
IEEE EMBEDDED SYSTEMS LETTERS 1

On the Impacts of Greedy Thermal Management in
Mobile Devices

Onur Sahin, Student Member, IEEE, Ayse K. Coskun, Member, IEEE,

Abstract—As mobile system-on-chips incorporate multicore
processors with high power densities, high chip temperatures
are becoming a rising concern in mobile processors. Modern
smartphones are limited in their cooling capabilities and employ
CPU throttling mechanisms to avoid thermal emergencies by
sacrificing performance. Traditional throttling techniques aim at
achieving maximum utilization of the available thermal headroom
so as to minimize the performance penalty at a given time.
This letter demonstrates that such greedy techniques lead to
fast elevation of temperature on other system components and
cause substantially sub-optimal performance over increased du-
rations of phone activity. Through experiments on a commercial
smartphone, we characterize the impact of application duration
on throttling-induced performance loss and propose quality-of-
service (QoS) tuning as an effective way of providing the mobile
system user with consistent performance levels over extended
application durations. The proposed QoS-aware frequency cap-
ping technique achieves up to 56% improvement in performance
sustainability.

Index Terms—Smartphones, thermal throttling, performance
sustainability

I. INTRODUCTION

DRIVEN by the increasing user demand and competitive
mobile phone market, modern smartphones push the

boundaries of power and performance envelope by incorpo-
rating high-performance multicore processors and multiple
application-specific integrated circuits into a single chip. Due
to increased power densities, however, maintaining safe chip
temperatures is becoming increasingly challenging. Elevated
chip temperatures lead to lower device reliability and increase
the overall power consumption due to the exponential depen-
dence of leakage power on temperature. Therefore, dynamic
thermal management (DTM) techniques form an essential
piece of the runtime management stack in mobile systems.

Smartphones present unique challenges in thermal man-
agement since multiple heat generating components such as
battery, display, and CPU are incorporated into a small form
factor package with limited cooling capabilities. State-of-
the-art smartphones employ CPU throttling techniques which
utilize dynamic voltage and frequency scaling (DVFS) to slow
down the processor and/or turn off individual CPU cores
in case of thermal emergencies. Existing DTM solutions,
however, are greedy as they aim to maximize performance
within processor thermal limits without considering the other
components that share the same thermal budget. This letter
demonstrates that such DTM on CPU results in faster elevation

Manuscript received February 06, 2015; accepted March 25, 2015. Date of
publication April 07, 2015. Recommended for publication by W. Zhao.

The authors are with Boston University, Boston, MA 02215 USA (email:
sahin@bu.edu; acoskun@bu.edu)

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LES.2015.2420664

0 2 4 6 8 10 12 14 16

Iteration Number

0

20

40

60

80

100

Pe
rc

en
ta

ge
-in

-S
ta

te
 (

Pi
S)

2.1GHz

1.9GHz

1.7GHz

1.5GHz

1.4GHz

1.2GHz

Fig. 1: Frequency residencies over time on MDP8974 smartphone during
continuous use.

of temperature on other components (i.e., the battery) and
quick exhaustion of available thermal budget, which, in turn,
causes major performance loss over longer durations of phone
use. This performance loss contrasts with the mobile system
user’s expectations, as the users often demand consistent
performance standard for applications that run for minutes or
longer (i.e., consistent frame rate in graphics/video streaming
[7] or webpage rendering time in browsing [12]). Thus, we
should rethink the thermal management techniques in mobile
devices for providing performance sustainability rather than
favoring short term performance without considering the ther-
mal impacts of other components in the smartphone.

Consider the example given in Figure 1, which shows the
frequency residencies when the FFT application from Sci-
mark suite [8] is repeatedly run on a Qualcomm Snapdragon
MDP8974 smartphone [5]. The default ondemand frequency
governor [6] seeks to scale the CPU frequency to the highest
level due to high CPU load. Initially, the baseline DTM policy
allows the application to utilize the highest three frequencies to
boost performance while meeting the thermal constraints. With
increasing number of iterations, however, there is a clear shift
towards using lower frequencies, which significantly reduces
performance over time. For instance, in the last iteration,
more than 80% of the running time is spent at 1.4GHz and
1.2GHz, while the application was well able to run without
scaling down to those two frequencies initially. This example
illustrates that greedy exhaustion of available thermal budget
results in significantly reduced performance over extended
durations of mobile phone use, degrading performance sustain-
ability. We demonstrate that performance sustainability can be
significantly improved by making the thermal policies adaptive
to application QoS requirements.

