RC25675 (WAT 1803-107) March 29, 2018
Computer Science

|BM Research Report

ConfEx: An Analytics Framework for Text-Based Software
Configurationsin the Cloud

Ozan Tuncer?, Nilton Bila?, Canturk Isci?, Ayse K. Coskun?

Boston University
Boston, MA 02215 USA

2IBM Research Division
Thomas J. Watson Research Center
PO. Box 218
Yorktown Heights, NY 10598 USA

Resear ch Division
Almaden —Austin — Beijing — Brazil — Cambridge— Dublin —Haifa— India— Kenya— Mebourne— T.J. Watson — Tokyo — Zurich

ConfEx: An Analytics Framework for Text-based
Software Configurations in the Cloud

Nilton Bila
IBM Research
Yorktown Heights, NY 10598
Email: nilton@us.ibm.com

Ozan Tuncer
Boston University
Boston, MA 02215

Email: otuncer@bu.edu

Abstract—Modern cloud applications are designed in a highly
configurable way to provide increased reusability and portability.
With the growing complexity of these applications, configuration
errors (i.e., misconfigurations) have become major sources of
service outages and disruptions. While some research has so far
focused on automatically detecting errors on configurations that
are represented as well-structured key-value pairs, discovering
and extracting configurations remain a challenge for a wide range
of cloud applications that store their configurations in loosely-
structured text files.

This paper proposes ConfEx, a framework that enables dis-
covery and analysis of text-based configurations in multi-tenant
cloud platforms and cloud image repositories. Our framework
uses a novel vocabulary-based discovery technique to identify
text-based configuration files in cloud system instances with
unlabeled content. We show that, even for labeled configuration
files, widely-used and expert-maintained configuration parsing
tools lack the consistency and robustness needed for meaning-
ful statistical analysis of configurations. We introduce a novel
disambiguation technique that resolves the inconsistencies in the
configuration-related data extracted by existing parsers. When
tested on 4581 popular Docker Hub images, ConfEx achieves
over 98% precision and recall in identifying configuration files,
and consistently improves the efficacy of misconfiguration detec-
tion through outlier analysis as well as syntactic configuration
validation.

I. INTRODUCTION

Cloud software is complex and highly customizable. To
function correctly, securely, and with high performance, cloud
applications often depend on precise tuning of hundreds of
configuration parameters [1]. In typical cloud services that
consist of multi-tiered software stacks, ensuring the desired
operation often requires correctly configuring thousands of
parameters [2].

Errors in software configurations have been reported as
causes of service disruptions and outages at Facebook [3],
LinkedIn [4], Microsoft Azure [5], Amazon EC2 [6], and
Google [7]. Moreover, the affordability offered by the cloud
and the prevalence of open-source software have enabled new
levels of agility, where small teams of developers can deliver
new cloud services and functionality in short periods of time.
This newfound agility has led to a trend where service devel-
opers and operators may lack the expertise needed to precisely
tune all software components of a multi-tier architecture. As a
result, misconfigurations have become one of the lead causes
of cloud software failures [8], [9], [10].

Canturk Isci

IBM Research
Yorktown Heights, NY 10598
Email: canturk @us.ibm.com

Ayse K. Coskun

Boston University

Boston, MA 02215
Email: acoskun@bu.edu

Configurations are traditionally validated by applications
during startup. However, recent work has shown that 14-93%
of configuration parameters in today’s cloud software do not
have any special code for checking their correctness during ap-
plication initialization [11]. To detect misconfigurations before
deployment, researchers have developed various tools to auto-
matically check for errors in application configurations (e.g.,
[12], [13]). Among such tools, statistical and learning-based
techniques (e.g., [14], [15], [16]) have gained popularity as
low overhead configuration checkers that can be applied in an
application-agnostic manner. Statistical configuration checkers
train on a corpus of configurations and learn common patterns.
These methods can then identify configurations that deviate
from the norm as potential errors. Such statistical methods
are powerful in practice because they do not require intrusive
static/dynamic analysis or application instrumentation.

