
PaCMap: Topology Mapping of Unstructured
Communication Patterns onto Non-contiguous Allocations

Ozan Tuncer
Boston University
Boston, MA, USA

otuncer@bu.edu

Vitus J. Leung
Sandia National Laboratories

Albuquerque, NM, USA
vjleung@sandia.gov

Ayse K. Coskun
Boston University
Boston, MA, USA

acoskun@bu.edu

ABSTRACT
In high performance computing (HPC), applications usu-
ally have many parallel tasks running on multiple machine
nodes. As these tasks intensively communicate with each
other, the communication overhead has a significant im-
pact on an application’s execution time. This overhead is
determined by the application’s communication pattern as
well as the network distances between communicating tasks.
By mapping the tasks to the available machine nodes in a
communication-aware manner, the network distances and
the execution times can be significantly reduced.

Existing techniques first allocate available nodes to an ap-
plication, and then map the tasks onto the allocated nodes.
In this paper, we discuss the potential benefits of simultane-
ous allocation and mapping for applications with irregular
communication patterns. We also propose a novel graph-
based allocation and mapping technique to reduce the ex-
ecution time in HPC machines that use non-contiguous al-
location, such as Cray XK series. Simulations calibrated
with real-life experiments show that our technique reduces
hop-bytes up to 30% compared to the state-of-the-art.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming—
Topology Mapping

Keywords
Topology mapping; task mapping; non-contiguous alloca-
tion; unstructured communication pattern; performance

1. INTRODUCTION
In high performance computing (HPC), highly parallel ap-

plications run on multiple machine nodes for long durations
up to several days where each node typically includes multi-
ple processing cores [15]. The size of these applications and
the HPC machines have been growing exponentially in the
last decade. The number of processing cores in the largest

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3559-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2751205.2751225.

machines has increased from 65536 in 2005 to over 3 mil-
lion in 2014 [2]. This growth is expected to continue in
the forthcoming years, creating a need for scalable work-
load management solutions to reduce both the application
execution times and the energy consumption [14].

One of the most important challenges in HPC workload
management is topology mapping, i.e., the placement of an
application’s tasks to the machine nodes. Placing the highly
communicating tasks close to each other can reduce the com-
munication time significantly, and as a result, improve the
overall application performance. As most of the HPC appli-
cations have a specific communication topology, the problem
can be expressed as mapping an application’s communica-
tion graph onto the machine’s network graph.

Mapping of two graphs to each other is shown to be an
NP-hard problem [17]. Thus, researchers proposed various
heuristics for topology mapping such as recursive graph bi-
sectioning [29], exploiting application’s geometric informa-
tion to partition the communication graph [9, 13], and graph
embedding [34]. Most of these techniques focus on HPC ma-
chines with contiguous allocation, where each application is
assigned to a contiguous block of machine nodes. Although
contiguous allocation increases application locality, it de-
creases the machine utilization [24, 32]. Our work focuses
on non-contiguous allocation, which is used in many HPC
systems such as Cray XT, XE, and XK series [1]. Note that
our technique can also be used for contiguous allocation.

We target HPC applications that have unstructured com-
munication patterns, where each task can have an arbitrary
number of neighbors and different communication weight
to each neighbor. Examples for such applications include
biomolecular simulations and sparse matrix multiplication.
Our work is the first to propose a technique for topology
mapping of unstructured applications onto machines that
use non-contiguous node allocation.

To the best of our knowledge, previous work on topology
mapping only considered the mapping of application tasks
onto an already-selected set of nodes, which are determined
by the system management software without using detailed
information on the communication pattern. In this work,
we explore the benefits of joint allocation and task mapping
based on an application’s topology. Our results indicate
strong motivation to expand the job submission infrastruc-
tures to include detailed communication information.

As application and machine sizes continue to grow and
computation performance continues to improve faster than
communication performance, the impact of topology map-
ping on HPC application execution time and power con-

SYSTEM

Scheduler AllocatorTIME NODES Task Mapper

APPLICATION

User# #Cores Mem WCET

102 1024 64GB 72h

Job

ExecutionCORES

WORKLOAD MANAGEMENT

Figure 1: Workload management in conventional HPC machines.

sumption is expected to grow. Our contributions to topol-
ogy mapping in this paper can be summarized as follows:

• We propose PaCMap (Partitioning And Center MAP-
ping), a graph-based topology mapping algorithm to re-
duce the execution time of HPC applications with un-
structured communication patterns (Section 3). Our al-
gorithm can be used both for complete topology mapping
or as a task mapping algorithm for a given set of nodes.

• Using experimental data from a Cray XE6 system, we
develop a running time estimation model based on the
application’s communication pattern as well as the topol-
ogy mapping decision (Section 4). The model is then
used in simulation space to compare various topology
mapping algorithms.

• We analyze the potential benefits of joint allocation and
mapping (Sections 2 and 5). Simulation results show
that topology-aware allocation combined with mapping
can decrease hop-bytes (i.e., the weighted sum of the tra-
versed network distance for all messages, weighted by the
message size) by up to 30% compared to state-of-the-art.

2. TOPOLOGY MAPPING BACKGROUND
In today’s HPC systems, topology mapping, i.e., the place-

ment of application tasks onto machine nodes, includes de-
cisions both from the system side and from the application
side. The system is responsible for scheduling and alloca-
tion, whereas the application side performs task mapping.

As depicted in Figure 1, job submission in conventional
HPC systems only supports sending basic requests to the
system, such as number of processing cores, memory require-
ment, and worst case execution time (WCET), where a job
refers to a specific instance of an application. Then, as part
of the system software, the scheduler determines when to
run the job based on the machine availability and the job
queue. Once the job is scheduled, the allocator assigns a
set of machine nodes for the job. Finally, the application’s
task mapper places its tasks to the allocated nodes. In this
paper, we assume there is no space sharing, i.e., a machine
node cannot be shared by multiple jobs. This is common in
HPC due to ease of management and security concerns.