The major contributions of this paper are as follows:

• To the best of our knowledge, our work is first to analyze
the impact of battery temperature and duration of phone
activity on performance on a working smartphone.

• We evaluate the impact of application duration and bat-
tery temperature on performance sustainability in the



IEEE EMBEDDED SYSTEMS LETTERS 2

30 35 40 45 50 55
Battery Temperature (C)

38

40

42

44

46

48

50

52

54

56

R
u
n
n
in

g
 T

im
e
 (

s) 1.4GHz

2.1GHz

2.1GHz

1.9GHz

1.7GHz

1.5GHz

1.4GHz

(a) Performance vs. Battery Temperature with PID

30 35 40 45 50 55
Battery Temperature (C)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
v
e
ra

g
e
 P

o
w

e
r 

(W
a
tt

s)

2.1GHz

1.4GHz

2.1GHz

1.9GHz

1.7GHz

1.5GHz

1.4GHz

(b) Power vs. Battery Temperature with PID

30 35 40 45 50 55
Battery Temperature (C)

40

50

60

70

80

90

100

110

R
u
n
n
in

g
 T

im
e
 (

s)

2.1GHz

1.5GHz

2.1GHz

1.9GHz

1.7GHz

1.5GHz

(c) Performance vs. Battery Temperature with Stop-Go

Fig. 2: Impact of Battery Temperature on CPU Power/Performance with Different CPU Frequency Limits

context of existing DTM techniques (Section III).
• We propose a QoS-aware Frequency Capping policy to

tune application QoS level and show that QoS-aware
throttling can improve performance sustainability by as
much as 56% (Section IV).

II. EXPERIMENTAL METHODOLOGY

A. Target Platform & Applications

We perform experiments and test our policies on a state-
of-the-art Qualcomm Snapdragon MSM8974 smartphone plat-
form [5]. The chipset contains a Quad Core Krait 400 CPU (a
common CPU in mainstream smartphones such as Nexus 5 and
Samsung S4) along with an Adreno 330 GPU, 2GB LPDDR3
RAM and is powered by a 1,600mAh Li-ion battery. The
phone runs Android Jelly Bean version 4.1.2 and Linux kernel
3.4.0. The Krait 400 CPU supports 12 operating frequencies
ranging from 300MHz to 2.1GHz. The phone allows per-
core temperature measurements via on-chip thermal sensors
where one sensor is assigned to each core. Temperature sensors
for the CPU cores and the battery can be read through the
thermal virtual file system provided by the Linux kernel (i.e.,
/sys/class/thermal) with ±1◦C accuracy. We use perf event
kernel API for accessing hardware performance counters. Our
phone allows for measuring only the overall power consump-
tion. Since our focus is on the CPU power consumption, we
disable cellular activities and Wi-Fi by switching the phone
into airplane mode and turning-off the LCD display throughout
the measurements.

We run a set of applications from various domains. Three
scientific computing kernels, FFT, LU and SOR, are selected
from Scimark 2.0 [8], which is a benchmark suite for testing
Java based platforms. Such kernels are commonly found in
image/video processing and emerging mobile healthcare appli-
cations. A video encoding (H.264) and an artificial intelligence
application (Sjeng) are chosen from the SPEC CPU2006 [4].

B. Implementation of Policies

DVFS-Based Feedback Controller. The default CPU fre-
quency scaling policy in our phone and in most state-of-the-art
mobile devices is the ondemand governor [6], which adjusts
the CPU frequency based on CPU load. Thermal management
in modern smartphone platforms is accomplished by a variant
of thermal-daemon (thermald) [1] that uses a PID controller
to keep the temperature below a thermal set-point by adjusting
the maximum CPU frequency limits of the ondemand gover-
nor. The ondemand governor is forced to use the frequencies
that are below this assigned limit. As thermald is not open

