idle and dynamic power for the nodes,
respectively. U is the number of currently active nodes.

As described in Section 3.4, the cooling energy of the data center
is a function of the inlet temperatures of the nodes within the data
center. D · (Pactive ◦Xjob) is the portion of the inlet temperature vec-
tor that is determined by the job allocation decisions. Here, ‘◦’ rep-
resents element-wise multiplication of matrices (i.e., Hadamard
product). Tsup + D · Pidle is the constant part of the inlet temper-
ature formulation. In Eq. (10), we normalize the summation term
by the total number of currently active nodes in the data center,
U. This normalization prevents potential biases of the system uti-
lization on the results during each iteration of the optimization. In
other words, our approach minimizes the cooling cost after each
job’s arrival regardless of the current load on the data center.

The cooling energy of the data center is determined by the
maximum node inlet temperature, as described in Section 3.4.
When we are performing evaluations in Section 5, we calculate
the cooling power required by the data center using the maximum
inlet temperature across all of the data center’s nodes. However,
in our formulation of the optimization problem in the binary
quadratic model (Eq. (10)), we compute cost as a function of the
average inlet temperature. In other words, instead of minimizing
the maximum inlet temperature across all the data center’s
Fig. 4. Cooling power comparisonofminimizing themaximumversus average inlet
temperature.

nodes, our optimization algorithm minimizes their average inlet
temperature normalized to the data center utilization. Using
the average inlet temperature provides substantial advantages
in simplifying the problem’s solution; however, it can introduce
suboptimal solutions.

In order to justify our choice of using the average inlet
temperature in the formulation, we compare the cooling cost
resulting fromminimizing themaximum inlet temperature against
the cost obtained from minimizing the average inlet temperature.
As shown in Fig. 4,we repeat this comparison for different numbers
of active nodes ranging from n = 1 to n = 40.When the utilization
of the data center is less than 93%, the cooling energy difference
between the two solutions is limited to 1.2% on average. The
maximum difference is 9.9 kW, but such differences only appear
when utilization exceeds 93%, as higher utilizations create larger
maximum inlet temperatures. This error margin is acceptable as
it does not affect the optimization results for the vast majority of
our experiments. In addition, most data centers run at medium
utilization levels. Evenmost HPC data centers and supercomputers
largely operate below 90% utilization.

By integrating the formulations of the communication cost
and the cooling energy cost from Eqs. (9) and (10) into the
formulation of our joint optimization problem in Eq. (8), we obtain
the following equations. As the constants in the goal function do
not affect the optimization decisions, we simplify the equations
and only use the quadratic part of the communication cost function
and the linear part of the cooling cost functionwhile computing the
total cost.

minimize
Xjob

α

n
· Xjob · H · XT

job

+
β

U
· sum{D · (Pactive ◦ Xjob)}

subject to E · Xjob = n.

(11)

Thus, we express the joint optimization problem as a binary
quadratic programming problem, which is a combinatorial opti-
mization problem. It is an NP-hard problem; however, in practice,
it can be efficiently solved usingwell-known discrete optimization
techniques such as the branch and bound algorithm [47]. In our
experiments, we solve the optimization problem using the TOM-
LAB/CPLEX solver, which provides a Matlab interface to solve bi-
nary quadratic programming problems. For the joint optimization
of cooling and performance, we set α = β = 0.5.

Note that the problem is solved iteratively for each job arriving
at the data center. In this way, our optimization formulation is
suitable for handling dynamic job arrivals in real-life settings.
When a job completes execution, the Xjob vector is adjusted to
revert the states of that job’s nodes back into idle and the power
vector P is modified.
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4.3. Combining task mapping with job allocation

We integrate taskmappingwith the job allocation optimization
to further reduce the communication cost based on the communi-
cation patterns of the applications. After the job allocation opti-
mizer decides on the nodes for a job, the goal of task mapping is
to decide which task of a job should be allocated on each specific
node.

We perform taskmapping using the patterns extracted for each
HPC application (see Section 3.2). We assume the communication
patterns observed at the PE-level in Section 3.2 are similar to the
patterns at the node-level. Recall that our work focuses on node-
level allocation andmapping; thus, each task fully occupies each of
its nodes.