Due to the limitations of the job submission framework,
the system is unaware of the exact communication pattern
of the job for unstructured applications. For task mapping,
however, programmers can specify the communication pat-
tern through interfaces such as MPI [27]. Alternatively, the
pattern can be profiled during an application’s first run and
used in the future runs. In addition to the communication
pattern, the application side can also discover the physical
network topology through system calls [33]. Based on these

information, task mapping can make an efficient assignment
of the application tasks to the machine nodes to minimize
the communication overhead.

The rest of this section explains the problem in more detail
and presents various algorithms that are currently used for
topology mapping.

2.1 Job Allocation
There are two main considerations for non-contiguous al-

location. First, the selected nodes should be close to each
other to reduce the communication distances. Second, the
allocation should not lead to fragmented machine utiliza-
tion. The allocation algorithms that disregard the second
issue can lead to the segmentation of large empty blocks in
the machine, potentially increasing the communication over-
head of future jobs. Consider the example shown in Figure 2,
where two jobs are scheduled in a 6-node machine with a 2D
mesh network topology. In case (a), the first job is allocated
to the middle column. Thus, job 2 must be fragmented into
smaller parts, increasing the communication distance. How-
ever, case (b) assigns job 1 to the side of the machine, leaving
sufficient space for job 2.

12

12 2

2

(a)

21

1 2

2

2

(b)

Figure 2: Example for (a) fragmented and (b) non-
fragmented job allocation. The boxes represent machine
nodes and the numbers represent allocated jobs.

The common techniques for non-contiguous job allocation
can be classified into two categories: linear and clustered. In
this paper, we use one algorithm from each category.

2.1.1 Best-fit (linear)
The best-fit strategy is a combination of the ideas pro-

posed by Lo et al. [24] and Leung et al. [22]. The algorithm
first linearly orders the machine nodes along a curve. Then,
the free nodes are grouped into intervals along this curve.
The job is allocated to the smallest interval that has suffi-
cient nodes. If there is no such interval, the algorithm selects
the nodes that minimize the maximum distance along the
curve. This strategy is commonly used in real HPC ma-
chines due to its simplicity and its small time complexity
of O(M) in an M -node machine. In machines with a torus
or mesh network topology, linear allocation strategies order
the nodes using space-filling curves such as Hilbert curves
to improve locality [5].

2.1.2 Mc1x1 (clustered)
The mc1x1 algorithm is a variant of the MC algorithm

proposed by Mache et al. [26]. It is a (2 − 2/k)d approxi-
mation to the optimal solution for minimizing the average
pairwise L1 distance of tasks in a d-dimensional mesh when
allocating k processors [7]. The algorithm aims to find a
compact cluster of free nodes. For each free node n, mc1x1
calculates an allocation score by counting the number of free
nodes in a d-dimensional hypercube centered on node n.

The size of the hypercube is started from a single node and
increased until the hypercube contains sufficient free nodes
for the job to be allocated. Then, the score of the center
node is calculated as follows:

NSn,J =

J∑
i=1

distn,i (1)

where NSn,J is the score of node n for allocating J nodes,
and distn,i is the distance between nodes n and the free node
i in the hypercube. The node with the least score is selected
as the center node. Although mc1x1 finds clustered nodes,
it does not address the fragmented allocation problem and
it is not applicable in network topologies other than mesh
and torus.

The time complexity of this approach depends on the ma-
chine utilization and the machine state. In the worst case,
calculating the score of a free node requires checking the
availability of all the nodes in the machine, whereas the
best case checks only the nearest J nodes of J free nodes.
Hence, depending on the machine state, allocating nodes
with mc1x1 takes between O(M2) and Ω(J2), where M is
the number of nodes in the machine. Note that the node
scores can be computed in parallel.

2.2 Task Mapping
Task mapping considers the assignment of the individual

application tasks to the machine nodes, which are selected
by the job allocation stage (Section 2.1). Unlike job alloca-
tion, task mapping is able to use information provided by
the application such as the communication pattern. In this
paper, we focus on three different task mapping techniques
and use them as baselines for the evaluation of the proposed
PaCMap algorithm.

2.2.1 Reverse Cuthill-Mckee (RCM)
RCM [11] reduces the bandwidth of a symmetric matrix

via permutation, i.e., it reorders the matrix such that the
non-zero entries that are far from the diagonal are elim-
inated as demonstrated in Figure 3. When applied on a
task communication matrix, which shows the communica-
tion links between the tasks, this corresponds to reducing
the maximum distance between the tasks when the tasks
are linearly ordered.

In machines with contiguous allocation, RCM can be ap-
plied both on the network and the communication graphs
with O(JD logD) complexity, where D is the maximum de-
gree of the application graph. Then, in-order mapping of the
tasks to the nodes can effectively reduce the communication
distance for sparse communication patterns [8] [17].

In machines that allow non-contiguous job allocation, the
machine network cannot be directly used as it results in an
unconnected graph. Instead, the tasks are mapped in-order
along the curve of a linear allocation algorithm.

(a) Original matrix (b) RCM permutation

Figure 3: RCM applied on a sample sparse matrix

2.2.2 Recursive Graph Bisection (RGrB)
RGrB algorithm uses the task communication graph and

the network topology graph. It recursively splits both graphs
into equal halves using minimum weighted edge-cuts, and
maps the remaining task(s) to the remaining node at the end
of the recursion. This algorithm has been used for contigu-
ous allocation by software packages such as LibTopoMap [17]
and SCOTCH [29]. As there is no existing RGrB variant spe-
cific to non-contiguous allocation, we apply RGrB by build-
ing a virtual all-to-all graph for the machine network, where
the edges are weighted based on the hop distance between
the nodes. Due to the all-to-all graph, RGrB takes O(J3)
for non-contiguous allocation for mapping J tasks [17]. Our
implementation of RGrB is based on LibTopoMap, and uses
the METIS library [19] for bisectioning. Although this tech-
nique demonstrated efficient mappings, it is also shown that
it may result in poor p-way partitions [31].

