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Abstract—While state-of-the-art system-level simulators can
deliver swift estimation of power dissipation for microprocessor
designs, they do so at the expense of reduced accuracy. On
the other hand, RTL simulators are typically cycle-accurate but
overwhelmingly time consuming for real-life workloads. Conse-
quently, the design community often has to make a compromise
between accuracy and speed.

In this work, we propose a novel cross-layer approach that
can enable accurate power estimation by carefully integrating
components from system-level and RTL simulation of the target
design. We first leverage the concept of simulation points to
transform the workload application and isolate its most critical
segments. We then profile the highest weighted simulation point
(HWSP) with a RTL simulator (AnyCore) for maximum accu-
racy, while the rest are simulated with a system-level simulator
(gem5) for ensuring fast evaluation. Finally, we combine the
integrated set of profiling data as input to the power simulator
(McPAT). Our evaluation results for three different SPEC2006
benchmark applications demonstrate that our proposed cross-
layer framework can improve the power estimation accuracy by
up to 15% for individual simulation points and by ∼9% for the
full application, compared to that of a conventional system-level
simulation scheme.

I. INTRODUCTION

In recent years, continuous process scaling has rendered
power dissipation a key consideration and figure of merit for
microprocessor designs, often superseding the conventional
performance parameters. At every stage of development, ac-
curate simulation frameworks are instrumental for exploring
the design space and ensuring selection of the most efficient
one. Since exact technology libraries are initially unavailable
for new architectures, designers typically simulate their design
with either high (system) level models or with low (register
transfer) level models. In fact, the choice of the simulation
framework for estimating performance and power is a trade-
off between accuracy and latency [1].

Register-transfer level (RTL) description of designs are
written in hardware description languages (HDL) such as
VHDL or Verilog. An RTL model can imitate the actual
hardware in a cycle-accurate manner, and is significantly more
precise than higher level abstractions. However, characterizing
a microprocessor requires simulating it with real-life applica-
tions, which can be impractically time-consuming with RTL
simulators. We illustrate this in Figure 1 by comparing the
RTL simulation time with that of a system-level (SL) simulator
for three applications from the SPEC CPU2006 benchmark
suite [2]. For example, simulating 100 million instructions of
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Fig. 1. RISC-V microprocessor simulation: Magnitude of difference in
execution time often renders RTL simulation infeasible for designers.

401.bzip2 with the system-level simulator (gem5) takes
only 54 minutes, whereas for the RTL simulator (AnyCore)
it takes 377 minutes – which is a 600% increase in simulation
time. We also observe that, this trend is common across all
three benchmarks, and degrades exponentially for higher num-
ber of instructions. It should be noted that, the RTL simulation
times for the full benchmarks have been extrapolated from that
of their respective first 100M instructions. Furthermore, the
latest intellectual properties (IP) are often copyrighted by the
commercial vendors, and are unavailable in the public domain.
Therefore, the research community often has to depend on
dated and less accurate simulation models [3].

On the other hand, system-level simulators model designs
at a higher level of abstraction, and are typically written
in general-purpose programming languages such as C/C++,
Python etc. Consequently, the system-level model of a mi-
croprocessor is significantly easier to develop, modify, and
parametrize for design space explorations purposes, com-
pared to its RTL counterparts. Most importantly, unlike RTL
simulation, system-level simulators can profile large applica-
tions within reasonable time (Figure 1). Unfortunately, the
significant speedup in simulation comes with a trade-off in
accuracy. While the system-level designs attempt to model the
real hardware, they often fall short due to cycle inaccuracies
and/or other internal design mismatch. Such inaccuracies can
be categorized into modeling, specification and abstraction



Fig. 2. AnyCore framework: the high-level functional simulator verifies
correctness of retired instructions, while DPI calls implement the functions at
HDL-level.

errors [1]. While the modeling errors tend to improve over
time, specification and abstraction errors are typically more
persistent and difficult to fix [4].

