
Fuzz testing (fuzzing) is a security testing approach where an automated 
and randomized input is sent to an application in order to identify 
vulnerabilities. Since the input is randomized, fuzzing is mainly focused 
on application crashes. Letting an application crash is a good sign that 
there is a vulnerability that can be exploited. However, the randomized 
nature of fuzzing implies that certain parts of applications, such as login 
or payment screens, cannot be exercised, meaning that these parts may 
rarely be fuzz tested by developers. One solution to this problem is to 
use a record and replay tool for user actions: a record and replay tool 
could be used to aid fuzzing on parts of an application that require 
specific user interaction, which would enable fuzz testing on 
functionalities that normally may not be accessible to standard fuzzing. 
The purpose of this project is to measure the increase in code coverage 
when fuzzing is combined with a record and replay tool. In this study, 
we use RERAN, a record and replay tool published by Gomez et al. in 
2013, to change the state of an application by replaying actions, before 
using the MonkeyRunner tool to do fuzz testing. We use Android’s Java 
Platform Debugger Architecture to measure code coverage and compare 
how fuzz testing on apps with and without RERAN changes the amount 
of code executed. We measure code coverage using a Python script that 
sets ‘hooks’ within an application and logs when a hook is passed in the 
program execution.

Fuzzing is a security testing approach where automated and randomized 
input is sent to an application to test how it will react. If application 
crashes occur during fuzz testing, it indicates that there are 
vulnerabilities in implementation. However, the random nature of fuzz 
testing implies that it may rarely reach and fuzz test certain parts of an 
app, because login screens or payment requests require some sort of 
password to advance to the next screen. This means that developers 
would have to manually enter a password and/or username every time 
they wanted to fuzz test parts of the application behind such functions, 
drastically reducing productivity. One way to mitigate these issues is to 
use a record and replay tool: the tool could automate logins and or other 
specific functions in an application so that fuzzing can be initiated from 
a different part of the application.

In this study, we conduct fuzz testing on applications that run on the 
mobile operating system Android. The Android Debug Bridge (adb) 
includes the Monkey tool, which sends randomized input to an app. 
Although monkey was designed for stress testing apps, in this 
experiment we use it to fuzz applications. For a record and replay tool, 
we use RERAN, which is a: “timing and touch-sensitive record and 
replay for Android”[1] that allows for user input on an Android to be 
recorded and executed to replay the recorded actions. By pairing 
RERAN with Monkey, fuzz testing can occur on more obscure sections 
of an application. We measure how RERAN improves fuzzing by 
measuring code coverage. Code coverage is defined as the percentage of 
code in the application that is executed. The more code coverage a fuzz 
test has, the more complete the test is. RERAN should significantly 
increase code coverage because it gives monkey access to the rest of the 
application behind the login screen. The purpose of this project is to 
measure the increase in code coverage when we combine fuzzing with 
the record and replay tool RERAN.

Figure 1. Facebook, a social media app, includes a login screen with only 7 potential inputs 
for fuzzing. However, once logged in, there is a multitude of other input boxes, with 12 
potential inputs on just the home screen. By automating the login process with a record and 
replay tool, fuzzing can be more easily conducted on the rest of the app behind the login 
screen.

The control in this experiment is to test fuzzing unaided by any other tools. The variable in this study is to 
test fuzzing aided by a record and replay tool that executes prior to any fuzz testing and moves the app to 
another state. 

We used the Java Platform Debugger Architecture in conjunction with AndBug[2], an Android Debugging 
Library written in Python. AndBug has the capability of inserting a breakpoint in different parts of an 
application given just the class and method name. By inserting a breakpoint at each method in a program, we 
can effectively test for code coverage because we can find how many methods in the program were 
executed, and therefore know how much code was run. In this experiment, a breakpoint does not need to halt 
the program; instead, it only needs to log that it was hit, and let the program continue. 

Below is a visual representation of the methodology of this experiment:

Control

Record User Login 
using RERAN tool

Use Python script based around AndBug 
to insert a breakpoint at each method 

Initiate monkey to 
send random inputs

Check Python script to see what percentage 
of breakpoints were hit while Monkey was 
fuzzing and compare the percentages for 

with and without RERAN

Variable

Run script that replays RERAN 
event file and then initiates 
monkey to fuzz afterward

Modify, sign and install app onto the 
Android 

Control

 Figure 2. We designed a small Android application with only a few classes and methods to test whether fuzzing would increase the 
code coverage. The first screen of the application contained an input field and button that would wait for the string, “secret” to be 
entered and the button pushed, before allowing the app to advance. This was in basic simulation of a login screen, where specific 
input would be required and fuzzing would not be able to pass it. The second screen contained a ‘bug’ where there were several input 
fields and a button. If the button was pushed, then the app would crash, simulating an input field that has an error in implementation.

Figure 4. A graph of the 
code coverage achieved 
by RERAN used with 
fuzzing. 83.3% of the 
code in the application 
was executed when 
RERAN was executed 
before fuzzing the 
application.

Figure 3. A graph of the 
code coverage achieved 
by fuzzing alone. Only 
16.7% of the code in the 
application was executed 
with just fuzzing alone.

- Combining a record and replay tool with fuzzing significantly increases 
code coverage; in the current test case, from 16.7% to 83.3%. 

- Developers that wish to fuzz test their applications could use a record 
and replay tool to record navigation to each page in their application, and 
run the recorded file right before they would like to test that specific part 
of the application

- The application contained a “bug” where the application would crash if 
the ‘OK’ button on the second screen was pressed. Fuzzing without the 
replay tool was unable to find this flaw, while fuzzing with RERAN was 
able to find the flaw repeatedly.

- Limitations: More complex applications could not be tested; each 
method in an application requires a breakpoint, and each breakpoint 
requires a certain amount of memory, so more complex apps consumed 
all of the Android’s available memory, preventing us from fuzz testing 
them.

Number of trials=3

Number of trials=3

- By combining record and replay tools with fuzz testing, developers 
have the capability to find flaws or bugs in application implementation 
that might otherwise not have been found with fuzzing alone.

- To test larger scale applications, a special version of the Android 
Runtime (ART) would need to be designed; ART manages how the 
Android Operating System handles breakpoints, but currently it does not 
allow for thousands of breakpoints to be placed. ART iterates through 
the entire list of breakpoints every time it encounters a breakpoint, 
meaning that when there are thousands of breakpoints, the entire 
application freezes, waiting for ART to finish iterating through the list of 
breakpoints. A method of resolving this would be to design a version of 
the Runtime that manages breakpoints more efficiently, so the 
application does not freeze when the Runtime hits a breakpoint.

[1]Gomez, Lorenzo; Neamtiu, Iulian; Azim, Tanzirul; Millstein, Todd. RERAN: Timing- and 
Touch-Sensitive Record and Replay for Android. International Conference on Software Engineering (ICSE). 
2013. 35th.

[2]Dunlop, Scott. AndBug -- A Scriptable Android Debugger. GitHub. https://github.com/swdunlop/AndBug

We would like to acknowledge Dr. Ayse Coskun for her valuable input on how to use the Android Operating 
System and how to better integrate RERAN with fuzz testing.

https://github.com/swdunlop/AndBug