In our implementation, we apply a task mapping algorithm
based on the recursive bisection mapping (RCB) algorithm
proposed by Hoefler et al. [21]. In the RCB algorithm, the logical
communication pattern of an application is represented using
a weighted graph and the physical data center nodes with a
certain network topology is presented using a separate graph. RCB
algorithm follows a divide and conquer approach by recursively
allocating the subsets of tasks to subsets of nodes. The algorithm
starts with two graphs corresponding to all tasks to be mapped
and all nodes in the system. At each step, the algorithm calls
a graph bipartitioning algorithm which divides both graphs into
two disjoint sub-graphs with minimum weighted edge-cuts. The
recursion continues until a node graph is restricted to a single
node. Prior work demonstrates successful application of the RCB
algorithm in determining task mappings on mesh-based network
topologies [36,21].

We modify the RCB algorithm proposed in [21] by adding an
exhaustive search step to find the optimal solution of taskmapping
when the number of the nodes in the recursion is less than or
equal to eight. The exhaustive search is expensive when the size
of the job is large. However, when the number of the nodes to map
the tasks is less than or equal to eight, the performance overhead
of applying the search is negligible. We observe that adding this
feature into the RCB algorithm reduces the communication cost
considerably, without affecting its practical performance.

Note that the relationship between the communication cost
model (H matrix) and the task-level communication patterns
is orthogonal. The H matrix represents the impact of network
hops on the communication delay and the communication
pattern accounts for the intensity of communication. Thus, while
evaluating the resulting communication cost with and without
task mapping, we include both H matrix and communication
patterns in our simulations. We calculate the communication
cost as the ‘weighted’ sum of H matrix entries for the allocated
tasks. The communication patterns shown in Fig. 2 determine the
weights.

5. Experimental results

In this section, we present the experimental results for three
different allocation strategies: cooling-aware, performance-aware,
and our joint optimization technique. First, using a single-row
of the modeled data center, we demonstrate the different job
allocation decisions of the three strategies and how they affect
the data center’s performance and cooling energy consumption.
Then, we experiment with multiple-row allocation and evaluate
all three policies under dynamically changing workload. Finally,
we demonstrate how the integration of task mapping and job
allocation impacts the communication cost.

5.1. Job allocation in a single row

Fig. 5 presents the allocation decisions made by the cooling-
aware, performance-aware, and our joint optimization algorithms
Fig. 5. Single row allocation comparing the three policies.

Fig. 6. Multiple row allocation: percentage of active nodes and job sizes (number
of nodes a job requires).

in the single-row case, where four jobs are to be allocated
sequentially. Each job requires six, five, four, and three nodes to run
on. Numbered circles represent the busy nodes while the empty
circles imply free nodes. The numbers indicate the arrival order of
the jobs (e.g., job 1 arrives first and runs on six nodes).

We see that the cooling-aware policy assigns the jobs to the
nodes starting from the right side of the data center and avoids
the nodes that contribute more to heat recirculation. On the other
hand, the performance-aware policy starts from an arbitrary node
of the data center and tries to confine the allocated nodes for
each job to the smallest area possible. The joint policy prefers the
cooling-efficient nodes first and also assigns the tasks of a job in
close proximity to each other.

5.2. Job allocation in multiple rows of the data center

In order to evaluate the job allocation policies across both
rows of the data center, we use a sequence of nine jobs. Fig. 6
shows the percentage of the active nodes and the size of each job
in terms of the number of nodes required. The maximum node
inlet temperature changes between 23.7 °C (idle, 0% utilized) and
41.2 °C (100% utilized) within the data center. In Fig. 7, cooling
power over time is given for the three allocation policies. We see
that the joint policy closely follows the cooling-aware one and all
policies converge at the 100% utilization point, reaching the same
cooling power demands. However, performance-aware allocation
causes a higher maximum inlet temperature even under medium
utilization, resulting in a steeper cooling power curve.

We present the communication cost of each job in Fig. 8 and
observe that our policy achieves performance levels that are very
similar to the performance-aware policy. For some small-sized
jobs such as 1 and 6, all policies result in very similar allocation
decisions with an equal job communication cost. We see the
benefits of better allocation decisions more clearly for larger jobs
such as 5 and 8.Weobserve that,when the systemutilization of the
data center grows, the degree of freedomdecreases and the last job
is allocated to the remaining idle nodes, which explains the trend
for job 9.
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Fig. 7. Multiple row allocation: cooling power comparison among the three
policies.

Fig. 8. Multiple row allocation: communication cost comparison among the three
policies.

