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Abstract

Cloud users today have little visibility into the perfor-
mance characteristics, power consumption, and utiliza-
tion of cloud resources; and the cloud has little visibility
into user application performance requirements and crit-
ical metrics such as response time and throughput. This
paper outlines new efforts to reduce the information gap
between the cloud users and the cloud. We first present a
scalable monitoring platform to collect and retain rich in-
formation on a regional public cloud. Second, we present
two motivating use cases that leverage the collected in-
formation: (1) Participation in emerging smart grid de-
mand response programs in order to reduce datacenter
energy costs and stabilize power grid demands, (2) bud-
geting available power to applications via peak shaving.
This work is done in the context of the Massachusetts
Open Cloud (MOC), a new public cloud project that has
a central goal of enabling cloud research.

1 Introduction
One of the main arguments for utilizing public clouds is
that they are environments where developers with inno-
vative ideas can try out their new services without invest-
ing in huge amounts of hardware [1]. However, public
cloud providers do not expose performance character-
istics, power consumption, and utilization of the cloud
software and hardware resources to applications/users,
and the public cloud has little visibility into the appli-
cation requirements and critical metrics. As a result, op-
timization at any level requires reverse engineering tech-
niques to discover information about the other levels.

A good example of reverse engineering is presented
by Conley et al., who aimed to identify the best perform-
ing instance type for sorting 100TB of data on Amazon
EC2 [2]. After evaluating 48 different available instance
types and spending $50,000 along the way, they were
able to optimize their application. Unfortunately, it is
not clear if their results are repeatable since the perfor-
mance may well depend on the utilization of different
components of the cloud infrastructure.

Our fundamental goal is to provide a monitoring in-
frastructure that can expose rich information about all
layers of the cloud (facility, network, hardware, OS, mid-
dleware, application, and user layers [3]) to all the other
layers. In this way, we hope to reduce the need for costly
reverse engineering or coarse-grained assumptions. We
believe that such detailed, multi-layered information is
key to developing intelligent, realistic performance and
energy optimization techniques. For example, to rapidly
reduce datacenter power consumption while maintaining
service level agreements (SLAs), we believe that it is es-
sential to be able to identify candidate application com-
ponents and their power/performance characteristics, and
then determine the power saving technique to be applied
to those components under SLA constraints.

One emerging real-life use case of this monitoring in-
frastructure is datacenter participation in smart grid pro-
grams. Today’s power market provides incentives for
electricity consumers to perform demand response, so
as to help stabilize the power grid and integrate ever in-
creasing renewable energy generation. Datacenters offer
a unique opportunity to provide such demand response,
as they are not only significant electricity consumers
worldwide [4], but also can provide the necessary flex-
ibility in their power consumption by leveraging power
management techniques and workload scheduling poli-
cies. To achieve efficient participation, information such
as power consumption and performance characteristics
needs to be collected and used in power and workload
control.

In this paper, we first present our design for a scalable
cloud monitoring system that can collect, mediate, and
expose data coming from multiple layers of the cloud.
We then provide two motivating use cases that exercise
our monitoring infrastructure and showcase the benefits
of collecting and retaining information from different
cloud layers. Information from the monitoring platform
enables the cloud datacenter to efficiently perform de-
mand response and peak power shaving, which not only
help in stabilizing the power grid, but also enables sig-
nificant energy and monetary savings.



Figure 1: Architecture of the MOC Monitoring system. Green colored monitoring components support the energy
market / smart grid demand response participation application described in Section 4.

2 Related Work

There are commercial solutions running on top of pub-
lic clouds that monitor virtual cloud usage. For example,
Amazon CloudWatch [5] is a service that monitors vir-
tual resources of users such as Amazon EC2 instances.
However, such services do not provide physical resource
monitoring, and thus, lack a holistic view of the cloud.