2.2.3 Recursive Geometry Bisection (RGeoB)
Similar to the RGrB, RGeoB is based on recursive bisec-

tions. Instead of using the graphs, however, RGeoB splits
the application and the machine geometries into equal halves
such that the maximum dimension length is minimized [13].
The application geometry can be inherent to the application,
such as the coordinates of an object in a computational fluid
dynamics simulation, or it can be generated from the com-
munication graph. Similarly, the machine geometry can be
defined as x, y, z coordinates of a 3D mesh network topology.
When a generic sorting algorithm with O(J log J) is used
for the geometric bisectioning, the complexity of RGeoB be-
comes O(J log2 J) as shown by the master theorem [10].

The effectiveness of RGeoB strictly depends on how well
the communication is represented by the given application
geometry. For 3D stencil computations, this technique is
shown to perform better than RGrB on a Cray XE6 [13].

2.3 Interplay of Allocation and Mapping
As mentioned earlier in this section, the allocation is un-

aware of the application’s communication pattern in current
HPC systems. Hence, the allocation decision can decrease
the potential efficiency of the task mapping algorithm. Con-
sider the example in Figure 4. A communication-aware al-
location algorithm will allocate a 3x3 mesh (Figure 4b) for
an application with a 3x3 stencil communication pattern,
so that the task mapping can reduce the average message
hop distance to 1. However, if the allocation is unaware
of the communication pattern, it can also select the nodes
as in Figure 4c, where the minimum average message hop
distance that can be achieved is 2.

Similar effects can also be observed in larger scales. Con-
sider a 3D stencil application with dimensions 2x8x32. If

(a) Communication graph (b) Efficient allocation

(c) Inefficient allocation

Figure 4: Communication graph of a 3x3 stencil application,
and (b) communication-aware and (c) -unaware allocation
examples

this application is allocated to a 2x8x32 mesh, the mini-
mum average hop distance would be 1. However, when it
is allocated to a 8x8x8 cubical mesh instead, the RGeoB
task mapping algorithm, being the best task mapper for this
case, results in an average hop distance of 1.92, increasing
the communication overhead.

These example cases create sufficient motivation to de-
velop algorithms that jointly consider allocation and map-
ping. Section 5 presents further analysis on this issue.

3. PACMAP ALGORITHM
We aim to reduce the execution time of HPC applications

through communication-aware topology mapping. We pro-
pose PaCMap (partitioning and center mapping), a graph-
based algorithm that simultaneously carries out job alloca-
tion and task mapping to reduce communication overhead.

As shown in Figure 5, PaCMap first partitions the com-
munication graph into k task groups (TGs) such that each
group can fit into a single node in the cluster. This step con-
solidates the highly-communicating tasks to be executed on
the same machine node. After this step, the problem reduces
to mapping the TGs into the available machine nodes. In our
implementation, the partitioning is done by the multilevel
k-way partitioning algorithm from the METIS library [19].

Next, PaCMap selects a center TG from the partitioned
graph and maps it to a selected center node in the cluster.
Then, it expands the allocation by picking a node and map-
ping a task to it based on the network topology and on the
communication graph until all tasks are mapped.

PaCMap can also be used only for allocation by ignoring
the mapping decision, or only for task mapping by limiting
the nodes the algorithm can use. The rest of this section
explains in detail how the center node and the center TG
are selected and how the expansion is performed, along with
a complexity analysis.

3.1 Center Machine Node Selection
As discussed in Section 2, the allocation determines how

efficiently the cluster is utilized. The algorithm should select
a collected group of nodes and should not lead to fragmented
allocation of future jobs. Our solution is a heuristic that
addresses both issues.

For each available node n, we look at the other avail-
able nodes in the proximity of n and calculate a node score
NSn,J , where J is the number of nodes to be allocated.
To calculate the score, we first create a list of available
nodes around n within a communication distance of R using
breadth-first expansion. Then, we sort this list with respect
to the distance to n. Starting from the closest node, we in-

Add neighbors of center node and

TG to the frame lists

Map the heaviest TG to the framing

node with the least overhead

Update frame lists

Are all TGs

mapped?

Return mapping

Yes

No

Partition the communication graph

into k task groups (TGs)

Select center node and center TG,

map them to each other

Figure 5: Flowchart of the proposed PaCMap algorithm

crease NSn,J for the first J nodes, and penalize it for the
remaining extra nodes as follows:

NSn,J =

J∑
i=1

f(distn,i) −
∑
i=J+1

f(distn,i) (2)

where f(distn,i) is a function of distn,i, which is the commu-
nication distance between n and node i in the list. In order
to avoid fragmented allocation, R should be selected such
that the number of nodes within the network distance of R
is larger than J . Additionally, f(distn,i) should prioritize
the nodes that are closer to node n to improve locality.
R and f(distn,i) are selected based on the network topol-

ogy. We use the following heuristics for 3D torus topologies:
The maximum number of nodes within a network hop dis-
tance of r equals 4r3/3 + 2r2 + 8r/3 + 1 in a 3D torus.
Using a pre-calculated look-up table based on this formula,
we first find the minimum distance rmin that contains J
nodes. We then select R = rmin + 2 to check the ex-
cessive availability around the node n. This number can
be adjusted for different machines if the above formula be-
comes invalid due to asymmetrical torus dimensions. We use
f(distn,i) = 1/(4dist2n,i + 2) so that the maximum total im-
pact of the nodes equidistant to n on NSn,J is 1. We do not
observe a significant change in the allocation performance
by the selection of f(distn,i) as long as the nodes closer to
n have more impact than others. In other network topolo-
gies such as Dragonfly [20], the same methodology can be
followed to select R and f(distn,i).

3.2 Center Task Group Selection
PaCMap expands the allocation from the center node and

the center TG, while allocating nodes and mapping TGs at
each expansion step. As the center machine node selection
stage scores the nodes based on the availability around them
without prioritizing any direction, an efficient node selection

requires the expansion to be symmetric in all directions.
This can be done by selecting a proper center TG.

The center TG is selected as the one with the minimum
cumulative shortest-path distance to all other TGs. To find
the center, we run Dijkstra’s algorithm on all TGs.

3.3 Expansion
After allocating the center TG to the center node, we

create two lists for the expansion: (1) a list of machine nodes
that frame the current partial allocation, (2) a list of TGs
that frame the currently allocated TGs. The frames are
the neighboring nodes/TGs in the corresponding graphs, as
demonstrated in Figure 6. The edge weights in the machine
graph (the network links) are all 1, whereas the edge weights
in the TG graph are given in the figure.