While there exists no ideal solution (yet) to avoid the com-
promise between simulation speed and accuracy, the research
community has been rigorously probing this challenge from
multiple directions. Sanchez et al. propose a microarchitectural
simulator that can reduce the time for detailed simulation by
leveraging dynamic binary translation for instruction driven
timing models [5]. However, their simulator utilizes system-
level description of the design and lacks the accuracy of RT-
level information. On the other hand, Oboril et al. propose
a detailed simulation framework for simulating and modeling
power/area for exploring impact of aging at microarchitectural
level [6]. This work also relies on the limited accuracy of the
system-level simulator for performance parameters. Instead of
using actual RT-level information, the authors introduce differ-
ent aging models and utilize technology parameters and perfor-
mance data generated by gem5. As a result, their work does not
capture the hardware-level accuracy for performance/power
characterization.

In this work, we present a cross-layer scheme that can
facilitate accurate power estimation by selectively integrating
results from system-level and RTL simulation of the target
application. We first leverage the concept of simulation points
to transform the workload application and isolate its most crit-
ical segments. We then profile the highest weighted simulation
point (HWSP) with a RTL simulator for maximum accuracy,
while the rest are simulated with a system-level simulator for
ensuring fast evaluation. Finally, we use the microarchitectural
profile for each simulation point as individual input dataset
to the power simulator, and then take a weighted aggregate
in order to estimate the overall power consumption. In our
implementation, we use the AnyCore toolset [7] to perform
RTL simulation, the gem5 simulator [8] for detailed system-
level simulation, and the McPAT [9] power simulator to
generate power estimations for a RISC-V microprocessor [10].
Our evaluation results for three different SPEC2006 bench-

Fig. 3. The gem5 simulator provides multiple CPU models with varying focus
on speed and accuracy.

mark applications demonstrate that our proposed cross-layer
framework can improve the power estimation accuracy by up
to 15% for individual simulation points and by approximately
9% for the full application, compared to that of a conventional
system-level simulation scheme.

The main contributions of this work are as follows:
• We propose a cross-layer simulation platform capable of
integrating RTL simulation data with system-level profiling
parameters in order to elevate the accuracy of the power
simulator.
• We present a comparative analysis of profiling data between
system-level and RTL simulation of the HWSP to demonstrate
the inaccuracies of the system-level abstraction.
• We apply our proposed methodology on a state-of-the-art
RISC-V microprocessor model, and evaluate its performance
for multiple SPEC CPU2006 workload applications.

Our evaluation results show that, our proposed cross-layer
framework can provide significant improvement in power
estimation, compared to existing schemes that leverage data
only from a system-level simulator.

II. BACKGROUND

A. Design simulation at different abstraction levels

In most cases, modern microprocessor designs are evaluated
and tuned with either RTL or system-level simulators – partic-
ularly in the early stages of development. While the RTL simu-
lators utilize behavioral HDLs for cycle-accurate modeling of
the hardware, system-level simulators use high-level models
that are faster, albeit less accurate. In the following sections,
we briefly discuss the well-established RTL and system-level
simulators leveraged in our proposed cross-layer scheme.

1) AnyCore Toolset: The AnyCore toolset is based on a
synthesizable, parameterized RTL model of a superscalar, out-
of-order microprocessor core. The parameterized description
renders it easy to modify various microarchitectural details.
Currently the toolset is able to simulate two different in-
struction sets – PISA [11] and RISC-V [10]. While AnyCore
provides the option to choose between a dynamic or a static
configuration, we use the static option in this work.

The AnyCore RISC-V RTL model implements the RV64G
user-level ISA along with monitor-mode (M-mode) and
supervisor-mode (S-mode) for the privileged levels. System



Fig. 4. Conventional power estimation frameworks: Benchmarks are run either using system-level simulator or RTL simulator.

calls in the benchmarks are handled by the RISC-V proxy-
kernel (PK) and the front-end server. In addition, the AnyCore
design includes a set of L1-caches, where the memory man-
agement and address translation tasks are performed by the
functional simulator. The functional simulator also emulates
the main memory.

Figure 2 presents a high-level view of the AnyCore RISC-
V co-simulation framework. The framework guarantees func-
tional correctness of RTL simulation by using “Spike” (RISC-
V functional simulator) for each committed instruction. Spike
is also used to initialize the registers prior to actual simulation
at the RT-level. At the beginning of the simulation, the bench-
mark is loaded into the PK which boots the CPU by setting
up the registers, loading the benchmark to the main memory
and setting the start program-counter (PC) for the benchmark.
Once the desired instruction is reached, the framework starts
running detailed simulation with the RTL simulator.

