Proactive Temperature Management in MPSoCs

Ayse Kivilcim Coskun?

{acoskun, tajana}@ucsd.edu

ABSTRACT

Preventing thermal hot spots and large temperature variations on
the die is critical for addressing the challenges in system reliabil-
ity, performance, cooling cost and leakage power. Reactive thermal
management methods, which take action after temperature reaches
a given threshold, maintain the temperature below a critical level at
the cost of performance, and do not address the temperature vari-
ations. In this work, we propose a proactive thermal management
approach, which estimates the future temperature using regression,
and allocates workload on a multicore system to reduce and balance
the temperature to avoid temperature induced problems. Our tech-
nique reduces the hot spots and temperature variations significantly
in comparison to reactive strategies.

Categories and Subject Descriptors: B.8 [Performanceand Re-
liability]: General; C.4 [Computer Systems Organization]: Per-
formance of Systems.

General Terms. Management, Design, Reliability.

Keywords: Thermal Management, Multiprocessor, ARMA.

1. INTRODUCTION

The increasing performance demands and technology scaling
have significantly elevated the power density of chips, resulting in
thermal hot spots as well as large spatial and temporal temperature
variations. To date, temperature induced reliability, performance
and design issues have been managed by design-time optimization
and dynamic thermal management. These techniques are not ad-
equate in preventing all the temperature induced problems in the
deep submicron era, especially the challenges caused by tempera-
ture variations. Moreover, conventional dynamic thermal manage-
ment techniques come at a performance cost. In this work, we pro-
pose a proactive thermal management technique for multiprocessor
system-on-chips (MPSoCs). Our technique continuously predicts
the temperature several time increments into the future, and dynam-
ically adjusts job allocation on the MPSoC to minimize the impact
of thermal hot spots and temperature variations without degrading
performance.

Hot spots and temperature variations cause a number of chal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISLPED’ 08, August 11-13, 2008, Bangalore, India..

Copyright 2008 ACM 978-1-60558-109-5/08/08 ...$5.00.

Tajana Simunic Rosing!
tUniversity of California, San Diego

Kenny C. Gross?
tSun Microsystems, San Diego
kenny.gross@sun.com

lenges. First, the cooling costs dramatically increase with every
generation of chips due to high temperatures. In addition to hot
spots, spatial thermal gradients on the die affect the cooling cost
as large gradients decrease cooling efficiency. Second, leakage is
exponentially related to temperature, so increasing temperatures in-
crease leakage power. Third, as the effective operating speed of de-
vices decreases with higher temperatures, temperature has an im-
pact on runtime performance and also performance predictability
at design time. Because of the performance variations caused by
temperature differences, global clock networks are especially vul-
nerable to such spatial variations. Finally, thermal hot spots and
large temperature gradients in time and space adversely affect re-
liability. Failure mechanisms such as electromigration, stress mi-
gration, and dielectric breakdown, which cause permanent device
failures, are exponentially dependent on temperature [10]. Large
spatial temperature gradients accelerate the parametric reliability
problems caused by negative bias temperature instability (NBTI)
and hot carrier injection (HCI) [11]. Temporal temperature fluctu-
ations, i.e. high magnitude and frequency of thermal cycles, cause
package fatigue and plastic deformations, and lead to permanent
failures as well [10].

The majority of the thermal management techniques proposed
previously, such as clock gating or temperature triggered frequency
scaling [19], maintain the temperature below a given threshold at a
performance cost. In the multiprocessor domain, techniques such
as thread migration and applying PID control [5] have been intro-
duced to achieve a safe die temperature at a reduced performance
impact. Still, such techniques are reactive in nature; that is they
take action after temperature reaches a certain level. Therefore,
they do not target reducing the temperature as much as possible
to minimize the impact on reliability and to ease the design com-
plexity issues caused by temperature. In addition, conventional dy-
namic thermal management techniques do not focus on balancing
the temperature spatially on the chip or temporally, and they can
create large thermal gradients or cycles. Reliability degradation
can get accelerated because of the cycles created by workload rate
changes and power management decisions, especially in systems
with dynamic power management (DPM) that turn off cores [17].
Some dynamic temperature-aware MPSoC scheduling techniques
(e.g. [4]) are able to reduce temporal and spatial variations as well
as hot spots in comparison to conventional thermal or power man-
agement for the average case. However they do not guarantee to
be effective for all execution periods, considering the trade-off be-
tween temperature and performance varies for different workloads.