source, we implement our own baseline DVFS-based PID
controller as a user-level program that adjusts the frequency
limits, and manually tune the controller’s parameters to mimic
thermald. Frequency limit assignments and sensor readings are
performed every 100ms to enable non-intrusive (less than %1
execution overhead) thermal management while maintaining
sufficient time granularity to avoid thermal emergencies.
Stop-Go Policy. Some DTM policies change the number of
active cores to meet the thermal constraints. Similarly, our
Stop-Go mechanism is based on offlining, which allows the
OS to power down individual cores and schedule threads
onto remaining online cores. Whenever peak CPU temperature
reaches 93◦C, our Stop-Go controller offlines 3 cores until the
temperature reduces to 87◦C. The three cores either operate
at the maximum frequency limit (go phase) that we assign
or stay in offline state (stop phase). Due to OS restrictions,
we are not able to power-down the first core. We disable the
default mpdecision tool that manages the number of active
cores to prevent interference with our Stop-Go policy. We set
the polling interval for thermal sensors to 50ms for this policy.

III. ANALYSIS OF CURRENT THROTTLING STRATEGIES

In this section, we analyze the impacts of application dura-
tion and elevated battery temperature on performance with two
common DTM techniques (Feedback controller and Stop-Go)
and motivate the idea of sustained performance. We present
our analyses for the FFT benchmark and leave the discussion
on other applications to Section 4.

Battery Temperature and Performance Interaction. In
order to evaluate the PID controller for different application
durations, we design an experiment in which we run the appli-
cation repeatedly under 5 different maximum frequency limits
and record the battery temperature, power, CPU frequency,
and running time.

Figure 2a shows how the running time changes as the battery
temperature increases over time for the PID controller. Each
data point represents the initial battery temperature of that
iteration and the resulting running time. Let us assume close to
46 seconds (80% of maximum performance) is an acceptable
running time for the user. 2.1GHz maximum frequency limit,
which is the default maximum limit for the baseline policy,
greedily aims to provide maximum performance at every run
but causes a quick increase in battery temperature which
reaches 42.5◦C at the 5th iteration at 200 seconds. Increased
battery temperature induces more aggressive CPU throttling
and running time increases sharply. When the maximum



IEEE EMBEDDED SYSTEMS LETTERS 3

10
0% 90

%
80

%
70

%
60

%
50

%

QoS Level

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 Q

o
S
 R

e
si

d
e
n
cy

PID

FC90%

FC80%

FC70%

(a) LU

10
0% 90

%
80

%
70

%
60

%
50

%

QoS Level

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 Q

o
S
 R

e
si

d
e
n
cy

PID

FC90%

FC80%

(b) H.264

10
0% 90

%
80

%
70

%
60

%
50

%

QoS Level

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 Q

o
S
 R

e
si

d
e
n
cy

PID

FC90%

(c) Sjeng

10
0% 90

%
80

%
70

%
60

%
50

%

QoS Level

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 Q

o
S
 R

e
si

d
e
n
cy

PID

FC90%

FC80%

FC70%

(d) FFT

Fig. 3: Fraction of running time spent above a QoS level via baseline and QoS tuning (“FCX%” represents the proposed policy with X% target QoS).

frequency is limited to 1.7GHz, however, the application can
run for a longer time before reaching 42.5◦C, sustaining a
running time of 46 seconds for 6 iterations and 270 seconds.
After the battery heats to 42.5◦C, both settings achieve similar
performance. Even though two traces achieve same the per-
formance after a certain battery temperature point, the time
it takes to reach this point differs upon power and battery
temperature history. Note that small variations in running time
occur as the phone is active with default background processes
during the experiment.

The best running time at any battery temperature is achieved
at the highest maximum frequency limit with PID controller.
For the Stop-Go policy, however, utilizing lower maximum fre-
quency limits during go phases at higher battery temperature
levels significantly improves performance as shown in Figure
2c. For instance, limiting the maximum frequency to 1.5GHz
provides 50% lower running time compared to default 2.1GHz
when the battery temperature is 46◦C. These experiments
show that heat dissipation from the processor is adversely
affected by the increasing battery temperature and we observed
that utilizing lower frequencies at higher battery temperature
allows for longer go phases, thereby, improves performance.