2) gem5 Simulator: gem5 is one of the well-known system-
level performance simulator in the open-source domain. As
shown in Figure 3, gem5 supports a range of CPU models,
simulation modes and memory system hierarchy that corre-
sponds to different levels of simulation speed and accuracy.

The gem5 CPU models are capable of capturing various
processor designs and functionality. The Atomic CPU is the
fastest but least accurate, while the detailed CPU corresponds
to most time-consuming but accurate simulations. The detailed
CPU model has of two sub-categories – the In-Order and the
Out-of-Order (O3/DerivO3) models. Both of the detailed CPU
models are pipelined and highly configurable.

In addition, the gem5 CPU models can run in two simulation
modes – the system-call emulation (SE) mode and the full-
system (FS) mode. In the SE mode, no operating system is
loaded by gem5 during the simulation, and system-calls are
emulated by the host system. In contrast, the FS mode executes
both user-level and kernel-level instructions, and models a
complete system by loading an OS in the simulator. The OS
boots the machine, simulates all the system-calls, and handles
the virtual-to-physical translations.

Also, gem5 is capable of modeling data and instruction
caches, memory management unit (MMU), and a unified L2
cache, and supports two types of memory hierarchy. For
simpler memory modeling, gem5 uses the Classic memory
model, where the emphasis is put on the pipeline simulation.
The memory uses simple timing model to calculate hits, misses
and other memory performance data. On the other hand, the
Ruby memory model contains various coherence protocols,
and can support a more detailed memory hierarchy simulation.

Finally, while the gem5 simulator can simulate different in-

struction set architectures (ISA), we use recently implemented
RISC-V ISA in gem5 in this work [12].

B. SimPoint Toolset

While the most accurate method to profile a workload
is to simulate all the instructions, for many real-life appli-
cations, such an evaluation can be impractically long. For
example, the SPEC CPU2006 benchmark on average contain
2249.75 billion instructions, and executing even a system-
level simulation can take days [13, 14]. The SimPoint tool
addresses this issue by generating representative phases of a
workload, and aggregating the results in order to represent the
whole application [15]. The tool identifies and isolates unique
phases/regions where the program execution is stable and has a
relatively constant CPI. SimPoint starts by generating dynamic
execution trace of the given workload and then slices it into
user defined sizes. Typically, slices of 1M or 10M instructions
can deliver high accuracy with reasonable simulation times
[16]. The tool then uses K-means algorithm to form clusters
of slices. Towards the end of this stage, a representative slice
is chosen from each cluster and set as a simulation point. Each
simulation point is assigned a weight based on the cluster size
it represents, and the sum of the weights is always 1 (i.e.,
the full application). The weighted simulation points can be
simulated in parallel and then aggregated based on weight, in
order to generate a fast and accurate characterization profile
for the full application. For example, when using the SimPoint
tool, Sherwood et al. reported an average IPC error of 3% for
SPEC CPU2000 benchmark running Alpha binaries [17].

III. CROSS-LAYER FRAMEWORK FOR POWER ESTIMATION

A. Overview

Figure 4 depicts a high-level process flow for conventional
performance and power modeling platforms. Typically, pro-
filing data, as well as performance parameters (e.g., IPC) are
generated using either a system-level or a RTL simulator. Next,
a power simulator utilize such profiling parameters and the
activity factor for different microarchitecture modules in order
to calculate power consumption.

There are two critical takeaways regarding the existing
methodology for power estimation. First, while RTL simu-
lators typically possess a more accurate description of a mi-
croprocessor, simulating real-life workload applications with
them can often be impractically time-consuming, which in
turn forces the designers to opt for the less accurate system-
level simulators. Second, the accuracy of the power simulator
critically depends on the accuracy of the profiling data it
receives as input. Based on these two observations, we propose



Fig. 5. Proposed cross-layer power estimation framework: (i) the application is transformed into simulation points, (ii) the HWSP is profiled with the RTL
simulator, while the rest are profiled in parallel with the system-level simulator, (iii) integrated profiling data is used to generate accurate power estimation.

TABLE I
SIMPOINT DETAILS FOR EVALUATED SPEC CPU2006 BENCHMARKS.