In order to perform statistical and learning-based config-
uration analysis in multi-tenant cloud platforms, it is essen-
tial to extract configuration information from cloud system
instances (i.e., images, VMs, and containers) without losing
any information that is crucial for detecting errors. This
is challenging because cloud instance contents are largely
unlabeled. One needs to discover which files are configuration
files and also figure out to which applications these files be-
long. Furthermore, cloud software configurations are typically
stored in loosely-structured text files where each software has
its own custom configuration syntax. For effective statistical
analysis, the information extracted from these files needs to
be represented in a consistent format that allows comparison
of individual configuration parameters across a large number
of cloud instances.

In this work, we propose ConfEx, a novel software con-
figuration analytics framework that enables robust analysis
of loosely-structured text-based configurations in multi-tenant
cloud platforms and image repositories. ConfEx discovers
configuration files of known applications in cloud instances
and parses these files to produce consistent configuration data
for corpus-based analysis. We demonstrate two use cases of
ConfEx on a corpus of 4581 popular Docker Hub images: (1)
detecting injected misconfigurations through outlier analysis
and (2) syntactic configuration validation. Our contributions
can be summarized as follows:

e We design and implement ConfEx, a configuration an-

alytics framework that enables discovery and extraction
of consistent configuration data and robust configuration
analysis in multi-tenant cloud platforms. We demonstrate
that ConfEx enables the use of existing configuration
analysis tools, which are designed for key-value pairs,
with text-based software configurations in the cloud.

o As part of our framework, we develop a vocabulary-based
configuration file discovery technique to identify text-
based software configuration files in cloud instances with
unlabeled content. Our approach can identify application
configuration files with over 98% precision and recall.

o We show that the outputs of existing configuration file
parsers often lack the consistency and robustness needed
for statistical analysis, and introduce a disambiguation
technique for parser outputs to resolve this problem.

The rest of this work starts with an overview of configura-
tion analysis and management techniques in the cloud. Sec. II
provides a background on configuration files and common
misconfigurations. Section III gives the details of our proposed
ConfEx framework. Section IV explains our experimental
methodology, and Section V presents our experimental find-
ings. Finally, we conclude in Section VII.

II. BACKGROUND ON TEXT-BASED CONFIGURATIONS

In this section, we explain how cloud applications and ser-
vices typically store their configurations. Then, we categorize
common configuration errors to give some insight on the type
of information required for effective configuration analysis.

A. Text-based Configurations

Most cloud applications and system services store their
configurations in human-readable text files or in configuration
stores such as etcd and Windows registry. We focus on text
file based configurations as this type of storage is prevalent
for many of the building blocks of cloud applications (e.g.,
MySQL, Nginx, and Redis).

Figure 1 shows a snippet from an Apache HTTP server
(httpd) configuration file. Each of the first two lines contains a
parameter followed by a value, separated by a space. Lines 3-6
are in an application-specific format representing a conditional

o parameter o« value
@rverRo@ @var/ww@
Listen 80
ﬁé:I:ﬁModule unixd_modu]i_://:i:
“User daemon
Group daemon
6| </IfModule>

application-specific
conditional statement

[T O

Fig. 1. Httpd configuration file snippet. Configurations are stored in an XML-
like format.

1| proc swap swap pri=42 00
2 tmpfs /dev/shm tmpfs mode=0777 00
3| devpts /dev/pts devpts defaults,gid=5 0 0

Fig. 2. /etc/fstab snippet. Configurations are stored in a table format
where certain table cells contain multiple configuration entries.

TABLE I
COMMON CONFIGURATION ERROR TYPES AND EXAMPLE CONSTRAINTS
THAT LEAD TO ERRORS UPON VIOLATION.

Error type Example configuration constraint

In PostgreSQL, parameter values that are not simple

Illegal entries identifiers or numbers must be single-quoted.

Variables must be in certain types (e.g., float).

In PHP, mysqgl .max_persistent must be no
larger than the max_connections in MySQL.