In this work, we propose a proactive thermal management method
for MPSoCs. We utilize autoregressive moving average (ARMA)
modeling for estimating future temperature accurately based on a
moving window of temperature history. In our experiments, we



have seen that as workload goes through stationary phases, temper-
ature can be estimated accurately by regressing the thermal teleme-
try. Using the temperature prediction, we preferentially allocate
incoming jobs to cores to minimize and balance the temperature
across the die. We evaluate several performance-aware and temper-
ature-aware allocation strategies for MPSoCs on an UltraSPARC
T1 system [13]. The thermal behavior of our technique is evalu-
ated using real life workloads as measured by the Continuous Sys-
tem Telemetry Harness (CSTH) [7]. Our proactive temperature-
aware allocation strategy reduces the frequency of hot spots by
about 60%, spatial gradients by 70% and thermal cycles by 20%
in comparison to reactive thermal management strategies, without
affecting performance.

2. RELATED WORK

In this section, we briefly discuss the techniques for multicore
scheduling and thermal management. In multicore systems, opti-
mizing power-aware scheduling with timing and performance con-
straints introduces high complexity, as multicore scheduling is an
NP-complete problem. A power management strategy for mission-
critical systems containing heterogeneous devices is proposed in
[14]. A static scheduling method optimizing concurrent communi-
cation and task scheduling for heterogeneous network-on-chips is
proposed in [8]. Rong et al. utilize integer linear programming for
finding the optimal voltage schedule and task ordering for a system
with a single core and peripheral devices [16]. In [18], MPSoC
scheduling problem is solved with the objectives of minimizing the
data transfer on the bus and guaranteeing deadlines for the average
case. Minimizing energy on MPSoCs using DVS has been formu-
lated using a two-phase framework in [23]. In [15], load balancing
is combined with low power scheduling to reduce temperature in
VLIW processors.

As power-aware policies are not always sufficient to prevent tem-
perature induced problems, thermal modeling and management
methods have been proposed. HotSpot [19] is an automated ther-
mal model, which calculates transient temperature response given
the physical characteristics and power consumption of units on the
die. A fast thermal emulation framework for FPGAs is introduced
in [3], which reduces the simulation time considerably while main-
taining accuracy. Static methods for thermal and reliability man-
agement are based on thermal characterization at design time. In-
cluding temperature as a constraint in the co-synthesis framework
and in task allocation for platform-based system design is intro-
duced in [9]. RAMP provides a reliability model at architecture
level for temperature related intrinsic hard failures [21]. It analyzes
the effects of application behavior on reliability, and optimizes the
architectural configuration and power/thermal management poli-
cies for reliable design. In [17], it is shown that aggressive power
management can adversely affect reliability due to fast thermal cy-
cles, and the authors propose an optimization method for MPSoCs
that saves power while meeting reliability constraints. A HW-SW
emulation framework for reliability analysis is proposed in [2], and
as a case study, a reliability-aware register assignment policy is in-
troduced for increasing register file reliability.

Dynamic thermal management controls over-heating by keeping
the temperature below a critical threshold. Computation migration
and fetch toggling are examples of such techniques [19]. Heat-
and-Run performs temperature-aware thread assignment and mi-
gration for multicore multithreaded systems [6]. Kumar et al. pro-
pose a hybrid method that coordinates clock gating and software
thermal management techniques such as temperature-aware prior-
ity management [12]. The multicore thermal management method
introduced in [5] combines distributed DVS with process migra-

tion. The temperature-aware task scheduling method proposed in
[4] achieves better thermal profiles than conventional thermal man-
agement techniques without introducing a noticeable impact on
performance.