Benchmark Total Number Number of Instruction Simpoint Simpoint Starting Instruction Ending Instruction
of Instructions (M) SimPoints Per Simpoint ID Weight Number (M) Number (M)

401.bzip2 12403 10 10 M

0 0.038 10,890 10,900
1 0.062 2620 2630
2 0.027 11800 11810
3 0.128 11110 11120
4 0.235 4350 4360
5 0.188 11830 11840
6 0.061 8070 8080
7 0.019 750 760
8 0.087 9240 9250
9 0.155 9160 9170

429.mcf 3102 10 10 M

0 0.065 2190 2200
1 0.065 1170 1180
2 0.042 90 100
3 0.187 2290 2300
4 0.071 1270 1280
5 0.065 2990 3000
6 0.006 0 10
7 0.013 2820 2830
8 0.013 2860 2870
9 0.474 1620 1630

445.gobmk 464 6 10 M

0 0.043 10 20
1 0.152 110 120
2 0.239 430 440
3 0.174 120 130
4 0.239 170 180
5 0.152 240 250

to profile the most critical segment of a workload with a RTL
simulator, while processing the rest of the workload with a fast
system-level simulator. We believe that, our proposed cross-
layer simulation framework can significantly improve power
estimation accuracy, while incurring minimum slowdown in
simulation speed, compared to a system-level only, SimPoint-
based simulation platform.

As shown in Figure 5, the process flow of our proposed
framework can be described in three distinct steps: (i) Using
the SimPoint tool, we transform the workload into representa-
tive phases. The tool also generates a weight for each phase.
(ii) From those phases, we then pick the highest weighted
simulation point (HWSP) and profile it with the RT-level
simulator, while rest of the phases are simulated using system-
level simulator. (iii) Finally, we calculate power dissipation for
each simulation point using a power simulator, combine them
based on the weights of the corresponding simulation point,
and generate estimated power for the complete workload.

It is worth noting that, our framework supports parallel

execution of all the simulation points. Therefore, the total
simulation time for step (ii) can be represented as following:

Overall workload characterization time =

max (Profiling time for a simulation point)
(1)

Given the same number of instruction simulation, the RT-
level takes the maximum amount of time to complete. Thus,
based on equation 1, the time needed to characterize perfor-
mance of a benchmark using simulation points is bound by
the time of the RT-level simulation.

B. Implementation

In this section, we detail the step by step implementation
for our cross-layer power estimation framework.

1) SimPoint Generation: The first step of our framework is
to generate simulation points for each benchmark. In order
to generate the simulation points, we use SimPoint toolset
v3.2 [15]. We compile three SPEC CPU2006 benchmarks [2]
for RISC-V instruction set [10] and generate simulation points
each with 10 million instruction interval. The maximum



TABLE II
MICROARCHITECTURE DETAILS FOR ANYCORE CORE-1

Feature Value Feature Value
Fetch-to-Dispatch width 1 L1 Ins. Cache 2 KB
Issue-to-Execute width 3 L1 Data Cache 8 KB
Retire width 1 Active List size 96
Issue Queue 16 Functional units 4
Load/Store Queue 32/32 Physical Register 160
BTB size 1024 RAS 16
BPU entries 1024 Floating-point Pipeline 0

number of simulation point was set to 10. Table I shows
the detailed simulation point breakdown generated by the
SimPoint tool for the three SPEC benchmark we used for our
experiment. Both 401.bzip2 and 429.mcf benchmarks
have 10 simulation points and 445.gobmk benchmark has 6.
The table also shows the start and end point for the detailed
simulation of 10 million instructions. In the table, highlighted
cells represents the highest weighted simulation point (HWSP)
we used for detailed RT-level simulation for each benchmark.
It should be noted that, if there exists multiple HWSPs for
a benchmark, our current scheme picks the first one. For
example, in Table I, the 445.gobmk benchmark has two
HWSPs – SimPoints 2 and 4, and we picked SimPoint 2.