Inc;ﬁiil:tsent In Cloudshare, service’s redis.host entry
(an IP address) must be a substring of Nginx’s
upstream.msg.server entry (IP address:port).
Invalid When using PHP in Apache, recode. so must
ordering be defined before mysql. so.

In MySQL, maximum allowed table size must be
Environmental smaller than the memory available in the system
inconsistency In httpd, Apache user permissions must be set

correctly to enable file uploads for website visitors.

Missing In OpenLDAP, a configuration entry must include
parameter ppolicy.schema to enable password policy.

MySQL’s Autocommit parameter must be set to
False to avoid poor performance under “insert”
intensive workloads.

Valid entries
that cause
performance

or security
issues

Debug-level logging must be disabled to avoid
performance degradation.

statement. While parsing these lines, one needs to retain the
relational information between the parameters defined within
the conditional statement, indicating that User and Group
belong to the ITfModule unixd_module section.

In some configuration files, the file schema is not embedded
in the file itself and requires domain knowledge to understand.
One such example is the Linux filesystem configuration file
(/etc/fstab), which defines available filesystems and their
mount options. As shown in Figure 2, this file is structured in
a table format where some columns may include parameter-
value pairs such as pri=42 (line 1) as well as multiple
comma-separated entries such as defaults, gid=5 (line 3).

Extracting configuration data from text-based files requires
expertise on the specific application file format. Hence, to
conduct corpus-based configuration analysis on a large number
of applications, one should use a community-driven parsing
tool that allows contributions of application domain experts.

B. Configuration Errors

A common goal of configuration analysis is detecting con-
figuration errors. Table I summarizes common misconfigura-
tion types we derived from related work (e.g., [2], [10], [17],
[18], [19]) and online technical forums (e.g., stackoverflow.
com and serverfault.com). Illegal entries can be identified
through syntactic validation. Detecting inconsistent entries and
invalid ordering requires extracting dependency and corre-
lation information among various parameters. Environmental
inconsistencies occur when application configurations do not

httpd files Extracted configuration data
Target system y—— ~/ete/nitpacont Aoplication) __File __[Parameterkey|_Value
1 P ‘etc/htty ttpd.conflloa lodule my_mo Imy_mod _file.so|
(image, VM, ocabulary - /config/httpd.conf o em%uw o
container) - [server.httpd.conf mysal Jetc/mysql/my.cnf _|mysqld datadir var/lib/mysql
File MySQL files (I)
. - et/ 1/my.cnf ; .
labeling _/gtz/m.sgnfmyc Outll('er Constra.lnt
- /mysql_confenf detection generation
\ Discovery / \ Extraction / 9 Analysis)

Fig. 3. ConfEx overview. Given a target system instance, File labeling examines the contents of text files and labels configuration files with the name of the
software they belong to. Based on this label, the File parser extracts the file content and produces key-value pairs using software-specific parsing rules. The
Disambiguation step transforms the parser output into consistent key-value pairs, where a key corresponds to a single configuration parameter consistently
across different system instances. The extracted configuration data is then used for corpus-based analysis such as outlier detection and constraint generation.

match the environmental parameters such as file permissions
and IP addresses. To find such inconsistencies, one needs to
collect and analyze both application and environment con-
figurations. Detecting missing parameters requires checking
the existence of parameters rather than focusing on the values
assigned to parameters. Valid entries that cause performance
degradation or security vulnerabilities do not lead to crashes
Or error messages.

Configuration analysis tools commonly treat configurations
as key-value pairs, in where each key corresponds to a
specific configuration parameter (e.g., [14], [15], [16]). The
configuration key-value pairs can be used for detecting the
error types shown in Table I except for invalid ordering. In
this work, we use key-value pairs for configuration analysis
and do not focus on invalid ordering.

III. CONFEX CONFIGURATION ANALYTICS FRAMEWORK

We propose a configuration analytics framework, ConfEx,
for corpus-based configuration analysis in image repositories
and multi-tenant cloud platforms. ConfEx discovers the config-
urations files in cloud system instances with unlabeled content,
extracts consistent configuration data from these files, and
applies statistical and learning-based analysis methods on the
collected data to detect configuration errors.