A number of academic studies have been done to col-
lect and retain information across different layers of the
cloud and to provide a complete monitoring story [6, 7, 8,
9]. These studies, however, either focus on providing en-
hanced capabilities to cloud providers without exposing
lower layer monitoring information to end users and re-
searchers (which is essential for understanding resource
usage or for designing power/performance management
methods), or they focus on specific end applications. For
example, PCMONS [6] does not collect the information
needed to map virtual resources to physical resources,
and GMonE [7] is not appropriate for a general purpose
Infrastructure-as-a-Service (IaaS) cloud such as MOC as
it requires installing agents on each VM and setting up a
database for each user. The primary goal of our work, on
the other hand, is to develop a platform that can be used
by a wide variety of applications.

3 Monitoring the MOC

MOC monitoring system aims to scalably collect, store
and serve integrated information from all layers of the
cloud to further cloud research and to enable intelligent
applications (such as power demand response participa-
tion) that reduce costs or improve service quality.

Proposed monitoring architecture assumes a standard
IaaS cloud setup composed of switches, storage, and
servers on the physical layer, and managed by Open-
Stack [10] on the virtual layer. The MOC is running in
the Massachusetts Green High Performance Computing
Center1 (MGHPCC), a 15 megawatt datacenter.2

Figure 1 shows the components of the proposed mon-
itoring architecture, which is composed of four layers:

i. Data collection layer, where monitoring information
from different layers are collected in a scalable and
low-overhead manner;

ii. Data retention & consolidation layer, where col-
lected monitoring information is persisted and
then consolidated in a time-series database (In-
fluxDB [11]);

iii. Services layer, in which resides both IaaS services
such as alerting and metering as well as privacy pre-
serving API services to expose monitoring data to
unprivileged users;

iv. Advanced monitoring applications layer, where a
wide variety of value-added services that utilize the
monitoring data operate.

3.1 Collecting Monitoring Data
As seen in Fig. 1, the physical server resource utiliza-
tion (e.g., CPU, memory, disk utilization), power met-
rics (e.g., consumed power, fan speeds, temperature sen-

1http://www.mghpcc.org
2There is an infrastructure in place at MGHPCC that collects and

retains the datacenter layer monitoring data (gray layer in Figure 1), but
this is currently not integrated into our MOC monitoring infrastructure.
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sors), and switch network utilization metrics (e.g., in-
coming/outgoing traffic on switch ports) are collected via
Sensu [12]. Sensu periodically tracks resources/services
and provides feedback or alert notifications to system
managers. It harvests data by running agents on servers
it monitors. The data collected by clients are filtered
and passed to the Sensu server over a separate message
bus (RabbitMQ). The virtual layer utilization informa-
tion is collected using Ceilometer [13]. Ceilometer is an
OpenStack project designed for enabling metering and
billing of OpenStack IaaS clouds. It tracks the resource
utilization of OpenStack users by monitoring notifica-
tions sent by OpenStack services or by running agents
that poll the infrastructure. The power and performance
data collected by Sensu and Ceilometer (highlighted with
green in Fig. 1) are used in supporting the applications
we present in Section 4.

Even though not utilized by the example applications
we describe in this study, the syslogs of the individual
compute servers and the logs of the OpenStack services
are also collected by our monitoring system. We use
LogStash, a log shipping system that collects logs from
given sources, parses and stores them into a database in
a structured form for this purpose.

Since our data collection services are stateless, scal-
ing them is simply a function of running more collector
processes and dividing the workload among them.

3.2 Data storage and consolidation

Ceilometer and LogStash are already coupled with
scalable storage systems MongoDB [14] and Elastic-
Search [15], respectively. Since Sensu is an alerting
system, normally, data collected by Sensu is not stored
in any database. We use the time-series database In-
fluxDB [11] for persisting the information collected by
Sensu. InfluxDB also has clustering support for better
scalability.

We also correlate and consolidate various types of
data collected by Ceilometer and LogStash in InfluxDB.
This consolidated database enables formulating complex
queries, such as queries that expose the cross-layer state
of the components of the datacenter they are utilizing to
cloud users, or queries that enable cloud administrators
to understand the impacts of changes made in the physi-
cal layer on virtual and application-layer performance.