2) Configuration for RTL and System-level Simulation:
AnyCore RTL. We use static core-1 configuration for Any-
Core RISC-V RTL setting. The superscalar, out-of-order mi-
croprocessor can fetch, decode, rename one instruction every
clock cycle. It issues three instruction each cycle and has four
functional units in total in the pipeline. At every clock, one
instruction is committed. The pipeline also implements a 2-
bit branch predictor unit to predict branch directions in the
fetch stage. Table II shows some of the key microarchitectural
details for the core-1 setting used in the RTL simulation.

In order to run 10 million detailed instructions starting from
the simulation points generated by the SimPoint tool, AnyCore
RTL simulator fast forwards until the desired instruction
number and starts to run detail simulation from that instruction
count. For example, for 401.bzip2 benchmark, we fast
forward first 4350 million instructions and then simulate 10
million instructions using the RTL simulator.
gem5 Simulator. We first modify detailed CPU of the gem5
simulator to match the microarchitectural details from Table II.
This modification includes changing the branch predictor
unit, pipeline width and depths, different parameter sizes etc.
We also modify the functional units latency and number of
functional unit used by the gem5 out-of-order CPU.

After the modification, we run each simulation points using
detailed CPU in gem5. Each simulation points are run in
parallel for 10 million instructions. To reduce the effect
of cold cache start, we run 100 million warm-up prior to
running detailed simulation from the simulation point start
(For simulation point instruction start point less than 100
million, we either skip the warm-up (429.mcf: Simpoint
id 6) or use reduced number of warm-up (445.gobmk:
Simpoint id 0). At the end of each simulation, detailed
data for different performance parameters are generated.
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TABLE III
429.MCF : FULL BENCHMARK VS. SIMPOINT REPRESENTATION.

Parameter Unit Full SimPoint Variance
Benchmark Representation (%)

Load Count
Per
1000
Ins.
(PKI)

368.22 380.98 3.47
Store Count 46.12 45.62 1.08
Branch Count 261.13 268.59 2.86
Branch Mispred 28.95 29.33 1.32
Cache Miss (I) 3.74 3.78 1.00
Cache Miss (D) 320.02 331.47 3.58

3) Power Estimation with McPAT Power Simulator: For the
final step in our framework, we use McPAT power simulator
to estimate runtime dynamic power consumed by the core [9].
McPAT uses detailed XML file as its input interface. The input
file contains architectural details and activity information of
various performance parameters generated by the simulators
from previous stage. We use 65nm technology node for power
estimation. McPAT generates peak, leakage and total runtime
power consumption by the core and each of its sub-modules. In
this work, we report the runtime dynamic power consumption
by the core. In our cross-layer approach, for generating the
runtime dynamic power estimation for a benchmark, we first
evaluate runtime dynamic power for each of its SimPoints.
The input data for each of these SimPoint specific power
estimation is generated either from gem5 or from the RTL
simulator – depending on the weight of the SimPoint. As
mentioned earlier, the HWSP is simulated at the RT-level and
rest of the SimPoints are simulated using gem5. Once McPAT
generates the runtime dynamic power for each SimPoint, we
then multiply each result with its respective SimPoint weight
and aggregate them to generate the final representative power
for the full benchmark.

IV. EVALUATION

In this section, we discuss our evaluation results and demon-
strate the accuracy improvement in power estimation achieved
with the proposed cross-layer simulation framework.

A. Experimental Setup

We perform our system-level simulations with the gem5
simulator. For full benchmark simulations with the detailed
CPU model, we first run a standard 100 million instructions
warm-up, and then perform detailed simulation for the rest of
the application. Finally, we run the AnyCore RTL simulator
using the Cadence NC-Verilog tool (version 15.20).
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Fig. 7. Profiling accuracy improvement with the RTL (AnyCore) simulator over system-level (gem5) simulator. We show the improvement for various
micro-architectural parameters achieved for the highest-weighted SimPoint between the two abstraction levels.

B. Evaluation Results

1) Verification of SimPoint-based representation: Our
framework is set upon the idea of utilizing representative
phases in lieu of a complete workload application. Therefore,
it is critical that, in aggregate, the representative phases (i.e.,
simulation points) actually mimic the behavior of the original
application they are supposed to ‘represent’. In order to verify
this stipulation, we first perform a comparative analysis on
the characterization parameters collected from the benchmark
applications and their SimPoint-based representations.