Figure 3 shows an overview of ConfEx. In the discovery
phase, ConfEx uses a vocabulary-based method we designed
to discover configuration files. When a new cloud system
instance with unlabeled configuration files is introduced (e.g.,
a new container), ConfEx reads and analyses the text files in
the given cloud instance' and compares the contents of these
files with a vocabulary database that is built offline (details
not shown in Fig. 3). When ConfEx discovers a configuration
file, it tags the file with a label identifying the software that
is associated with the file. These labels are then used in
the extraction phase to apply software-specific file parsing
and disambiguation rules. The extraction phase generates key-
value pairs, which represent configuration data, using keys that
consistently correspond to a single configuration parameter

'ConfEx limits the size of text files inspected to 200KB to maintain low
processing overheads. This threshold is supported by our investigation of 4581
Docker Hub images on which the largest configuration file found was 36KB.

across different cloud instances. Finally, these key-value pairs
are augmented with the software label and the source file
path to enable a comprehensive and robust corpus-based
configuration analysis. The rest of this section explains the
phases of ConfEx in detail.

A. Discovery

A common approach of locating configuration files is to
check specific file system paths based on the locations of
standard software installations. While system configuration
file locations are typically consistent across different cloud
instances, as we show in Section V-A, 26-81% of valid appli-
cation configuration files are located in non-standard locations
in popular Docker Hub images. These files are ignored by
the configuration parsing tools. As a result, any configuration
problems in these files will not be detected automatically
using statistical and learning-based configuration analysis. To
resolve this problem, the discovery phase of ConfEx identifies
configuration files of known applications in cloud instances in
an application-agnostic manner, regardless of where the files
are located in the file system.

Figure 4 depicts ConfEx’s discovery phase in detail. During
offline training, ConfEx reads known configuration files to
generate application-specific vocabularies of important words,
which can be used to associate configuration files with applica-
tions. We identify the important words based on the following
observations:

Observation 1: Commented lines typically contain descrip-
tions of the configuration options with few (or no) application-
specific words.

Observation 2: The first word of a non-comment line in a
configuration file typically corresponds to a parameter name
or a configuration command, whereas the subsequent words in
the line are user-provided values such as integers and file paths.
Most of such parameter names and configuration commands
are specific to an application’s configuration.

Observation 3: Certain configuration parameter names and
commands (such as include and file) are used in the
configuration files of multiple applications as well as in
non-configuration files. Hence, if a file contains lines only
starting with such words, this file should not be labeled as

Paraml =
Param2 App 1
Param3

vocabulary

Known config. . Set of important
files of app 1 words in file f

Training

Testing
comment —~’////’__,
Paraml
Paraml valuel
Param2
Param2 value2 Newhord
NewWord value3 Paraml
Param2
Input text file Wiest

Cardinality-based
filtering

Wmatch

yes The input file is a
candidate config.
file of app 1

|Wmatch |

m > Tconﬁdence

Fig. 4. Discovery phase. A vocabulary is generated for each known appli-
cation offline. Input text files are compared with each application vocabulary
and selected as candidate configuration files upon a match that is larger than
a confidence threshold.

a configuration file, unless a similar known configuration file
has been previously encountered.

Based on the above observations, we first discard com-
mented lines in the known configuration files that are used
for training. We consider a line as a comment if it begins with
//, #, or %, excluding the preceding white-space characters
(i.e., tab and space). Then, for each file f, we extract the
set of unique words (W) that appear as the first word in
the remaining lines. While extracting the first word from a
line, we use for following characters as delimiters to account
for the characters that are commonly used as part of a
configuration file syntax: \t, , =, :, <, >, [, 1, ,. An
application vocabulary contains the union of W ¢ for all known
configuration files of that application.