Our goal in this work is to introduce a thermally-aware job al-
location method for MPSoCs. The key differentiating point with
previous work is that our technique is predictive. As opposed to
taking action after temperature reaches a certain threshold level,
our technique estimates the hot spots and temperature variations in
advance, and modifies the job allocation to minimize temperature’s
adverse effects.

3. PROACTIVETHERMAL MANAGEMENT

Previously proposed thermal management strategies are typically
reactive in nature; that is, they stall or slow down cores, or migrate
workload when temperature reaches a critical value. In addition to
the performance cost they cause, reactive approaches do not always
minimize the frequency of hot spots observed. Moreover, conven-
tional thermal management does not address balancing the temper-
ature profile spatially on the die and temporally during execution.
In this work, we present a proactive thermal-aware scheduling ap-
proach, which adjusts the workload distribution on a multiproces-
sor SoC to minimize the hot spots and temperature variations. As
the approach is predictive, it prevents thermal problems before they
occur, as opposed to reacting to hot spots and variations after they
appear on the system. This way, we can mitigate temperature in-
duced problems much more effectively at negligible performance
cost. In this section, we provide the underpinning mathematical
details of our technique.

Figure 1 shows the flow chart of our technique. Current chips
typically contain several thermal sensors, which can be read by a
continuous system telemetry infrastructure for collecting and ana-
lyzing time series sensor data [7]. Based on a moving history win-
dow of temperature measurements, we predict temperature ¢,, time
increments into the future using an autoregressive moving average
(ARMA) model. As workload goes through stationary phases and
temperatures change slowly (on the order of milliseconds) due to
thermal time constants, estimating future temperature based on the
regression of previous telemetry values gives accurate results. The
scheduler then allocates the threads to cores to balance the tem-
perature distribution across the die. The ARMA model utilized
for temperature prediction is derived based on a temperature trace
representative of the thermal characteristics of the current work-
load. During execution, the workload dynamics can change over
time. Consequently, the ARMA model parameters need to be adap-
tive to achieve robustness and maintain high prediction accuracy.
To provide runtime adaptation, we monitor the workload through
the temperature measurements, validate the ARMA model period-
ically, and update the model as needed. In this section, we pro-
vide the details of the ARMA-based prediction method, how to dy-
namically adapt to workload variations, and our temperature-aware
scheduling technique.

3.1 Temperature Prediction with ARMA

Autoregressive moving average (ARMA) models are mathemati-
cal models of autocorrelation in a time series. They are widely used
in many fields for understanding the physical system or forecasting
the behavior of a time series from past values alone. In our work,
we use ARMA models to predict the future temperature of cores us-
ing the temperature values observed in the past. ARMA modeling
assumes the modeled process is stationary in the statistical sense,
and that there is some degree of serial correlation in the data. In a
stationary process, the probability distribution does not change over



Temperature Data
from Thermal Sensors

Periodic ARMA Model
fa----» Validation: !
i Update Model If Necessary |

Predictor
(ARMA)

Workload Characteristics for
Incoming Threads

Temperature at time
(tcurrent + tn) for all

SCHEDULER

Temperature-Aware
Allocation on Cores

Figure 1. Flow Chart of the Proposed Technique

time, and the mean and variance are stable. Based on the observa-
tion that workload characteristics are correlated during short time
windows, and that temperature changes slowly due to thermal time
constants, we assume the underlying data for the ARMA model
is stationary. As we adapt the model when the ARMA model no
longer fits the workload, the stationarity assumption does not intro-
duce inaccuracy.

Other well-known prediction methods, such as exponential aver-
aging, may work well when the temperature profile is stable. How-
ever, ARMA modeling is capable of capturing temperature dynam-
ics even when the thermal profile is highly variant, e.g. when there
is thermal cycling.