Figure 6 shows the comparison of instruction per cycle
(IPC) between the benchmark applications and their respective
SimPoint-based representations. We can observe that, the
IPC for full benchmark runs are 0.290, 0.086 and 0.232
for 401.bzip2, 429.mcf and 445.gobmk, respectively.
Also, when using SimPoint-based simulation to represent the
same benchmarks, the IPC results are 0.264, 0.091 and 0.313,
respectively. Consequently, we can confirm that the average
(gmean) variance between the IPC from the full benchmarks
and their representative SimPoints is only 1.64%.

In addition, we present a detailed comparison of the critical
characterization parameters for the 429.mcf benchmark and
its SimPoint-based representation in Table III. We can observe
that, the variance for the number of load instruction count is
3.47%, while for the store instructions it is 1.08%. On the other
hand, the variances for branch instruction count and branch

mispredictions are 2.86% and 1.32%, respectively. Finally, our
evaluation shows the variance for instruction cache misses is
1%, and for data cache misses it is 3.58%.

From the above discussion, we can reasonably conclude that
a set of carefully generated SimPoints can accurately represent
the characterization behavior of the original application.

2) Improved profiling with cross-layer framework: As men-
tioned earlier, RTL simulations provide significantly more
accurate profiling compared to their system-level counterparts.
In order to explore the amount of discrepancies in the criti-
cal parameters, we simulate the highest-weighted SimPoints
(HWSP) in both the RTL (AnyCore) and the system-level
(gem5) simulator. The HWSP for each benchmark is run for 10
million instructions, starting at the stated instruction number
(Table I). Figure 7 presents the result of this evaluation.
Load count. Figure 7a shows the variance in number of load
instructions for the three benchmarks. We can see from the
figure that, the HWSP of 401.bzip2 exhibits the lowest
variance of 1.7% between the RTL and system-level simula-
tion, while the variance is highest for 445.gobmk at 159%.
Store count. The comparative result for number of store in-
structions is shown in Figure 7b. We can see that 445.gobmk
again manifests the maximum variance of 39%, whereas for
401.bzip2 the variance is the minimum at 1.5%.
Branch count. Figure 7c shows that, the variance in branch
instruction count is the highest for 445.gobmk at 20%. In
contrast, 429.mcf shows the least variance of 12%.
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Fig. 8. Accuracy improvement in power estimation for the highest-weighted
SimPoint (HWSP).

Branch misprediction. As shown in Figure 7d, for branch
misprediction count, 401.bzip2 exhibits the lowest 2%
variation, while for 445.gobmmk it stands at 21%.
Cache miss. Figure 7e portrays the fluctuation in instruc-
tion cache misses between the two simulation platforms. We
note that, 401.bzip2, 429.mcf, and 445.gobmk report
variances of 53%, 33%, and 77%, respectively. In a similar
fashion, Figure 7f shows the variances in data cache misses
to be 36%, 31%, and 39%, for 401.bzip2, 429.mcf, and
445.gobmk, respectively.
IPC. As our final point of comparison, we present variance in
IPC values attained from the gem5 and the AnyCore simulator
in Fiugre 7g. One can note that, 429.mcf exhibits the highest
amount of variation in IPC at 54%, while 401.bzip2 shows
the lowest variation of 2%.

It is worth noting that, the variations in result for the
microarchitectural parameters are primarily due to the inherent
simplification and inaccuracy in gem5 modeling compared to
its RTL counterpart [18]. This inaccuracy can be overcome by
integrating the RTL simulation results for each of these pa-
rameters. Since RTL simulation gives more accurate result for
such performance parameters, we can concur from the above
analysis that, our proposed cross-layer simulation framework
enables a significantly improved profiling of the highest-
weighted simulation points from each benchmark application.
This in turn should enable us to achieve more accurate power
estimations, as these profiling parameters are directly utilized
by the power simulator.

3) Power Estimation Results: Figure 8 portrays the im-
provement in power estimation accuracy by integrating pro-
filing data for the highest weighted simulation point (HWSP)
with the RTL simulator. Specifically, the figure compares
the runtime dynamic power from system-level (gem5) sim-
ulation with that of the RTL simulation (AnyCore). We
can observe that, with profiling data from gem5, McPAT
estimates the power dissipation to be 0.21W, 0.32W and
0.23W for 401.bzip2, 429.mcf and 445.gobmk, re-
spectively. However, when McPAT is fed with the profil-
ing data from AnyCore, the power estimation changes by
8.91%, 15.18% and 3.56%, for 401.bzip2, 429.mcf
and 445.gobmk, respectively.