3.3 Monitoring services

In our design, data collected from different layers can
be used for performing various services of MOC. A
metering service queries the MongoDB database popu-
lated by Ceilometer to create user cloud usage reports
for given periods of time. The logging data collected
by LogStash and indexed/served by ElasticSearch pro-
vides a keyword-based search interface including vari-
ous filters to the MOC admins to be used for debugging.

Sensu goes through a set of checks and creates alerts if
any anomalies in systems are observed.

In addition to the above mentioned fundamental ser-
vices, proposed MOC monitoring system also provides
two APIs that enable querying of the consolidated data in
InfluxDB. The Security API provides detailed network-
ing information as well as interaction and packet meta-
data information of users who opt-in to supply this data.
The Monitoring API simply exposes all correlated per-
formance, resource utilization and power data.

3.4 Applications
A unique feature of our monitoring system design is to
offer transparency to cloud users and administrators for
a number of applications. For example, we are work-
ing on providing privacy preserving APIs to end-users
that expose the state of the physical resources that their
VMs are hosted over. This will enable users to achieve
and automate stable and repeatable performance. We are
also working on correlating and exposing virtual layer
performance and physical layer power utilization data
to cloud administrators. This will enable participation
of cloud datacenters in energy market demand-response
programs. In the next section, we will present our initial
analysis on the feasibility of this latter application.

4 Case Studies: Cloud Power Management
Schemes and Demand Response Partici-
pation Enabled by Monitoring

Today’s datacenters are capable of providing signifi-
cant flexibility in power consumption owing to the ad-
vancements in dynamic power management techniques
in servers as well as to the increasing diversity of cloud
jobs ranging from latency-critical transactional jobs to
delay-tolerant jobs. We believe that if we couple this
flexibility with a systematic and accurate cloud power
and performance monitoring infrastructure, cloud data-
centers would be promising candidates for participating
in emerging energy market demand response programs
such as regulation service reserves (RSR) [16, 17] and
peak power shaving [18, 19]. This participation not only
can help stabilize the power grid and enable substantial
electricity generation from renewables, but also could
decrease rapidly growing energy costs of cloud datacen-
ters due to the incentive credits offered by energy market
operators for reserve provisioning.

Ability to monitor the cloud power and performance
systematically and accurately is essential for partici-
pation in demand response programs, as real-time dy-
namic power control policies for response provisioning
typically require feedback on power consumption and
throughput. Our monitoring infrastructure accurately
measures and collects this information, enabling the pub-
lic cloud to join in the power market. We demonstrate
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Figure 2: Power consumption vs. job RIPS when a vary-
ing number of vCPUs are allotted to the VM. Dots rep-
resent data points and dash lines represent the linear fit.

two demand response participation case studies: RSR
provisioning and peak shaving. We simulate these two
cases using data collected from our MOC monitoring in-
frastructure and by leveraging the dynamic control poli-
cies we proposed recently [17, 19]. These case studies
indicate the feasibility of having an open cloud partici-
pate in demand response and serve as a proof-of-concept
for deploying realistic dynamic power control policies.

4.1 Power and Performance Management
on the MOC

A rich set of control knobs are available in a datacenter,
including job scheduling or power capping of servers via
voltage-frequency scaling and via changing resources al-
located to each VM. In this work, we use the number of
vCPUs allocated to a VM as an example, and also as a
proxy to mimic a combination of various control knobs.
Note that as we build upon the proposed infrastructure, a
larger number of knobs and metrics will be available.

As the MOC is a virtualized platform, the number of
vCPUs strongly impacts both power consumption and
server throughput (assume #vCPUs ≤ #pCPUs). In our
experiments, we run PARSEC-2.1 benchmarks [20] on a
VM, varying the number of allocated vCPUs (2, 4, 8, 12,
16, 20, 24, 28, 32) in each run. We measure the runtime
as well as the total number of instructions of the jobs, and
calculate Retired Instructions Per Second (RIPS), which
is a widely used metric for evaluating performance. We
place the VM on an isolated server and measure its power
consumption through IPMI. The relation between RIPS
and power consumption is shown in Figure 2.