An ARMA(p,q) model can be described by Equation 1. In the
equation, y is the value of the series at time ¢, a; is the lag-i au-
toregressive coefficient, c; is the moving average coefficient and e,
is called the noise, error or the residual. The residuals are assumed
to be random in time (i.e. not autocorrelated), and normally dis-
tributed. p and q represent the orders of the autoregressive (AR)
and the moving average (MA) parts of the model, respectively.

p q
ye+ Y (aiyi—i) =er+ Y (cier i) 1
=1 =1

ARMA modeling has the following steps: 1)ldentification, which
consists of specifying the order of the model; 2) Estimation, which
is computing the coefficients of the model (performed by software
with little user interaction); 3) Checking the Model, where it is en-
sured that the residuals of the model are random, and that the esti-
mated parameters are statistically significant.

During identification, we use an automated trial and error strat-
egy. We start with the simplest model, i.e. ARMA(1,0), and in-
crease the model order at every iteration, and measure the “good-
ness-of-fit”. We use Final Prediction Error (FPE) to evaluate the
goodness-of-fit of the models. FPE is a function of the residuals
and the number of estimated parameters. Taking the number of es-
timated parameters into account compensates for the artificial im-
provement in fit that could come from increasing the order of the
model. The FPE is given in Equation 2, where V is the variance of
model residuals, N is the length of the time series, and n = p + ¢
is the number of estimated parameters in the model.

1+n/N

FPE = .
1—-n/N

(@)

For checking that the model residuals are random, or uncorre-
lated in time, we look at the autocorrelation function (ACF). Auto-
correlation is the cross-correlation of a signal with itself as a func-
tion of lag time, and is useful for identifying repeating patterns in a
signal if there are any. If model residuals are random, the ACF of
all residuals (except for lag zero) fluctuates close to zero.

After computing the ARMA model, we test its prediction capa-
bilities. This is achieved by predicting a portion of the time series
data which has been previously set aside for testing the model (i.e.
not used for training the ARMA model). We observe the mean
squared error (MSE) of the predicted trace, and ensure that it is
close to zero. For example, to tolerate 1°C' of error in average, we

would check whether MSE < 1,as MSE < M, where
H is the length of the data and Err; is the prediction error for i'"
data point.

As an example, we have applied the ARMA prediction method-
ology to a sample temperature trace. The trace (obtained using
HotSpot [19]) is 500 samples long, sampled at every 100 ms. Using
the first 400 samples of the data, we formed an ARMA(5,0) model
with FPE << 1. We saved the last 100 samples of the data to
test our prediction method. We used the ARMA model to predict
5 steps (i.e. 500 ms) into the future. The results of the tempera-
ture prediction is demonstrated in Figure 2. The prediction almost
perfectly matches the observed values. It should be noted that, for
more flat temperature curves, designing an accurate ARMA predic-
tor is even easier.

82

®

®
S

—&— observed
—— predicted

Temperature (C)
~
©

45 46 47 48 49 50
Time (seconds)

Figure2: Temperature Prediction

Figure 3 shows the ACF of the residuals in the model. The ACF
of residuals fluctuate around zero, showing that the residuals of the
model are random. The dashed lines in the figure show the 95%
confidence intervals. In our automated methodology, we observe
percentage of ACF values within the 95% confidence interval. If
most of the ACF values fall within the 95% range, we declare the
residuals are random.

3.2 Runtime Adaptation of the ARMA Model

As discussed previously, ARMA models are accurate predic-
tors when the time series data are stationary. Since the workload
dynamics vary at runtime, the temperature characteristics may di-
verge from the training data we used for forming the initial ARMA
model. In order to adapt to changes in the workload, we propose
monitoring the temperature dynamics and periodically validating
the ARMA model.

To perform online validation, we maintain a history window of
temperature on each core. The length of the window is empirically
selected based on thermal time constants and workload character-
istics. Using the recent temperature history and the current ARMA
model, we compute the residuals by differencing the predicted data
from the observed data. The ACF of the residuals are investigated,



0.8F
0.6F
0.4«‘
|
| Py S,
|

ACF

o
——

-0.2

045 20 40 60 80 100

Samples

Figure 3: Autocorrelation Function of the Residuals

as previously explained in the validation stage of the model. If the
residuals are not random, then we conclude that the current ARMA
model does not fit the current workload characteristics well enough.