In comparison to the cooling-aware policy, our joint policy re-
sults in only 4% higher average cooling power while the exclu-
sively performance-aware policy causes a 70% increase. On the
other hand, our joint policy follows the performance-aware pol-
icy closely, bringing only 5% increase in the average communi-
cation cost per job. The cooling-aware policy increases the com-
munication cost by 23%. Our policy sacrifices performance slightly
compared to performance-aware allocation for substantial im-
provement in cooling efficiency.

Note that our results for the single and multiple-row allocation
do not consider the impact of communication cost on the job
execution time. In fact, larger communication costs may change
the power-performance characteristics of the jobs, and thus, affect
the total energy. Next, we investigate such interactions between
performance, cooling power, and energy in detail.

5.3. Dynamic job allocation

To evaluate our policy for a dynamically changing workload
scenario similar to real-life cases, we generate a job queue with
job arrival times following an exponential distribution as in prior
work [18]. We randomly generate the job sizes and running times,
where each job occupies 1–16 nodes and runs for between 1 and
20 min. We use a job arrival rate of 20 jobs/hour.

In the dynamic job allocation experiment, when a job finishes
execution, we update the data center status by freeing that job’s
nodes. We also adjust the power and running times of the jobs ac-
cording to the communication latency to have a realistic model.
We use the randomly generated job running times as the default
running time for each job and assume a 30% communication to to-
tal running time ratio (as discussed in Section 3.3). After each job
Fig. 9. Dynamic allocation: percentage of the active nodes in the data center (top)
and the cooling power over time (bottom).

allocation, the resulting communication cost for that job is com-
pared to the communication cost of the best possible (ideal) alloca-
tion for a job of that size. Using this relative delay compared to the
best-case, we scale the communication portion of the job’s running
time. The adjustment in the job’s running time is also reflected in
the average power consumption computation as an adjustment on
the communication power. Thus, there is a connection between the
performance delay and the communication power,which results in
different average power values depending on the allocation deci-
sion.

The allocation follows a first-come first-serve policy and if a
sufficient number of free nodes are not available, we wait for some
of the currently running jobs to finish. We simulate a total time of
2 h (40 jobs total) recording at each time step the maximum inlet
temperature and the communication cost for each job. At each time
step, the currently available node list, power values of active nodes,
and the finishing time of the jobs are updated as needed.We repeat
the same experiment 10 times (2 h each) using queues with the
same arrival rates to increase the confidence of the results.

Fig. 9 shows an example trace of the system utilization (i.e., the
percentage of active nodes) and the corresponding cooling power
over time for all three allocation policies. We observe that the
performance-aware and joint policies result in a similar utilization
of around 60% on average. However, the cooling-aware policy
causes a slightly higher utilization of 63% and results in a 7-min
delay in the overall execution time of the job queue because of the
higher communication latency it causes. The total execution time
of the queue is similar among the performance-aware and joint
policies.

Cooling power for our joint policy closely follows the power
consumption of the cooling-aware policy. The simulated average
cooling power for the 2-hour period is 56.4 kW and 80.9 kW
for cooling-aware and performance-aware policies, respectively.
Our joint policy achieves 65.4 kW average cooling power, which
corresponds to 19.2% cooling power savings compared to the
performance-aware allocation. The cooling energy consumption
values of the data center are 148.6 kWh, 156.8 kWh, and 198.5 kWh
for the cooling-aware, joint and performance-aware allocation
policies, respectively.

We present the communication cost, running time increase,
cooling power, and cooling energy of each of the 10 queues of the
dynamic allocation experiment in Figs. 10–13. Fig. 10 compares
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Fig. 10. Average communication cost of all jobs for each iteration of the
experiment, normalized to the performance-aware case.

Fig. 11. Average increase in job running times for the 10 experiment iterations
w.r.t. the ideal case.

the average communication cost of all 40 jobs for each iteration.
The results are normalized to the performance-aware case and
we observe the benefits of using the joint policy in comparison
to the cooling-aware policy for all the queues. On average,
across all queues, the cooling-aware policy has 19.6% higher
communication cost compared to the performance-aware policy.
Our joint policy sacrifices 10.5% communication cost compared
to the performance-aware policy for achieving higher cooling
efficiency.