A

B

C

D

F

E

2

3
3

1

3

(a) Communication graph

BA

C

1

2

3

4

(b) Network graph

Figure 6: Partially allocated application. The solid shapes
are current allocation/mapping, the dashed shapes are the
frames, and striped squares are busy nodes.

For each expansion step, we select the heaviest TG, i.e.,
the unmapped TG that has the largest communication vol-
ume with the currently allocated tasks. In Figure 6a, D
would be selected for the next step with a total weight of
2 + 3 = 5. We map this TG to the node that leads to the
least total communication overhead, calculated as follows:

overheadn =
∑
i

distn,i ·Wn,i (3)

where Wn,i is the communication weight between the TGs
mapped to nodes n and i. In Figure 6b, node #2 would be
selected for task D with an overhead of 1 · 2 + 1 · 3 = 5. If
there is a tie between the nodes, we select the closest node
to the center to maintain the symmetry of the expansion.

After mapping the heaviest TG to the selected node, we
update the frames by adding the neighbors of the allocated
node and the mapped TG. If there is no free node among
the direct neighbors of the allocated node, we increase the
search distance until a free node is found.

3.4 Complexity Analysis
The overhead of the center node selection strictly depends

on the underlying network topology. In our implementation,
we make use of the coordinate information of the 3D torus
topology. For each free node, we check the availability of
O(R3) = O(J) nodes, resulting in a total of O(MJ), where
M is the number of nodes in the machine. Computing the
node scores is an inherently parallel operation.

Given that most HPC applications are re-run with differ-
ent parameters or inputs, partitioning of the communication
graph into TGs and selection of the center TG need to be
done only once per application. The results can be re-used
for the future submissions of the same application. Alterna-
tively, this information can be passed to the system along

with the job submission. For the sake of completeness, k-way
partitioning by METIS is O(C log(k)), where C is the num-
ber of edges in the communication graph [19]. This is equal
to O(C log J) as the number of cores per node is bounded.
Selecting the center TG by running Dijkstra’s algorithm
with Fibonacci heap on all TGs is O(JC + J2 log(J)) [10].

We keep the TG frame in a Fibonacci heap, and the node
frame in a linked list. Hence, finding and deleting the heav-
iest TG for J TGs takes O(J log J). Selecting the node
that leads to the least communication requires calculating
the communication overhead for all neighbors of the heav-
iest TG and for all nodes in the frame. First, assume that
there is a bounded number of nodes in the frame. During
the entire mapping process, J nodes will be mapped and the
communication weight of C links will be calculated, leading
to O(J +C) given that the node distances are known. Now,
the frame size can be included in the complexity. At any
time, there will be a maximum of O(J) nodes in the frame
as the number of ports of a router in a 3D torus network
is bounded. Hence, selecting nodes during mapping takes a
total of O(J2 + JC) = O(JC) for connected graphs. Note
that the best node can be selected in parallel.

Updating the task frame is done by breadth-first search,
where each step includes updating the weights of the un-
mapped neighboring TGs in the Fibonacci heap, leading to
a total of O(J + C). The complexity of updating the node
frame depends on the machine utilization. If the utilization
is close to 100%, finding the closest free node can take worst-
case O(M) to search all the nodes in the machine, leading
to O(MJ) during the entire mapping process. When the
machine utilization is lower, the direct neighbors of the allo-
cated node are likely to be free as the center node is selected
with sufficient availability in its proximity. In this case, find-
ing all closest nodes takes Ω(J) in total.

As a result, the complete allocation and mapping process
has a time complexity of O(MJ+JC) for a connected com-
munication graph and for 3D torus machines, assuming that
the partitioning and the center task selection is done before
the job submission. This complexity is feasible in terms of
real-life implementation and scalability, and it is comparable
to our best-performing baselines (Section 5).

4. EXPERIMENTAL METHODOLOGY
As real HPC machines do not have the infrastructure to

support combined allocation and task mapping, we use sim-
ulations for our evaluation. Hence, we also need to create
realistic HPC workload traces and communication patterns.
To compare allocation and task mapping algorithms, we es-
timate the execution time of the jobs based on their locality.
This section describes our experimental framework.

4.1 Target Machine
Our target machine uses static mapping, i.e., it does not

support task migration at runtime. In our evaluation, we
use a 3D torus network topology. Torus topologies are com-
monly used in HPC due to their low cost, ease of design
and installation, and high bisection bandwidth (i.e., the to-
tal bandwidth of links placed between two equal-sized node
sets after partitioning). Example machines that use 3D torus
include IBM BlueGene/L [3], Cray XE6 [1], and Cray XK7,
which is ranked number 2 on the November 2014 Top500
list [2]. During our simulations, we use static shortest path
dimension-ordered (x-y-z) routing in the network.

4.2 Workloads
In order to compare the task mapping algorithms, we

need a comprehensive set of unstructured sparse commu-
nication graphs as well as application geometries. For this
purpose, we use the University of Florida Sparse Matrix Col-
lection [12] as a proxy for communication and geometry in-
formation. This collection is commonly used for the evalua-
tion of graph algorithms such as bisectioning (e.g. [18]), and
consists of data from real applications in various fields such
as circuit simulations, financial modeling, and chemical pro-
cess simulations. We use the applications in the collection
with 2D or 3D geometry information with up to 115K tasks.
We assume uniform communication between the tasks as it
is the expected case for well-balanced HPC applications.

The comparison of non-contiguous allocation algorithms
requires using an already populated machine. Additionally,
our analysis should account for the impact of the allocation
decision on the performance of future jobs. To address both
issues, we use the logs provided in the Parallel Workloads
Archive (PWA) [15] as inputs to our simulation, and eval-
uate entire workload traces. PWA logs are collected from
real large scale parallel systems, and provide information
on job arrival times, execution times, and job sizes, but no
information on the communication. Hence, we assign com-
munication patterns to the jobs by matching them with the
proxy communication matrices in the sparse matrix collec-
tion. As the job sizes in PWA do not necessarily match
with the matrix sizes in the collection, we apply binning to
the PWA, in which the job sizes are changed to the closest
available size in our application set.