We also measure the mean squared error (MSE) of prediction.
If the error is diverging from zero over time, this is a sign that
the current model is not working well any longer. Monitoring the
MSE allows for fast detection of inaccurate predictions. When we
determine the current ARMA model is not suitable anymore, we
update the model on the fly. Until the new model is computed, we
continue using the old model.

3.3 Temperature-Aware Allocation

The goal of our temperature-aware workload allocation tech-
nique is to minimize the magnitude and frequency of the thermal
hot spots and temperature variations. To achieve this goal, we
evaluate several techniques, and propose a predictive temperature-
aware job allocation method for MPSoCs.

In the system model we assume for the multicore system, each
core is associated with a dispatching queue, which keeps the threads
allocated to the core. This is the typical set-up in modern multi-
core OS schedulers (e.g. Solaris), which are based on multilevel
queuing. The dispatcher allocates the incoming threads to queues
based on the policy. Further balancing (i.e. migration) among the
queues are possible depending on the policy requirements. We do
not change the priority assignment of the threads or the time slices
allocated for each priority level. Our work focuses on finding effec-
tive dispatching methods to reduce temperature induced problems
without affecting performance. Next we explain the details of all
the scheduling techniques we compare in this work.

Perfor mance-Aware Dynamic L oad Balancing (Default pol-
icy - DLB): The conventional dispatching method used in multi-
core schedulers is to assign an incoming thread to the core it ran
previously, if the thread ran recently. If the thread has not run re-
cently, then the dispatcher assigns it to the core that has the lowest
priority thread in the queue. The dispatcher first tries to assign the
thread based on locality (e.g. if several cores are sharing a cache or
on the same chip, etc.) if possible. At runtime, if there is signifi-
cant imbalance among the queues, the threads are migrated to have
more balanced utilization.

Performance-Aware Balancing Combined With Reactive
Thermal Management: One way to perform temperature-aware
allocation is to initially utilize performance-aware balancing while
dispatching jobs, then at runtime migrate threads from cores that
reach a critical threshold. This strategy is an example of reactive
thermal management (e.g. [6]), which takes action after a certain
temperature threshold is reached.

Proactive Temperature-Aware L oad Balancing: In this tech-
nique, the dispatcher follows the principle of locality (i.e. running

the threads on the same core they ran before) during initial assign-
ment. The ARMA prediction method is applied at runtime, and if
the temperature of cores are projected to have an imbalance in the
next interval, threads waiting on the queues of potentially hotter
cores are moved to cooler cores. This way, the thermal hot spots
can be avoided before they occur, and the gradients are prevented
by thermal balancing. Note that we move the threads waiting in
queue, so migration does not include stalling the running thread.
Moving the waiting threads in the queues is already performed by
the default policy for load balancing purposes, so this technique
does not introduce additional overhead.

4. EXPERIMENTAL RESULTS

Our experimental results are based on the UltraSPARC T1 pro-
cessor [13]. The average power consumption including leakage and
area distribution of the units on the chip are provided in [4], and the
floorplan is available in [13].

In our simulations, we leveraged the Continuous System Teleme-
try Harness (CSTH) [7] to gather workload characteristics of real
applications. We sampled the utilization percentage for each hard-
ware thread at every second using npst at . We recorded half-hour
long traces for each benchmark. To determine the active/idle time
slots of cores accurately, we recorded the length of user and kernel
threads using DTr ace.

We ran the following sets of benchmarks: 1) Web server, 2)
Database, 3) Common Integer, 4) Multimedia. To generate web
server workload, we ran SLAMD [20] with 20 and 40 threads per
client to achieve medium and high utilization, respectively. For
database applications, we tested MySQL using sysbench for a
table with 1 million rows and 100 threads. We also ran compiler
(gcc) and compression/decompression (gzi p) benchmarks. For
multimedia, we ran mplayer (integer) with a 640x272 video file.
We summarize the details of our benchmarks in Table 1. The uti-
lization ratios are averaged over all cores throughout the execution.
Using cpust at , we recorded the cache misses and floating point
(FP) instructions per 100K instructions.