Battery Temperature and Power Interaction. As a result of
the thermal coupling between the battery and the processor,
the maximum power of the processor is also limited by the
battery temperature. This case is illustrated in Figure 2b for the
PID controller. The curve corresponding to 2.1GHz forms an
upper bound on the maximum power that could be consumed,
which reduces by 32% as the battery temperature increases
from 33◦C to 49◦C. With the increasing battery temperature
and over the iterations, the power dissipation with the lower 3
maximum frequency limits rises due to the increased leakage
power. This leads to diminishing performance where the max-
imum achievable power is significantly reduced by the battery
temperature and the share of dynamic power is shrinked due to
increased leakage power in a small form factor mobile device.

IV. QOS TUNING FOR PERFORMANCE SUSTAINABILITY

The previous section shows that greedy thermal manage-
ment approaches that aim to provide maximum performance
at any battery temperature level degrade performance sus-
tainability as performance drops significantly with increased
application durations and battery temperatures. In this section,
we show that performance sustainability could be significantly
improved in a mobile system by making thermal policies

Algorithm 1 QoS-aware Frequency Capping Policy
Every 100ms
1: Read Instructions Per Second (IPS) & Max. Chip Temperature
2: if currIPS > targetIPS then
3: FrequencyCap++
4: else if currIPS < targetIPS then
5: FrequencyCap--
6: end if
7: Clip FrequencyCap to range 300MHz-2.1GHz
8: PidController(Max. Temperature, FrequencyCap)

aware of application requirements rather than letting the
CPU consume available thermal headroom quickly to provide
instant maximum performance. To this end, we propose a
QoS-aware frequency capping policy for maximizing sustained
performance and compare against the baseline PID controller.

A. QoS-Aware Frequency Capping

Our policy sets maximum limits to CPU frequency as a
control knob for power and performance. Since our focus is
on CPU applications, we use throughput as an indicator of
application’s QoS level, measured in millions of instructions
per seconds (MIPS). We provide our QoS-aware frequency
capping policy in Algorithm 1. The desired QoS level, which
could be given by the user or provided upon battery-level,
duration of use, etc., is provided as input to our implemen-
tation. The policy calculates the throughput by reading the
instruction counts from hardware performance counters. If the
policy detects that the current QoS level is larger than the given
threshold, it will limit the CPU from exhausting the thermal
budget by restricting the use of higher frequencies. The current
frequency cap and maximum temperature are also fed to the
PID controller to assign the new maximum frequency limits
for the ondemand CPU governor.

B. Results

We use the QoS-aware frequency capping policy presented
in the previous section to show the benefits of QoS tuning
on performance sustainability. We explore three QoS lev-
els which are set to 90%, 80% and 70% of the average
throughput achieved when the application is run only once
on an initially cold system. All the experiments are initialized
at the same battery temperature level. To emulate longer
application durations, we run the applications repeatedly and,
for each application, we set the number of iterations based on
a maximum battery temperature limit of 55◦C.

Figure 3 shows the cumulative QoS residencies (i.e., a data
point indicates the fraction of running time spent above the
corresponding QoS level) for the four applications. In an ideal



IEEE EMBEDDED SYSTEMS LETTERS 4

0 200 400 600 800 1000 1200 1400
55

60

65

70

75

80

85

CP
U

 T
em

pe
ra

tu
re

 (C
)

PID

FC80%

0 200 400 600 800 1000 1200 1400

Time (sec)

22

24

26

28

30

32

34

36

Ru
nn

in
g 

Ti
m

e 
(s

)

PID

FC80%

Fig. 4: Running time (bottom) and CPU temperature (top) over time for the
iterative run of SOR application.

scenario, when the requested QoS is 80%, the curve would
take a sharp increase to 1 at 80%, indicating that 100% of the
running time is spent above the 80% QoS level.

For the power hungry Java application, LU, baseline PID
controller can sustain the QoS above 80% for only 32% of the
running time, as the CPU quickly consumes the thermal budget
and more aggressive thermal throttling is induced over time.
Tuning QoS to 80% via frequency capping, however, sustains
the QoS above this constraint for 50% of the running time,
providing 56% longer sustainability over the baseline. For the
video encoding benchmark, H.264, tuning the QoS to 90% and
80% provides 22% and 33% longer sustainability, respectively,
compared to the baseline. From the user’s perspective, this
would correspond to significantly longer time a certain video
quality could be sustained without introducing performance
drops. Tuning the QoS to 90% extends the duration of time
spent above this QoS level from 57% to 72% for the Sjeng
artificial intelligence application. Lower two QoS levels are
omitted for clarity, as the QoS does not drop below 82%.
Tuning the QoS to 90% and 80% for the FFT does not
significantly improve sustainability as the CPU still quickly
reaches the thermal limits due to high application power.