We present the average increase in job execution time for each
policy in comparison to the ideal job running times in Fig. 11.
We see that even the performance-aware policy results in a slight
increase in job running times. This is because the job running
times in the ideal case do not consider the utilization of the data
center and the availability of the nodes. In other words, depending
on the current utilization of the data center and the locations of
the available nodes, performance-aware policy may not always
guarantee an ideal allocation for each job. Our joint allocation
policy increases the job running time by only 3.89% compared to
the ideal case, and by 2.66% compared to the performance-aware
case, on average. However, the cooling-aware policy results in
considerably longer job running times, resulting in an up to a 12%
increase. Intuitively, a lower communication to computation ratio
will result in a lower increase in job execution times; however our
joint policy can be applied to any scenario where jobs spend a non-
negligible portion of their time in communication.

Fig. 12 compares the average cooling power for the three
policies across all queues. As expected, we see that our joint
policy results in an average cooling power close to the power
consumption achieved by the cooling-aware policy. In comparison
to solely performance-aware policy, joint allocation reduces
cooling power by 18% on average, which corresponds to saving
16.4% cooling energy. An interesting observation is that for some
cases, the joint policy achieves lower average cooling power than
the cooling-aware policy such as in queues 4 and 6. This is because
with the cooling-aware allocation, some jobs may take a longer
time to run in comparison to the joint policy. When a large job is
running for an extended period of time, it keeps the nodes active
for a longer time. This results in higher total computing power and
Fig. 12. Average cooling power for the 10 iterations of the experiment, normalized
to the cooling-aware case.

Fig. 13. Cooling energy consumption of the joint and performance-aware policies
for the 10 iterations of the experiment, with respect to the cooling-aware case.

cooling power in comparison to the joint policy. Also, the following
job in the queue may have to be allocated in a less efficient way as
a fewer number of nodes are available.

Next, we present our analysis on cooling energy, taking into
account the total time it takes to finish all the jobs in each queue.
Fig. 13 compares the cooling energy consumption of joint and
performance-aware policies with respect to the cooling-aware
policy for each of the queues. Bars above zeromeans that additional
cooling energy is consumed compared to the cooling-aware policy.
We observe significant cooling energy benefits for the joint policy
compared to the performance-aware case, which results in up to
40% additional cooling energy consumption. Moreover, our policy
achieves up to 5% cooling energy savings compared to the cooling-
aware case for queues 4, 6, 7, 9, and 10. These results are in
parallel with the average cooling power results of Fig. 12 for the
queues 4 and 6. For queues 7, 9, and 10, cooling energy benefits
come from the shorter total execution time achieved by the joint
policy. The joint policy results in only 1% higher cooling energy
on average in comparison to cooling-aware optimization, while
performance-aware policy results in 21.6% higher cooling energy
consumption.

Note that one can apply our policy to arbitrary topologies
once they extract the H matrix using the procedure described
in Section 3.1. For fat tree topology for example, the H matrix
will be more uniform. Thus, in the case of a fat tree, cooling cost
would likely dominate, while for mesh topology both cooling and
communication costs dominate. While our policy is applicable to
arbitrary topologies, it is mainly designed for data centers with
variable communication delays among different nodes (e.g.,mesh).

The overhead of our joint optimization algorithm is negligible
compared to the long running times of the jobs.We havemeasured
the time spent running the allocation algorithm on Intel Xeon
E5504 processor: for a data center with 40 nodes, the computation
time to make a job allocation decision in our Matlab-based
implementation is 0.0029 s. In order to test the scalability of
our job allocation algorithm, we have measured the time spent
on allocating the same jobs on data centers with node numbers
ranging from 40 to 1000. Fig. 14 shows that as the size of data
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Fig. 14. The overhead of our joint optimization algorithm for data centers with
nodes ranges from 40 to 1000.

center increases, the computation time of our joint optimization
algorithm increases polynomially. For a data center with 1000
nodes, such as Cielo from Los Alamos National Laboratory [32]
(number 26 on the 2013 Top500 list [46]), the execution time of
our joint algorithm is 0.82 s.

We also compare our joint optimization algorithm with the
heuristic approach proposed in our recent work [24]. We observe
that for the same job queues used in this paper, our joint
optimization algorithm achieves similar cooling cost to that of the
heuristic algorithm proposed in [24] and provides up to 4.2% lower
communication cost. Themain advantage of the joint optimization
algorithm is the considerably shorter computation time required
to make the job allocation decision in comparison to our heuristic
method [24]. For example, in our target data center with 40 nodes,
the computation time for the job allocation is less than 0.01 s,
which is much smaller than the several seconds overhead of the
heuristic for the same data center.