It is challenging to address Observation 3 because it is
not possible to know all possible words that are used in
configuration and non-configuration files during the initial
training. To address Observation 3, we make use of the
cardinality of W; (|[W,[) in each known configuration file
as an additional similarity metric as follows: For each word w
in the vocabulary, we record min_cardinality,,, which is the
minimum |W ;| among all the known configuration files where
the word w appears. Then, during testing, we first generate
Wiest, the set of first words in non-comment lines of the test
file, as before. A word w in Wy is considered as a match
only if it exists in the vocabulary and if [Wiey| is no less than
the recorded min_cardinality,,. In Fig. 4, the set of all such
match words in an input file is denoted as Wyych-

We use thresholding on the fraction |Wyuch|/|Wies| to
decide whether the input file is a configuration file. If this
fraction is larger than a certain 7.y, fidence fOr an application
vocabulary, the file is labeled as a candidate configuration file
of the corresponding application. As described in detail in

Section V-A, we select the confidence threshold empirically
and apply the same threshold for all applications.

The syntax of all files that are labeled as configuration files
is checked in the extraction phase. If the file does not conform
with the configuration file syntax of the target application,
users can be warned about a potential syntax error.

To discover the configuration files of a new application, a
new application vocabulary should be generated from a set
of known configuration files of that application as described
above. This vocabulary can be extended simply by processing
new labeled files without the need of re-processing the entire
set of known configuration files.

B. Extraction

The purpose of the extraction phase is to parse the labeled
configuration files and generate key-value pairs that represent
configurations. For a robust corpus-based configuration analy-
sis where the input configuration files are curated by different
users, the extracted keys should have the following properties:

e Consistency: A specific key should always refer to the
same parameter, both when observing configurations of
a given cloud instance over time, and when comparing
configurations across multiple systems.

o Uniqueness: Each parameter in a file should be repre-
sented by a unique key. However, if two parameters share
the same name and context (such as parameters defined
as a list), they should share the same key.

o Context-preserving: The keys of parameters that appear
within the same block of a configuration file must retain
this relational information. For example, in Fig. 1, the
keys of User and Group entires must express that
both parameters are under the I fModule section. Such
relations become more prevalent in file formats that keep
hierarchical data such as JSON and XML.

While existing studies on configuration analysis have mostly
focused on configuration stores that do not require data
extraction such as Windows Registry (e.g., [20]), or config-
urations with standard file formats such as XML and JSON
(e.g., [13], [21]), most configuration files in today’s cloud
services (such as httpd and Nginx) are kept in human-readable
text files that do not use standard file formats. These files
require custom parsing rules based on domain knowledge.
However, the variety and rapid evolution of applications make
it expensive and bug-prone to implement custom parsers for
different applications for every configuration analysis tool.

1) Augeas for Parsing Configuration Files: To leverage the
knowledge of domain experts on various applications and re-
use an existing code-base that is continuously maintained, we
build our extraction phase on top of Augeas [22], which is
one of the most popular tools available today for automatized
configuration parsing and editing. Augeas has extensive appli-
cation coverage with 182 lenses, which are file parsing rules
to generate key-value pairs for different applications including
httpd, MySQL, Nginx, PHP, and PostgreSQL. Augeas has been
continuously maintained for more than ten years and has in-
terfaces in different programming languages including Python,

Ruby, Perl, and Java. As a result, Augeas is being used by
other configuration management tools including Puppet [23]
and bcfg2 [24], and also by Encore [17], which is a state-of-
the-art configuration analysis tool.

As Augeas is primarily intended for managing configu-
rations in systems with uniform and known configuration
structure, its output is not ideal for key-value-based statistical
analysis and learning in a cloud setting. Several issues with
the Augeas parser output can be seen in the example in
Fig. 5 and are summarized as follows: The sample input httpd
configuration file in Fig. 5 has two Listen entries, but these
two entries are represented by four key-value pairs after being
parsed by Augeas. Similarly, although both Listen entries
represent the same configuration option, they are referred to
using different keys to enforce a unique key per configuration
entry. Such artificial keys and key-value pairs reduce the
reliability of key-value-based analysis.