The figure shows a linear fit between RIPS and power
consumption with a mean square error of less than 3%
across all jobs, which matches the results in previous
studies (e.g., [21]). Note that neither RIPS nor power
consumption increases further beyond a large number
of vCPUs (e.g., #vCPUs ≥ 20), where another resource
(e.g., memory) becomes the bottleneck.

4.2 Case Study 1: Regulation Service Re-
serve Provision in the Cloud

The increasing amount of intermittent renewable power
sources leads to challenges in power grid stabilization.
The demand-side power capacity reserve provisioning
has emerged as a major sustainable solution for the in-
tegration of such power sources into the grid, and it has
already been pursued by the largest US Independent Sys-
tem Operator (ISO), PJM, since 2006 [22].

For the data center participation in reserve provision-
ing, we target regulation service reserves (RSR) with
hour-ahead signals [16, 23], as a typical datacenter is ca-
pable of regulating its power at the required reserve fre-
quency (i.e., every few seconds) and the credit for pro-
viding such reserves is high. In RSR hour-ahead provi-
sion, each potential provider bids an average power con-
sumption P̄, and a reserve value R to the ISO for the
hour ahead. After bidding is complete and prices set-
tle, the provider is charged for its power consumption as
ΠE P̄−ΠRR in the following hour, where ΠE and ΠR are
market-cleared prices for energy consumed and reserve
credited, respectively. In other words, the provider re-
ceives ΠRR credits for providing R amount of reserves.
Each RSR provider is obligated to regulate its dynamic
power consumption, P(t), to track an RSR signal, y(t),
that is broadcasted every 4 seconds by the ISO [22], such
that P(t)≈ P̄+y(t)R. The credit is reduced based on the
tracking error, and the provider may lose the contract if
the tracking error is too large. The signal y(t) is gener-
ated every 4 seconds by ISO to control the power grid.
The providers only know that y(t) is a random variable
between [−1,1] with an average of zero over long time
intervals, and that y(t) is updated in increments that do
not exceed ±R/(τ/4), where τ is within 100-300 sec-
onds. y(t) follows a well-behaved Markov model whose
transition probabilities can be calculated in advance.

We simulate a recently proposed dynamic datacenter
RSR participation policy [17] that tracks the power sig-
nal while guaranteeing reasonable performance, using
data collected from our MOC monitoring infrastructure.
The control knob, power consumption, and the job ser-
vice rate (i.e., RIPS) have been studied in Section 4.1.
Power consumption of a target MOC server in low-power
(sleep) state is 40W, and waking up a server from sleep
state takes 2 minutes. We assume that the cloud utiliza-
tion is around 50%, which is a typical scenario in prac-
tice. Since the control policy is scalable with the size of
the datacenter, we conduct experiments by assuming that
100 servers are participating in RSR.

Figure 3 provides results of RSR provisioning when
servicing two workloads in the MOC: bodytrack and fre-
qmine 3. We select these two jobs because they have very
different profiles in both power consumption and perfor-

3We simulate a homogeneous load case, where the same type of
application arrives at the cloud over time in each experiment, as in the
typical scenario of a cluster servicing a specific kind of load.
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(a) Power tracking, bodytrack.
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(b) Power tracking, freqmine.
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(c) CDF of normalized tracking
error, bodytrack.
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(d) CDF of normalized tracking
error, freqmine.
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(e) CDF of performance degrada-
tion, bodytrack.
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Figure 3: Results of RSR provisioning for bodytrack and
freqmine. Figures 3(a) and 3(b) show the power tracking
performance. The blue curve is the real power consump-
tion and the red curve is the ISO target power (i.e., the
RSR signal). Figures 3(c) and 3(d) are the cumulative
distribution function (CDF) of the tracking error ε(t),
normalized by the reserve value R. Figures 3(e) and 3(f)
are CDF of performance degradation of all serviced jobs.

mance: freqmine has a running time several times longer
than bodytrack and higher peak power consumption.