Among the logs in the archive, LLNL-Atlas and CEA-
Curie traces lead to the most balanced application counts af-
ter binning. LLNL-Atlas and CEA-Curie are collected from
machines with 9216 CPUs (assumed to be quad-core CPUs)
and 93312 cores, respectively. These are the largest machine
sizes in the archive after ANL-Intrepid, which leads to an un-
balanced binning and biases the results by prioritizing only
a few applications in our input set. Logs from the newer and
larger machines are not available in the archive due to the
explosive growth of machine sizes and the lag in collecting
data for research. We use the first two weeks of these two
traces in our evaluation as machines like Cray Cielo [25] are
usually taken down for maintenance every two weeks. Our
LLNL-Atlas and CEA-Curie traces consist of 1001 and 3291
jobs, respectively.

4.3 Performance Model
During our simulations, we modify the execution time of

a job based on its communication pattern and mapping. To
extract the relationship between communication time and
the network-related metrics, we use real-life experiments.

We conduct our real-life experiments on the Cray XE6
Cielo supercomputer located at Los Alamos National Labo-
ratories [25]. Cielo consists of 8944 compute nodes and ad-
ditional service nodes. Each compute node has a dual AMD
Opteron 6136 eight-core “Magny-Cours” socket, providing a
total of 16 cores. The nodes are connected using a Cray
Gemini 3D torus network topology with the dimensions of
16x12x24 and two nodes per Gemini.

We use the miniGhost application [6], which is a part of
the miniapps developed by the DOE community to repre-
sent the computational core of various HPC applications.
MiniGhost focuses on the nearest neighbor inter-process com-

10
8

10
10

10
12

10
14

10
16

0

0.5

1

1.5

2

2.5

n
o

rm
a

liz
e

d

c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

hop−bytes per second

experimental data

estimation

fit

Figure 7: Relationship between communication and hop-
bytes. The communication time represents the time spent
in communication when the computation time equals 1.

munication strategy, with computation mainly serving to
provide enough data and separation of the boundary ex-
changes from some computation. Its core is based on CTH,
an application for modeling complex multi-dimensional prob-
lems that are characterized by large deformations and/or
strong shocks [16].

We run miniGhost with sizes of powers of 2, from 64 to
65536. For each size, we run miniGhost under 5 allocation
schemes and using 11 task mapping techniques, providing
55 executions for the same application. The task mapping
techniques include all algorithms introduced in Section 2.2,
all algorithms in LibTopoMap [17], and the system defaults.
During the experiments, we collect time spent for communi-
cation and computation, number of bytes sent between ma-
chine nodes, maximum congestion, and message hop count.

We examine several metrics that have been associated
with the communication overhead in the literature. These
are maximum dilation (i.e., the maximum network hop dis-
tance a message travels), average dilation, average hops per
byte, maximum network congestion, and hop-bytes as de-
fined in Equation 4.

hop-bytes =

messages∑
i

hop-distancei · bytesi (4)

Hop-bytes represents the total communication volume in
the network. Our experimental results show high correlation
between hop-bytes and communication time, as shown in
Figure 7. Based on the experimental data, we formulate the
execution time of a job as follows:

Texec = (1 + 0.0019 · hop-bytes0.16+τ) · Tbase (5)

where Tbase is the execution time without considering the
overhead introduced by topology mapping decision, and τ is
a uniformly distributed random number between −0.013 and
0.013 that represents the variation in the experimental re-
sults. As the application tasks run on individual processing
cores without consolidation, we assume that the computa-
tion time is independent of the mapping decision.

4.4 Simulation Environment
We use the Structural Simulation Toolkit (SST), which is

an architectural simulation framework designed by Sandia
National Laboratories to assist in the design, evaluation and

0

2

4

6

8

10
N

o
rm

a
liz

e
d

 h
o

p
−

b
y
te

s

st
ra

nk
e9

4

G
D
97

 b

G
D
99

 b

G
D
96

 c

sa
nd

i a
ut

ho
rs

G
D
98

 c

gr
id
1

du
al

gr
id
1

sp
he

re
3

m
es

h2
e1

U
SAir9

7

ne
tz
45

04
 d

ua
l L

st
uf

e

uk
er

be
1

du
al

ne
tz
45

04
di
ag

m
in
ne

so
ta

gr
id
2

du
al

gr
id
2

ai
rfo

il1 3e
lt

s3
rm

t3
m

3

s1
rm

q4
m

1

uk
er

be
1

ba
rth

4

ai
rfo

il1
 d

ua
l

3e
lt
du

al

w
hi
ta

ke
r3

cr
ac

k
L−

9

w
hi
ta

ke
r3

 d
ua

l

cr
ac

k
du

al

bi
pl
an

e−
9

st
uf

e−
10

bi
g

du
al

sh
oc

k−
9

br
ac

k2

lu
xe

m
bo

ur
g

RCM RGeoB RGrB

Figure 8: Hop-bytes comparison of task mappers for all applications in our input set. The values are normalized to the
hop-bytes resulting from PaCMap.

optimization of HPC architectures and applications [30]. We
use macro-SST simulations rather than micro-SST for speed.

For scheduling, we use the “easy scheduler” provided in
SST, which is an aggressive backfilling technique that gives
a guaranteed start time only to the first job in the queue [23].
We use the existing algorithms in SST for job allocation ex-
cept for PaCMap. For task mapping, we implement PaCMap
as well as the baseline algorithms. We calibrate the running
time estimation in the simulator as described in Section 4.3.

5. EVALUATION
There are many aspects affecting the efficiency of the

topology mapping algorithms, making it infeasible to per-
form a reliable comparison with a single series of experi-
ments. Hence, we first start our evaluation with analyzing
the task mappers independently from the allocation algo-
rithms in Section 5.1. For this purpose, we run each ap-
plication in an empty machine using the same allocation.
Based on our results, we summarize how the task mappers
perform for various sparse communication patterns. Then,
in Section 5.2, we use long workload traces with multiple
jobs to observe the impact of allocation on task mapping.