Figure 4 shows the CPU temperature and running time per
iteration for the SOR application with 80% QoS constraint.
The baseline controller allows the CPU to greedily operate
at maximum thermal limits, which degrades the performance
over time and, after 270 seconds, frequency capping starts
to provide better running time. Even after the CPU reaches
thermal limits at 400 seconds and running time starts to
increase, frequency capping still outperforms the baseline due
to lower battery temperature and less aggressive throttling.
We observe that the baseline controller results in 4◦C higher
battery temperature, on average, compared to the proposed
policy.

V. RELATED WORK

Thermal management of multicore CPUs and MPSoCs have
been well studied for conventional computer systems. Control
theoretic DVFS techniques provide effective temperature con-
trol while maximizing performance [2][3]. Use of statistical
predication techniques (e.g., [11]), have also been proposed
to forecast thermal emergencies to prevent temperature vi-
olations. Several attempts have been made towards thermal
modeling and analysis of the mobile devices in particular.
Xie et al. [9] propose a resistance network based thermal

simulation framework for obtaining component level steady-
state temperatures. In a recent study [10], the authors derive
an RC model of the thermal coupling between the battery and
the application processor by disassembling the phone and ex-
tracting the thermal properties of individual components while
we focus on the performance impacts of battery temperature
and application duration on a working smartphone. A sample
study of quality tuning in a mobile system is done by Pathania
et al. [7], where the authors propose a CPU-GPU power
budgeting algorithm to meet a frames-per-second constraint,
without considering quality sustainability and thermal impacts.

Our work differs from the prior work in the following major
aspects: (1) we address the thermal management problem in
mobile devices from a performance sustainability perspective
to meet the user expectations, (2) we reveal the significance of
application-level QoS tuning for providing the mobile system
user with longer durations of sustained performance.

VI. CONCLUSION

In this letter, through experiments on a modern smartphone,
we showed that current DTM approaches lead to signifi-
cant performance degradation as the application durations get
longer and the battery temperatures increase, leaving mobile
system users with diminishing performance over time. We
stated the effectiveness of adapting the thermal management
policies to application/user QoS requirements for substantially
extending the durations of consistent performance, and pro-
posed a QoS-aware frequency capping technique that achieved
up to 56% longer performance sustainability.

REFERENCES

[1] Intel open source technology center. https://01.org/linux-thermal-
daemon/documentation/introduction-thermal-daemon, 2014.

[2] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. A distributed
and self-calibrating model-predictive controller for energy and thermal
management of high-performance multicores. In Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2011.

[3] J. Donald and M. Martonosi. Techniques for multicore thermal manage-
ment: Classification and new exploration. In ACM SIGARCH Computer
Architecture News, volume 34, pages 78–88, 2006.

[4] J. L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[5] Q. D. Network. MS Windows NT kernel description.
https://developer.qualcomm.com/snapdragon-mobile-development-
platform-mdp, 2014.

[6] V. Pallipadi and A. Starikovskiy. The ondemand governor. In Proceed-
ings of the Linux Symposium, volume 2, pages 215–230, 2006.

[7] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated cpu-gpu power
management for 3d mobile games. In Proceedings of the 51st Annual
Design Automation Conference (DAC). ACM, 2014.

[8] R. Pozo and B. Miller. Scimark 2.0. URL: http://math. nist.
gov/scimark2, 2000.

[9] Q. Xie, M. J. Dousti, and M. Pedram. Therminator: a thermal simulator
for smartphones producing accurate chip and skin temperature maps.
In Proceedings of the 2014 international symposium on Low power
electronics and design (ISLPED), pages 117–122. ACM, 2014.

[10] Q. Xie et al. Dynamic thermal management in mobile devices consid-
ering the thermal coupling between battery and application processor.
In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013.

[11] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic thermal manage-
ment for multicore systems. In DAC, 2008.

[12] Y. Zhu and V. J. Reddi. High-performance and energy-efficient mobile
web browsing on big/little systems. In Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), Washington, DC, USA, 2013.