Figures 3(a) and 3(b) are results of 1-hour power track-
ing of the cloud. We can see that our 100-server cloud is
capable of tracking the RSR signal very accurately for
both workloads. The only tracking gap appears when the
magnitude of the RSR signal is too high and there is a
lack of jobs to execute. Such a tracking gap can be filled
either by running synthetic workloads or by leveraging
energy storage devices such as an uninterruptible power
supply (UPS).

The CDFs of the tracking errors ε(t) normalized w.r.t.
the reserve R are shown in Figures 3(c) and 3(d). The
tracking error is close to 0 in more than 90% of time for
both jobs, which further demonstrates the strong capacity
of our cloud to track the RSR signal and provide reserves.

Figures 3(e) and 3(f) show the performance degrada-
tion, which is defined as the ratio of the increase in job
servicing time due to participating in demand response to

the job servicing time without power capping and with-
out any waiting in the job queue. More than 90% of the
incoming jobs can be serviced with a degradation ratio
smaller than 2.5 for bodytrack, while for freqmine, 90%
of the degradation is close to 1. Freqmine has better per-
formance than bodytrack because of its longer runtime,
which makes the job waiting time in the queue relatively
small, and thus the overall degradation is smaller.

Finally, we check the potential credits received by our
cloud for RSR participation. Recall that the hourly elec-
trical cost is ΠE P̄−ΠRR, in which we have ΠE ≈ ΠR

in today’s market [22], and thus the monetary savings
can be roughly estimated using R/P̄. From the results,
R/P̄ is 24.5% for bodytrack, and 30.5% for freqmine,
both of which are highly promising. Freqmine has larger
savings because it has a larger dynamic power range as
mentioned before, which provides more flexibility for
regulation. Overall, these results demonstrate promising
profits of a cloud to provide RSR. Only scalable, multi-
layer monitoring tools can realize this opportunity by
providing detailed, correlated application performance
and power data in real-time.

4.3 Case Study 2: Peak Power Shaving
The electricity bill of a datacenter is composed of: (1)
the charge for the total energy consumed, (2) the charge
for the peak power within the billing period (weekly,
monthly, or annually) [18]. Market operators put extra
charges on peak power to avoid power shortage during
on-peak usage periods. In addition, as the power in-
frastructure and capacity for a datacenter has to be built
based on the peak power requirements, reducing peak
power also helps reduce this one-time infrastructure cost.

Peak shaving caps the power usage of a datacenter
within an upper bound. It is usually implemented by us-
ing energy storage devices to modulate the power con-
sumption during the off-peak and on-peak periods [18,
24]. Server-level dynamic power capping along with job
scheduling techniques (e.g., load shedding and shifting)
is another possible solution for peak shaving, when jobs
serviced in the cloud are delay-tolerant. In this work, we
focus on the latter solution as control policies in server
power capping rely heavily on accurate monitoring.

We simulate a peak shaving policy [19] using the col-
lected data from our monitoring infrastructure. Figure 4
shows results for 30% peak shaving; i.e., the new upper
bound of the power consumption is limited to be 70%
of the original peak. Note that the system may not have
stable solutions (i.e., the length of job queue reaches in-
finity) if the shaved percentage is too large. Figure 4(a)
and 4(b) show that leveraging the monitoring infrastruc-
ture, the policy enables our cloud to consume power at
a level always below the peak power cap. Figure 4(c)
shows that for bodytrack, close to 90% of the workload
has no degradation at all, while more than 99% of the
workload has a degradation ratio of less than 1, when
the peak power is shaved by 30%. Similar results are
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(a) Peak shaving, bodytrack.
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(b) Peak shaving, freqmine.
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tion, bodytrack.
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Figure 4: Results of peak shaving. Figure 4(a) and 4(b)
show the real dynamic power in an hour capped by an
upper limit (70% of the original peak) for bodytrack and
freqmine, respectively. The blue curve is the real power
consumption and the red curve is the power cap. Fig-
ure 4(c) and 4(d) are the CDF of performance degrada-
tion of all serviced jobs, for bodytrack and freqmine.