5.1 Single Job Analysis
In order to find the strengths and weaknesses of the task

mappers, we run individual applications using the same al-
location. We use best-fit allocator with Hilbert curves to
provide a fair comparison for RCM, which maps the tasks
in-order to the allocated nodes. For each application, we
use the smallest empty cubical machine with single core per
node, where the machine dimensions are selected as powers
of 2 so that efficient Hilbert curves can be generated. We
use PaCMap only as a task mapper in this analysis.

Figure 8 shows the resulting hop-bytes for all applications
in our input set. The results are normalized with respect
to the hop-bytes of PaCMap. The applications in the x-
axis are ordered from smallest with 10 tasks (stranke94) to
the largest with 115K tasks (luxembourg). Note that all
cases use the same allocator so that the benefits of combined
allocation and mapping is not exploited. We now present our
detailed analysis on each task mapper.

RCM: In the figure, we observe that the RCM perfor-
mance decreases as the application size increases. The first
reason for this scalability problem is that RCM ignores the
network links that are not along the curve. Second, the
performance of RCM depends on the correlation between
the average and the maximum distance in the communica-

tion matrix, which typically decreases with the application
size. Consider the example given in Figure 9, which is the
communication of the first 200 tasks of diag. In 9a, the
maximum communication distance is 161 and the average
distance is 2.37. After applying RCM, the maximum dis-
tance reduces to 33; however, the average becomes 8.84, in-
creasing the communication overhead. Analyzing the corre-
lation between the average and the maximum distance dur-
ing topology mapping is not feasible due to its complexity.
In addition to these problems, RCM assumes uniform com-
munication between the task groups, worsening its mapping
decision when a node contains multiple cores.

(a) Original matrix (b) RCM permutation

Figure 9: First 200 tasks of the application diag. RCM in-
creases the average communication distance while decreasing
the matrix bandwidth.

RGeoB: The performance of the RGeoB depends on (1)
the similarity between the coordinates and the allocated
node structure and (2) how well the geometry represents ac-
tual communication. For case 1, consider the example given
in Figure 10. Because only coordinates are used during bi-
sectioning, RGeoB places the tasks B and C far from each
other and increases the message hop distance. This prob-
lem also occurs when the tasks have 2D coordinates but
are mapped into a 3D topology. It has a significant impact
on the communication overhead in larger scale, where thou-
sands of tasks are placed far apart (e.g. crack in Figure 8).

A
B

C
D

(a) Application Coordinates

A

B

C

D

(b) Network Graph

Figure 10: Example for mismatching coordinates and allo-
cation. The dashed lines represent the bisection cuts.

Figure 11: 3D coordinates of sphere3 [12]. Nodes are the
tasks and edges are the communication links.

To avoid this problem in torus/mesh networks for struc-
tured communication, researchers have introduced methods
such as folding [8]. However, no solution exists on this is-
sue for arbitrary communication patterns. For case 2, the
most prominent example is the application sphere3 with the
coordinates given in Figure 11. In the given geometry, the
communicating tasks are close to each other, meaning that
the communication is represented well in 3D coordinates.
As a result, RGeoB leads to the lowest hop-bytes for this
application in Figure 8.

RGrB: Note that RGrB uses an all-to-all network graph
as the allocation can be non-contiguous and arbitrary. One
weakness of RGrB is that the heuristics used for graph bisec-
tioning, which is also an NP-hard problem, perform poorly
with all-to-all graphs. Additionally, RGrB can lead to less
efficient solutions depending on the nature of the commu-
nication and machine graphs as well as how the recursive
branches of these two graphs are mapped to each other [28].

PaCMap: The performance of PaCMap is reduced as
the allocation is not adapted to the communication graph
during this analysis. We compare our technique with others
in the subsequent section.

We have performed the same analysis using average mes-
sage hop distance and per-job congestion metrics to verify
that our algorithm do not worsen another network metric.
As we obtained very similar results to the hop-bytes metric,
we do not present them due to space limitations.

RCM is not a good topology mapping solution for non-
contiguous allocation due to its poor scalability. Similarly,
RGeoB is preferred only for structured communication pat-
terns. Hence, we will focus on RGrB and PaCMap in the
rest of our analysis. Next, we discuss the impact of allo-
cation algorithm on the topology mapping for unstructured
communication patterns.

5.2 Workload Trace Analysis
Analyzing how the allocation decision affects the task map-

ping performance in a machine with non-contiguous alloca-
tion requires an already-populated machine. For this pur-
pose, we use entire workload traces and compare the execu-
tion time of the jobs. The target HPC machine used in this
analysis has 16 processing cores per node as in the real-life
experiments we use for calibrations (See Section 4.3). For
each input trace, the machine size is selected as the actual
machine size the logs are collected from.

Figure 12 shows the cumulative execution time of all jobs
that use multiple nodes (i.e., jobs with 16 or more tasks)
in the traces with different allocator and task mapper pairs.

RGrB PaCMap
0.9

0.95

1

1.05

1.1
x 10

5

(a)

c
u

m
u

la
ti
v
e

 r
u

n
n

in
g

 t

im
e

 i
n

 h
o

u
rs

best−fit mc1x1 PaCMap

RGrB PaCMap
(b)

Figure 12: Cumulative running time of the jobs that use
multiple nodes in (a) LLNL-Atlas and (b) CEA-Curie traces.
The horizontal axis shows different task mappers; whereas
bar colors are different allocators.

Each bar group uses a different task mapper, and each bar
in a group uses a different allocator. Note that PaCMap can
be used as an allocator and/or as a task mapper.

Although intuitively clustered allocations should be more
useful for RGrB than curve-following allocations, we observe
that for LLNL-Atlas, RGrB leads to 7% less cumulative ex-
ecution time than mc1x1 with the best-fit allocator. This
is because the Hilbert curves provide very high locality in
this particular case. However, for CEA-Curie, the RGrB &
mc1x1 pair leads to 3% shorter execution than with best-fit.
The topology mapping performance not only depends on the
allocator and the task mapper, but also on in which order
the jobs arrive.