Table 1: Workload characteristics

Benchmark Avg L2 L2 FP
Util (%) | I-Miss | D-Miss | instr
1 Web-med 53.12 12.9 167.7 | 31.2
2 ‘Web-high 92.87 67.6 288.7 | 31.2
3 Database 17.75 6.5 102.3 5.9
4 Web & DB 75.12 21.5 1153 | 24.1
5 gcc 15.25 31.7 96.2 18.1
6 gzip 9 2 57 0.2
7 MPlayer 6.5 9.6 136 1
8 | MPlayer&Web 26.62 9.1 66.8 29.9

Peak power consumption of SPARC is similar to the average
power [13], so we assumed that the instantaneous power consump-
tion is equal to the average power at each state (active, idle, sleep).
We estimated the power at lower voltage levels based on the equa-
tion P o< f % V2. We assumed three built-in voltage/frequency
settings in our simulations. To account for the leakage power, we
used the second-order polynomial model proposed in [22]. We de-
termined the coefficients in the model empirically to match the nor-
malized leakage values in [22]. We scaled the leakage power at the
default voltage level and nominal temperature based on this model
considering the change in voltage state and temperature. We used a



sleep state power of 0.02 Watts, which is estimated based on sleep
power of similar cores. To compute the power consumption of the
crossbar, we scaled power according to the number of active cores
and the memory access statistics.

We used HotSpot version 4.0 [19] for thermal modeling, and
modified the floorplan and thermal package characteristics for Ul-
traSPARC T1. We ran the thermal simulations with a sampling
interval of 100 ms, which provided good precision. We initialized
HotSpot with steady state temperature values.

We next evaluate the techniques we have discussed in the pre-
vious section. We implemented Dynamic Power Management
(DPM) and Dynamic Voltage Scaling (DVS) to demonstrate how
the allocation strategies behave with power management. DPM
turns off idle cores based on a fixed timeout strategy. DV S applies
a dynamic voltage/frequency scaling policy which reduces the V/f
level depending on the utilization observed on each core in the last
interval. As a reactive temperature management policy, we im-
plemented temperature triggered thread migration. Migration mi-
grates threads from hot cores to cooler cores when a temperature
threshold is exceeded. Note that such a policy is different than bal-
ancing the threads waiting in the dispatch queues.

In our experimental evaluation, the hot spot results demonstrate
the percentage of time spent above 85°C, which is considered a
high temperature for our system. Similar metrics have been used
in previous work as well [4].The spatial gradient results summarize
the percentage of time that gradients above 15°C occur, as gradi-
ents of 15 — 20°C start causing clock skew and delay issues [1].
The spatial distribution is calculated by evaluating the temperature
difference between hottest and coolest cores at each sampling in-
terval. For metallic structures, assuming the same frequency of
thermal cycles, when AT increases from 10 to 20°C, failures hap-
pen 16 times more frequently [10]. So, we report the temporal
fluctuations of magnitude above 20°C. AT values we report are
computed over a sliding window and averaged over all cores.

Table 2 shows a detailed analysis of the hot spots observed on the
system. DLB represents the performance-aware dynamic load bal-
ancing strategy, Migration stands for the policy combining temper-
ature-triggered migration with DLB, and Proactive is our proac-
tive temperature-aware allocation technique. We demonstrate the
percentage of time spent above 85°C' for all the workloads, and
the average results for the cases with no power management (No
PM), DPM and DVS. We observe that, migration of workload upon
reaching the threshold cannot eliminate all the hot spots, especially
for workloads with medium to high utilization level. The threshold
to trigger migration can be set to a lower level to reduce the hot
spots further at the cost of higher performance degradation.

DPM and DVS reduces the thermal hot spots to some extent as
they reduce the temperature when the system has idle time. How-
ever, performing proactive temperature management results in the
best thermal profile among these techniques, as demonstrated in the
table.