Finally, in Figure 9, we evaluate the impact of our proposed

401.bzip2 429.mcf 445.gobmk
0.0

0.2

0.4

0.6

0.8

1.0

1.2  gem5
 Cross-Layer
 Improvement (%)

Po
w

er
 (W

at
t)

0
2
4

6
8
10
12

14
16
18
20

 Im
pr

ov
em

en
t (

%
)

Fig. 9. Accuracy improvement in power estimation for full benchmark
applications.

cross-layer scheme on the power estimation accuracy for
the full benchmark applications. Specifically, we compare
McPAT’s power estimation numbers for the gem5-only data
against that with our cross-layer approach where the power
simulator leverages data from both gem5 and the RTL simula-
tor. We can observe that, the improvement in overall accuracy
of power estimation for 401.bzip2 is 6.5%, for 429.mcf
the improvement is 8.7%, and for 445.gobmk the accuracy
is improved by 0.73%.

4) Simulation time: As stated in Equation 1, for a
SimPoint-based framework like ours, the characterization
time for a benchmark is bound by the time of the RT-
level simulation. In our evaluation, simulating the HWSP
with the RTL simulator takes 66, 172 and 36 minutes, for
401.bzip2, 429.mcf and 445.gobmk, respectively. On
the other hand, a full benchmark simulation with the gem5
(detailed CPU model) simulator takes 2270, 1338, and 71
minutes for 401.bzip2, 429.mcf, and 445.gobmk, re-
spectively. These results confirm that, our framework can be,
on average, ∼78% faster than a conventional full benchmark
simulation with a system-level simulator.

V. RELATED WORK

gem5 simulator. gem5 is a widely used system-level simulator
for performance characterization, design modelling and design
space exploration [8]. Fernando et al. used gem5 simulator to
model both in-order and out-of-order arm microprocessors [3].
Their design modeled the microarchitectural details based on
published and estimated data. Yang et al. extends gem5 to
build a VLIW simulation platform [19]. They also modeled
their design based on cycle accurate simulator and finally
validates against the RTL simulator. Note that, our scheme
is different from the prior works because of the incorporation
of RT-level information for accuracy improvement. Moreover,
instead of running the full workloads, we leverage smart usage
of SimPoint generated phases of the workload to reduce overall
simulation time.
SimPoint-based benchmark simulation. Simpoint-based
simulations create represtative points/phases for a workload,
and simulates those points only. Maximilien et al. uses Sim-
point technique to profile benchmarks for different perfor-
mance parameters and predict the performance of the bench-



mark [20]. Their model is solely dependent on the SimPoint
accuracy and the hardware model used by the system-level
simulator. Coskun et al. used the SimPoint tool to create a
database for benchmarks and use that for dynamic thermal
management [21]. However, their work did not include any
RT-level data for improving accuracy.

To the best of our knowledge, our proposed scheme is the
first to utilize SimPoints for integrating high-level and RTL
simulation in order to achieve accurate power estimation.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a cross-layer scheme that enables
accurate power estimation for microprocessor designs. Our
proposed scheme first utilizes SimPoints to locate critical
segments of an application. We then selectively run system-
level (gem5) and RT-level (AnyCore) simulation on such
segments for collecting more input for the power simulator
(McPAT). Our evaluation results show that, the proposed
scheme can improve power estimation accuracy by more
than 15% for individual SimPoints, and by ∼9% for full
benchmark applications – compared to the existing system-
level simulation based frameworks.

In future, we plan to extend this work by incorporating a
detailed analysis on isolating the modeling mismatches that
can cause unwanted variances in profiling results from gem5
and the RTL simulator. We are also working on expanding
our evaluation and analyses by adding a wider range of
benchmarks. Finally, we will explore the microarchitecrtural
characteristics of individual SimPoints for all the benchmarks,
which in turn may allow us to select the SimPoint to be
simulated on the RTL Simulator on a case-by-case basis (rather
than just the HWSP), and improve the performance of our
cross-layer framework thereby.
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