Complete topology mapping (both allocation and task
mapping) with PaCMap decreases the cumulative execution
time by 2% and 3% for LLNL-Atlas and CEA-Curie, respec-
tively, compared to the best case of RGrB for each trace.
Note that this reduction corresponds to 3000 hours of cu-
mulative active node computation time in two weeks, which
implies power and energy savings besides the execution time.
The improvement is expected to grow with increasing appli-
cation sizes based on our following analysis.

In order to verify that this difference in the execution time
is not due to specific workloads, we compare the average per-
application hop-bytes in Figure 13. As we generate the com-
munication patterns by binning the job sizes in the traces to
the closest available size in the sparse matrix collection, the
traces do not contain all the applications. Thus, some appli-
cations are not present in the figures. The values Figure 13
are normalized with respect to the results of PaCMap.

In both traces, RGrB performs better than PaCMap for
applications with less than 1K tasks. As the application size
increases, however, PaCMap leads to smaller hop-bytes up
to 30% compared to the best case of RGrB, excluding sandi
authors and mesh2e1 in the CEA-Curie trace. These two
applications have very large hop-bytes because they have a
few instances in the trace, which are allocated poorly in this
particular case.

6. RELATED WORK
Topology mapping based on an application’s communica-

tion pattern and on the network topology is a well-studied
NP-hard problem. Researchers have been investigating var-
ious heuristic techniques to minimize the communication
overhead of HPC applications through topology mapping.
Bhatelé et al. proposed techniques such as step embedding

0.5

1

1.5

2

 N
o

rm
a

liz
e

d
 a

v
e

ra
g

e

h

o
p

−
b

y
te

s
 p

e
r

a
p

p
lic

a
ti
o

n

G
D
99

 b

G
D
98

 c

sp
he

re
3

U
SAir9

7

ne
tz
45

04
 d

ua
l L

st
uf

e

uk
er

be
1

du
al

ne
tz
45

04
di
ag

m
in
ne

so
ta

gr
id
2

du
al

gr
id
2

ai
rfo

il1 3e
lt

s3
rm

t3
m

3

s1
rm

q4
m

1

ba
rth

4

ai
rfo

il1
 d

ua
l

3e
lt
du

al

cr
ac

k
L−

9

cr
ac

k
du

al

st
uf

e−
10

bi
g

du
al

sh
oc

k−
9

best−fit−RGrB mc1x1−RGrB

(a)

1

2

3

4

5

 N

o
rm

a
liz

e
d

 a
v
e

ra
g

e

h

o
p

−
b

y
te

s
 p

e
r

a
p

p
lic

a
ti
o

n

G
D
97

 b

G
D
99

 b

sa
nd

i a
ut

ho
rs

G
D
98

 c

gr
id
1

du
al

sp
he

re
3

m
es

h2
e1

U
SAir9

7

ne
tz
45

04
 d

ua
l L

st
uf

e

uk
er

be
1

du
al

ne
tz
45

04
di
ag

ai
rfo

il1 3e
lt

ba
rth

4

ai
rfo

il1
 d

ua
l

3e
lt
du

al

cr
ac

k
L−

9

st
uf

e−
10

bi
g

du
al

sh
oc

k−
9

br
ac

k2

best−fit−RGrB mc1x1−RGrB

(b)

Figure 13: Average per-application hop-bytes in (a) LLNL-Atlas and (b) CEA-Curie traces with different allocator & task
mapper pairs. The results are normalized with respect to PaCMap.

and folding to map 2D stencil applications into 2D and 3D
mesh machines [8], as well as traversal and affine mapping
algorithms to map irregular graphs into meshes [9]. Yu et al.
presented graph embedding techniques for structured com-
munication onto IBM Blue Gene/L systems [34]. Hoefler
and Snir proposed mapping irregular topologies using graph
similarity and graph partitioning [17]. These techniques fo-
cus on contiguous allocation, and are integrated in software
packages such as LibTopoMap [17] and SCOTCH [29].

For machines with non-contiguous allocation, Krumpke et
al. proposed Gen-Alg, which is a (2 − 2/k)-approximation
allocation algorithm, to minimize the pairwise average L1
distance of the mapped tasks [21], and Lo et al. introduced
various linear allocation schemes [24]. Leung et al. im-
proved their solution by using Hilbert curves on the CPlant
supercomputer [22]. Albing et al. proposed using differ-
ent curves to remove the restrictions on the network topol-
ogy and machine dimensions imposed by Hilbert curves [4].
These solutions limit the allocation performance by ignor-
ing network links outside the given curve. Other researchers
have introduced clustered allocation schemes to overcome
such limitations. Bender et al. proposed the MM algorithm,
a (2− 1/2d) approximation for d-dimensional grids, and the
MC1x1 algorithm [7]. Their techniques are applicable only
on mesh and torus topologies.

Previous work on task mapping for non-contiguous alloca-
tion has focused on stencil communication patterns. Deveci
et al. considered multi-level partitioning of both the machine
and application geometries [13]. It is also possible to use
certain contiguous mapping algorithms for non-contiguous
machines with small modifications (e.g., RCM, RGrB).

Our paper differs from prior work by focusing on the
topology mapping of irregular communication patterns into
non-contiguous allocation of arbitrary network topologies,

including novel topologies such as Dragonfly [20]. Addition-
ally, we analyze the potential benefits of simultaneous job
allocation and task mapping.

7. CONCLUSION
Topology mapping of HPC applications have a significant

impact on the execution time, especially at the macro-scale,
where the applications use more than 1K machine nodes. In
this paper, we have presented a novel algorithm, PaCMap,
that simultaneously applies job allocation and task mapping
to minimize the execution time of applications with unstruc-
tured communication patterns. PaCMap is applicable to any
network topology, and it can be also used as a mere allocator
or task mapper. Furthermore, we have developed an execu-
tion time estimation model based on real life experiments
on a Cray XE6, which is used to calibrate the simulations of
long HPC workload traces. Our results show that PaCMap
reduces hop-bytes up to 30% compared to state-of-the-art
approaches in HPC machines with non-contiguous alloca-
tion. This implies improvement in the machine performance
as well as reduction in power and energy consumption.