Figure 4 shows the average percentage of time thermal cycles
above 20°C were observed. We also plotted the workload with the
maximum thermal cycling, i.e. Web-med. We only consider the
case with DPM for the thermal cycling results, as putting cores into
the sleep state creates larger cycles. Our technique achieves very
significant reduction in thermal cycles, as it continuously balances
the workload among the cores according to their expected tempera-
ture. As migration reacts to temperature thresholds, it cannot avoid
the temperature imbalance in time as much as the proactive tech-
nique.

In Figure 5, we demonstrate the average percentage of time large
spatial gradients above 15°C occurred while running the policies.

mAVG
20 0 MAX (Web-med)|

% of Cycles Above 20C

. N

DLB Migration Proactive

Figure 4: Temperature Cycles (with DPM)

DPM creates larger gradients due to the low temperatures on the
cores that go into the sleep state. Proactive thermal management
can reduce the gradients to below 4% in average, and to less than
2% for the case with DVS. By reducing the frequency and voltage
on the cores, DVS achieves lower amount of temperature variations
on the die.

14
@ 12 mDLB
[ 10 == O Migration
8 M Proactive
< 8-
[2]
59
RS
O 2+
k)
< 0
No PM DPM DvVs

Figure5: Spatial Gradients

To show the effect of adaptation (i.e. when workload changes) on
the accuracy of our technique, we ran traces of different workloads
sequentially and computed the temperature statistics. As examples,
in Table 3, we show the results for running the following combi-
nations of workload with the Proactive policy: (A) Web-med fol-
lowed by Web&DB, (B) Mplayer followed by Web-med. We show
the percentage of hot spots, cycles and gradients for the individual
workloads, and also for the combined workloads for the case with
DPM.

Table 3: Thermal Resultsfor Combined Workloads

Hot Spots | Cycles | Gradients
(%) (%) (%)
Web-med 4.8 4.9 5.5
Web&DB 4.6 3.1 6.7
Mplayer 0 0.5 0.9
(A) Web-med, Web&DB 4.9 4.1 6.0
(B) MPlayer, Web-med 2.9 3.1 3.5

If the ARMA model no longer adequately fits the current work-
load, we compute a new model while we continue using the old
ARMA model during the adaptation period. Computing the new
ARMA model is a fast process. For example, in Matlab, an ARMA
(p,0) model with no moving-average component can be computed
in less than 150ms, and an ARMA(p,q) model upto 5" order can
be computed in less than 300ms. The computation and the valida-
tion of the model together takes between 250 and 500ms. Thus,
the model will be inaccurate for only on the order of several time
constants. The results in Table 3 confirm this observation, as the
combined workload slightly changes the temperature statistics.



Table 2: Percentage of Thermal Hot Spots

I | no PM | DPM | DVS |
[ Workload ]| DLB | Migration | Proactive ]| DLB | Migration [ Proactive ]| DLB | Migration [ Proactive ]|
Web-med 25.9 12.9 6.9 19.5 10.9 4.8 21.2 7.7 2.8
Web-high 39.1 22.1 9.5 37.4 21.6 9.3 37.5 19.2 7.2
Database 8.3 2.1 0.7 4.6 1.5 0.5 3.8 1.5 0
Web&DB 324 15.3 5.3 27.8 13.2 4.6 243 10.7 2.1
gcc 7.2 1.8 0.4 3.8 1.3 0.2 3.1 0.5 0
gzip 29 0.6 0.0 1.3 0.5 0 1.5 0.1 0
Mplayer 4.9 0.7 0.0 1.7 0.5 0 1.6 0 0

Mplayer&Web || 13.3 9.4 2.1 8.9 7.2 1.4 6.2 4.9 1
[ AVG [ 168] 81 [ 31 [131] 71 [ 26 [ 124] 56 [ 16 |