shown in Figure 4(d) for freqmine: more than 85% of
the workload has no degradation at all, while more than
99% of the workload has a degradation ratio of less than
0.5. Overall, these results demonstrate that our cloud can
strongly follow the peak power constraint while main-
taining a low performance degradation, by leveraging the
proposed policies and the data collected from the cloud.

5 Conclusion
We introduced the architecture for a scalable, multi-layer
monitoring infrastructure for MOC, an open regional
public cloud, and presented motivating examples that
leverage the collected data for advanced performance
and energy management. Our implementation is on-
going, yet the first results show substantial benefits of the
proposed infrastructure for developing techniques that
improve cloud sustainability. We believe our monitoring
infrastructure will enable optimization of hardware and
software components at all levels including application,
OS, hypervisor/cloud, and physical infrastructure layers,
and support a number of diverse research projects.
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Pérez, and Gabriel Antoniu. Gmone: A complete approach
to cloud monitoring. Future Generation Computer Systems,
29(8):2026–2040, 2013.

[8] Javier Povedano-Molina, Jose M Lopez-Vega, Juan M Lopez-
Soler, Antonio Corradi, and Luca Foschini. Dargos: A highly
adaptable and scalable monitoring architecture for multi-tenant
clouds. Future Generation Computer Systems, 29(8):2041–2056,
2013.

[9] JM Alcaraz Calero and Juan Gutierrez Aguado. Monpaas: An
adaptive monitoring platformas a service for cloud computing in-
frastructures and services. Services Computing, IEEE Transac-
tions on, 8(1):65–78, 2015.

[10] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj.
OpenStack: toward an open-source solution for cloud comput-
ing. Intl. Journal of Computer Applications, 55(3):38–42, 2012.

[11] InfluxDB. https://influxdb.com/docs/v0.9/
introduction/overview.html.

[12] Sensu. https://sensuapp.org/docs/0.20/overview.
[13] Ceilometer. http://docs.openstack.org/developer/

ceilometer/.
[14] MongoDB. http://docs.mongodb.org/manual/.
[15] Elasticsearch. https://www.elastic.co/products/

elasticsearch.
[16] A. L. Ott. Experience with PJM market operation, system design,

and implementation. Power Systems, IEEE Trans. on, 18(2):528–
534, 2003.

[17] H. Chen, M. C. Caramanis, and A. K. Coskun. The data center
as a grid load stabilizer. In Design Automation Conference, 19th
Asia and South Pacific (ASP-DAC), pages 105–112, 2014.

[18] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Benefits
and limitations of tapping into stored energy for datacenters. In
Computer Architecture (ISCA), 38th Annual International Sym-
posium on, pages 341–351. IEEE, 2011.

[19] H. Chen, M. C. Caramanis, and A. K. Coskun. Reducing the
data center electricity costs through participation in smart grid
programs. In IEEE International Green Computing Conference
(IGCC), pages 1–10, 2014.

[20] B. Christian. Benchmarking modern multiprocessors.
Ph.D.Thesis. Princeton University, 2011.

[21] H. Chen, C. Hankendi, M. C. Caramanis, and A. K. Coskun. Dy-
namic server power capping for enabling data center participation
in power markets. In Intl. Conf. on Computer-Aided Design (IC-
CAD), 2013.

[22] PJM (2013). market-based regulation [online].
http://pjm.com/markets-and-operations/ancillary-services/mkt
-basedregulation.aspx.

[23] PJM Manual 12: Balancing Operations, www.pjm.com, 2012.
[24] B. Aksanli, E. Pettis, and T. Rosing. Architecting efficient peak

power shaving using batteries in data centers. In IEEE Symp. on
Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), pages 242–253, 2013.

6