Another challenge with the Augeas output stems from the
indices assigned to the keys based on the ordering of entries in
the file. Due to these indices, a different parameter ordering
can result in a different key set. For example, in the httpd
configuration file in Fig. 5, if the second and the third lines
were swapped, /directive[2] and /directive[3]
keys would have referred to Redirect and Listen, re-
spectively, unlike the Augeas output in Fig. 5.

Because of the problems described above, Augeas key-value
pairs are often ambiguous, where the values of keys do not
necessarily correspond to the values of configuration parame-
ters. For example, the value of the key /directive[1l] in
Fig. 5 is Listen, which is a configuration parameter rather
than a configuration value such as 8080. Moreover, Augeas
keys do not correspond to the same configuration consistently
across different files. Hence, Augeas key-value pairs are not
effective for corpus-based configuration analysis?.

2) Disambiguation of the Augeas Output: Figure 5 depicts
the overall flow in our extraction phase. First, we parse the
discovered files using Augeas, which discards any file that
does not comply with the target application’s configuration
file format. We then disambiguate Augeas’ output to generate
reliable key-value pairs where a key consistently corresponds
to the same single parameter across different files. For this pur-
pose, we convert the Augeas output into an infermediate tree
that retains the hierarchical information in the configuration
file. We transform this tree using a list of application-specific
rules such that the transformed tree faithfully represents all
parameters in the configuration files. We manually implement
these rules using minimal domain knowledge and only by
examining the document structure, parameters found in the
configuration files, and their corresponding output produced
by Augeas.

2 Although the Augeas keys do not meet the consistency property, they can
be used for analysis [17] if the target configuration parameters are already
defined by unique keys (such as in PostgreSQL) or if the target files have the
same parameter ordering. However, an identical parameter ordering across
different configuration files is not guaranteed in a multi-tenant cloud platform
where the files are curated by different users.

£3 Lieten 8080
[o =1
Cc Redirect /Foo /Bar
E_E <IfModule mymod>
c® User myuser
D | </IfModule>
i Parsing by Augeas

* key value
g /directive[1l] Listen
[o} /directive[l]/arg 80
q:',) /directive[2] Listen
© /directive[2]/arg 8080
> /directive[3] Redirect
;qc) /directive[3]/arg[l] /Foo
% /directive[3]/arg[2] /Bar
g /IfModule/arg mymod
<:£ /IfModule/directive User

/IfModule/directive/arg myuser

l Conversionto tree

httpd.conf

H directive[1] (Listen) |

H directive[2] (Listen) |
arg (8080)

H directive[3] (Redirect) |

H IfModule |
arg (mymod)

Intermediate tree representation

directive (User)

arg (myuser)

Disambiguation

—

g httpd.conf

B Listen (80) |

g Listen (8080) |

=)

8 [Redirect /Foo (/Bar) |

8 [IfModule mymod |

= User (myuser) |

l Flattening

— App. File Parameter key Value

E. httpd /httpd.conf Listen 80

3 httpd /httpd.conf Listen 8080
httpd /httpd.conf Redirect \/Foo /Bar
httpd /httpd.conf IfModule mymod/User myuser

Fig. 5. Extraction phase. Augeas parses configuration files based on the labels
given by the discovery phase. The key-value pairs generated by Augeas is
converted into a tree that retains the configuration hierarchy. In this tree,
texts in parenthesis represents the values of nodes. This tree is disambiguated
based on application-specific rules that are manually generated using minimal
domain knowledge. The flattened form of the disambiguated tree contains
key-value pairs where a key corresponds to a single parameter consistently
across different files and cloud instances.