5. CONCLUSION

In this paper, we have proposed a proactive temperature-aware
workload allocation technique for MPSoCs. Our technique contin-
uously predicts the future temperature on each core in the MPSoC
using autoregressive moving average (ARMA) modeling as applied
to a moving history window of temperature telemetry. Based on
the predictions, the threads waiting in dispatch queues of cores are
proactively balanced by preferentially shifting threads from hotter
cores to cooler ones. To adapt to runtime changes in workload, the
automated algorithm periodically evaluates how closely the current
ARMA model fits the recent temperature dynamics, and updates
the model whenever necessary. Our technique achieves significant
reduction in the frequency of thermal hot spots and temperature
variations with respect to performance-aware workload allocation
or reactive thermal management at negligible performance cost.

Acknowledgment

This work has been funded by Sun Microsystems, and the Univer-
sity of California MICRO grant 06-198.

6. REFERENCES

[1] A.H. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of
nonuniform substrate temperature effects on global ULSI
interconnects. |EEE Transactions on CAD, 24(6):849-861, June
2005.

D. Atienza, G. D. Micheli, L. Benini, J. L. Ayala, P. G. D. Valle,

M. DeBole, and V. Narayanan. Reliability-aware design for

nanometer-scale devices. In ASPDAC, 2008.

[3] D. Atienza, P. D. Valle, G. Paci, F. Poletti, L. Benini, G. D. Micheli,
and J. M. Mendias. A fast HW/SW FPGA-based thermal emulation
framework for multi-processor system-on-chip. In DAC, 2006.

[4] A.K. Coskun, T. Rosing, and K. Whisnant. Temperature aware task
scheduling in MPSoCs. In DATE, 2007.

[5] J. Donald and M. Martonosi. Techniques for multicore thermal
management: Classification and new exploration. In ISCA, 2006.

[6] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-Run:
leveraging SMT and CMP to manage power density through the
operating system. In ASPLOS 2004.

[2

—

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]
[21]

[22]

[23]

K. Gross, K. Whisnant, and A. Urmanov. Electronic prognostics
through continuous system telemetry. In MFPT, pages 53-62, April
2006.

J. Hu and R. Marculescu. Energy-aware communication and task
scheduling for network-on-chip architectures under real-time
constraints. In DATE, 2004.

W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
Thermal-aware task allocation and scheduling for embedded
systems. In DATE, 2005.

Failure mechanisms and models for semiconductor devices, JEDEC
publication JEP122C. http://www.jedec.org.

H. Kufluoglu and M. A. Alam. A computational model of NBTI and
hot carrier injection time-exponents for MOSFET reliability. Journal
of Computational Electronics, 3 (3):165-169, Oct. 2004.

A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. HypbDTM: a
coordinated hardware-software approach for dynamic thermal
management. In DAC, pages 548-553, 2006.

A. Leon, L. Jinuk, K. Tam, W. Bryg, F. Schumacher, P. Kongetira,
D. Weisner, and A. Strong. A power-efficient high-throughput
32-thread SPARC processor. |SSCC, 2006.

J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware
scheduling under timing constraints for mission-critical embedded
systems. In DAC, 2001.

M. Mutyam, F. Li, V. Narayanan, M. Kandemir, and M. J. Irwin.
Compiler-directed thermal management for VLIW functional units.
In LCTES pages 163-172, 2006.

P. Rong and M. Pedram. Power-aware scheduling and dynamic
voltage setting for tasks running on a hard real-time system.

T. S. Rosing, K. Mihic, and G. D. Micheli. Power and reliability
management of SoCs. |EEE Transactions on VLS, 15(4), April 2007.
M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano.
Communication-aware allocation and scheduling framework for
stream-oriented multi-processor system-on-chip. In DATE, 2006.

K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. Temperature-aware microarchitecture. In ISCA, 2003.
SLAMD Distributed Load Engine. www.slamd.com.

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for
lifetime reliability-aware microprocessors. In ISCA, 2004.

H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif. Full-chip leakage
estimation considering power supply and temperature variations. In
ISLPED, 2003.

Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage
selection for energy minimization. In DAC, 2002.