Acknowledgments
This work has been partially funded by Sandia National Lab-
oratories. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL8500.

8. REFERENCES
[1] Cray Inc. http://www.cray.com/.

[2] Top 500 supercomputer sites.
http://www.top500.org/.

[3] N. Adiga et al. Blue gene/l torus interconnection
network. IBM Journal of Research and Development,
49(2.3):265–276, March 2005.

[4] C. Albing et al. Scalable node allocation for improved
performance in regular and anisotropic 3d torus
supercomputers. In Proceedings of the 18th European
MPI Users’ Group Conference on Recent Advances in
the Message Passing Interface, EuroMPI’11, pages
61–70, 2011.

[5] D. Auble and B. Christiansen. SLURM workload
manager overview. Presented at the 2014 ACM/IEEE
International Conference on High Performance
Computing, Networking, Storage and Analysis
(SC’14).

[6] R. F. Barrett, C. T. Vaughan, and M. A. Heroux.
Minighost: a miniapp for exploring boundary
exchange strategies using stencil computations in
scientific parallel computing. Technical report, Sandia
National Laboratories, Albuquerque, NM, 2012.

[7] M. A. Bender et al. Communication-aware processor
allocation for supercomputers: Finding point sets of
small average distance. Algorithmica, 50(2):279–298,
Jan. 2008.

[8] A. Bhatele et al. Automated mapping of regular
communication graphs on mesh interconnects. In
International Conference on High Performance
Computing (HiPC), pages 1–10, Dec 2010.

[9] A. Bhatelé and L. Kalé. Heuristic-based techniques for
mapping irregular communication graphs to mesh
topologies. In IEEE 13th International Conference on
High Performance Computing and Communications
(HPCC), 2011, pages 765–771, Sept 2011.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press and
McGraw-Hill, 2nd edition, 2001.

[11] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th National Conference, ACM ’69, pages 157–172.

[12] T. A. Davis and Y. Hu. The University of Florida
sparse matrix collection. ACM Trans. Math. Softw.,
38(1):1:1–1:25, Dec. 2011.

[13] M. Deveci et al. Exploiting geometric partitioning in
task mapping for parallel computers. In Proceedings of
the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 27–36, 2014.

[14] J. Dongarra et al. The international exascale software
project roadmap. Int. J. High Perform. Comput.
Appl., 25(1):3–60, Feb. 2011.

[15] D. G. Feitelson, D. Tsafrir, and D. Krakov.
Experience with the parallel workloads archive, 2012.

[16] E. S. Hertel et al. CTH: A software family for
multi-dimensional shock physics analysis. In
Proceedings of the 19th International Symposium on
Shock Waves, pages 377–382, 1993.

[17] T. Hoefler and M. Snir. Generic topology mapping
strategies for large-scale parallel architectures. In
Proceedings of the International Conference on
Supercomputing, ICS ’11, pages 75–84, 2011.

[18] M. Holtgrewe, P. Sanders, and C. Schulz. Engineering
a scalable high quality graph partitioner. IPDPS’10,
pages 1–12, April 2010.

[19] G. Karypis and V. Kumar. Multilevel k-way
partitioning scheme for irregular graphs. Journal of
Parallel and Distributed Computing, 48(1):96–129,
Jan. 1998.

[20] J. Kim et al. Technology-driven, highly-scalable
dragonfly topology. In 35th International Symposium
on Computer Architecture, 2008. ISCA ’08., pages
77–88, June 2008.

[21] S. Krumke et al. Compact location problems.
Theoretical Computer Science, 181:238–247, 1996.

[22] V. Leung et al. Processor allocation on cplant:
achieving general processor locality using
one-dimensional allocation strategies. In IEEE
International Conference on Cluster Computing
(CLUSTER), pages 296–304, 2002.

[23] D. A. Lifka. The anl/ibm sp scheduling system. In
Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, IPPS ’95, pages
295–303, 1995.

[24] V. Lo, K. J. Windisch, W. Liu, and B. Nitzberg.
Noncontiguous processor allocation algorithms for
mesh-connected multicomputers. IEEE Trans. Parallel
Distrib. Syst., 8(7):712–726, jul 1997.

[25] Los Alamos National Laboratory. Cielo
supercomputer.
http://www.lanl.gov/projects/cielo/index.php.

[26] J. Mache, V. Lo, and K. Windisch. Minimizing
message-passing contention in fragmentation-free
processor allocation. In Proceedings of the 10th
International Conference on Parallel and Distributed
Computing Systems, pages 120–124, 1997.

[27] MPI Forum. MPI: A message-passing interface
standart. Version 3.0, Sept. 2012.
http://www.mpi-forum.org/.

[28] F. Pellegrini and J. Roman. Experimental analysis of
the dual recursive bipartitioning algorithm for static
mapping. Technical report, TR 1038-96, LaBRI, URA
CNRS 1304, Univ. Bordeaux I, 1996.

[29] F. Pellegrini and J. Roman. Scotch: A software
package for static mapping by dual recursive
bipartitioning of process and architecture graphs. In
Proceedings of the International Conference and
Exhibition on High-Performance Computing and
Networking, HPCN Europe, pages 493–498, 1996.

[30] A. Rodrigues et al. Improvements to the structural
simulation toolkit. In Proceedings of the 5th
International Conference on Simulation Tools and
Techniques, SIMUTOOLS ’12, pages 190–195, 2012.

[31] H. D. Simon and S.-H. Teng. How good is recursive
bisection? SIAM J. Sci. Comput., 18(5):1436–1445,
sep 1997.

[32] V. Subramani, R. Kettimuthu, S. Srinivasan,
J. Johnston, and P. Sadayappan. Selective buddy
allocation for scheduling parallel jobs on clusters. In
CLUSTER’02, pages 107–116, 2002.

[33] H. Subramoni et al. Design of a scalable infiniband
topology service to enable network topology aware
placement of processes. In SC’12, pages 70:1–70:12,
2012.

[34] H. Yu, I.-H. Chung, and J. Moreira. Topology
mapping for blue gene/l supercomputer. In SC’06,
pages 52–52, Nov 2006.