5.4. Task mapping

In this section, we present the results of the RCB-based task
mapping algorithm.We apply the taskmapping algorithmafter the
joint policy decides onwhich nodes to allocate a job. Our baseline is
an in-order allocation algorithm, which allocates the tasks of a job
starting from the top left of the data center, traversing the assigned
nodes from left to right and from top to bottom.

Fig. 15 compares the communication cost resulting from our
RCB-based task mapping algorithm against the cost of the in-order
algorithm for job sizes n = 4, 8 and 16, respectively, using the com-
munication patterns provided in Section 3.2. In this experiment,
one job is allocated on a fully idle data center at a time. For n = 4,
we do not observe much benefit from RCB task mapping as the
communication distance between the allocated nodes is already
small. For FFT, which is dominated by all-to-all communication, we
again do not observe benefits, as the communication cost is dom-
inated by the job allocation rather than task mapping. RCB-based
taskmapping achieves a significant communication cost reduction
for CharmLU, reaching up to 20.9% for a job size of 16. CharmLU
has a lot of local communication; thus, placing the highly commu-
nicating tasks close to each other makes a substantial difference in
the communication delay.

We next demonstrate the results for a dynamic allocation
scenario, where the RCB-based task mapping is integrated into our
joint allocation policy. We generate job queues in the same way as
discussed earlier in this section, but this time, for each job, we also
assign a communication pattern randomly selected among the 8
patterns in Section 3.2. We confine the job sizes to n = 4, 8 and
16. We perform the experiment on one of the rows of the data
center, with a total of 20 nodes. Fig. 16 shows the reduction in
the job communication cost in comparison to the baseline in-order
policy for each of the 40 jobs in the queue. RCB policy achieves
Fig. 15. Percentage reduction in the communication cost achieved by RCB-based
mapping compared to in-order allocation for all the patterns and various job sizes.

Fig. 16. Percentage reduction in job communication cost using RCB-based task
mapping for the dynamic allocation scenario.

a higher reduction in communication cost (reaching up to a 25%
decrease) for the CharmLU pattern, which corresponds to jobs 2, 3,
9, 16, 23 and 32. Similarly, RCB achieves a high cost reduction for
NAMD_PME for job sizes larger than 4, which corresponds to job
15.

On the other hand, we do not see any improvement for FFT and
Barnes_Hut patterns, which correspond to the data points with
a zero value on the graph. This behavior is consistent with the
results presented in Fig. 15. As discussed in Section 4, RCB does not
apply exhaustive search for job sizes larger than 8. Thus, it may
not always give the optimal communication cost, which explains
the negative reduction (i.e., increase) numbers for jobs 11 and 25.
We achieve an additional 4.3% reduction in communication cost on
average across all the jobs for the dynamic scenario.

6. Conclusion

In this paper, we have proposed an optimization algorithm
to both deliver the desired performance and to reduce the
cooling energy through job allocation in data centers running
communication-intensive jobs. We have provided a solution for
the joint optimization problem based on binary quadratic pro-
gramming. The experimental results demonstrate that, in compar-
ison to performance-aware job allocation, our joint optimization
algorithm reduces the cooling power by 18% on average with only
a 2.66% increase in application running time. Our joint policy also
results in comparable cooling energy to that of the cooling-aware
allocation, while it achieves 16.4% average cooling energy reduc-
tion in comparison to the performance-aware allocation.

In order to further improve the performance of data centers
running multi-threaded applications with heavy communication
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among their tasks, we have integrated an RCB-based task mapping
algorithm into our job allocation methodology. In this way, our
technique is able to consider application-specific communication
patterns during task mapping. We have developed a set of tools
in Charm++ to extract communication patterns from a set of real-
life HPC applications. Our experiments show that by integrating
task mapping into our joint optimization algorithm, we decrease
the communication cost further by up to 20.9% in comparison to
assuming all-to-all communication patterns.

Our future work will focus on more advanced aspects related
to job allocation and HPC application performance. Some of
them include the performance impact of allocation when running
multiple jobs with different characteristics together. In such case,
not only the network distance between communicating tasks, but
also the network congestion caused by neighboring applications
becomes an important contributor to performance. Another
aspect is that the communication pattern or communication
intensity of an application may change at runtime, which
may affect the performance significantly. In order to model
such effects in an accurate manner, we are currently looking
into development of a more detailed simulation framework.
Our simulation framework combines the job scheduling and
allocation/task mapping components with a detailed network
model including MPI patterns.
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