Example disambiguation rules: By examining httpd con-
figuration files and the Augeas output, we observe that the
directive keys are redundant and do not correspond to
parameters; hence, we extract the actual parameter names from
the values of the directive keys. The configuration options
assigned to these parameters are extracted from the value of
the child node named arg in the intermediate tree. We also
observe that specific entries such as Redirect do not rep-
resent parameters, but they are configuration commands with
multiple arguments. From a configuration analysis perspective,
we are interested in which arguments are being redirected
(/Foo in Fig. 5) and where they are directed to (/Bar in
Fig. 5). In this case, we use Redirect /Foo as the key,
indicating that /Foo is being redirected, and /Bar as the
value assigned to this key. We identify fifteen such configura-
tion commands in httpd by skimming through the application
documentation. Our final observation is that nodes without
values (such as TfModule) indicate configuration hierarchy.
We use such nodes to preserve configuration hierarchy without
assigning specific values to them. The above observations can
be summarized in the following three tree transformation rules
for httpd configurations:

e directive nodes are replaced by the parameter names
stored in the value of the directive. The value of the new
node is the value of the child node named arg.

« For specific keys that represent configuration commands
(such as Redirect), the new key is appended with the
value of the child node named arg[1]. The value of
the new node is the concatenation of the values of the
remaining children whose name start with arg.

o Nodes without values (such as I fModule) are converted
into an intermediate node where their key is appended
with the value of the concatenation of the values of the
children whose name start with arg.

After this rule-based transformation, the new tree is flattened
and converted into a table as depicted in Fig. 5. The application
label and the file path are also appended to this table such
that all configurations extracted from a cloud instance are
represented in a single standardized format for robust analysis.

To extract reliable key-value pairs from the configuration
files of new applications, one needs to implement tree transfor-
mation rules specific to the new application by examining the
configuration file structure, configuration parameters, and the
corresponding Augeas output using minimal domain knowl-
edge as described above. A new Augeas lens may be required
if the Augeas library does not support the new application.

C. Analysis

The discovery and extraction phases of ConfEx produces
consistent key-value pairs, enabling various configuration anal-
ysis techniques in the cloud. A rich variety of analysis methods
can be applied as part of ConfEx, including outlier value
detection [15], parameter type inference [17], [25], rule-based
validation [26], [27], parameter correlation analysis [19], and
matching configuration parameters with the parameters in the
source code for source-based analysis [28], [29].

TABLE II
STATISTICS ON THE STUDIED DOCKER HUB IMAGES

licati #of i total # of total # of
apphication ol 1mages config. files text files
httpd 272 9191 330106
MySQL 715 2600 509857
Nginx 2906 22450 313357
Network services 726 726 n(zit. ‘used for
iscovery

IV. EXPERIMENTAL METHODOLOGY

We evaluate ConfEx using public images in the Docker Hub
repository. To understand the individual benefits of discovery
and extraction, we evaluate these two phases separately. In
addition, we present two use cases of ConfEx: (1) detecting
injected misconfigurations through outlier analysis and (2)
syntactic configuration validation.

A. Target Images

We focus on the Docker Hub images that con-
tain either the network services system configuration file
(/etc/services) or one of the three following pop-
ular cloud applications: httpd, MySQL, and Nginx. For
/etc/services, we use the most downloaded thou-
sand images and discard the images that do not have
/etc/services. For each application, we use the images
that are downloaded at least 50 times and contain the appli-
cation name in their name or description. We have manually
labeled the application configuration files in these images by
examining file contents and file paths. Table II summarizes
the number of images we use in our evaluation along with the
number of text files and identified configuration files in these
images. In total, we use 4581 images, where some images
contain both the /etc/services file and one of the target
applications.

B. Evaluation of Discovery

We compare ConfEx’s discovery phase with Augeas’ con-
figuration file discovery approach, which is checking the ex-
istence of files in specific file paths. Table III shows the paths
checked by Augeas to discover httpd configuration files as an
example. These file paths account for the default application
installation paths in various Linux distributions.

We measure the effectiveness of configuration file dis-
covery separately for each application and using five-fold
cross validation. That is, for each application, we randomly
divide the images that contain the application into five equal-
sized partitions. We use four of these partitions to train our
framework by generating an application vocabulary, and all the
text files in the images of the fifth partition as testing set, where
configuration discovery predicts whether the input text files
are configuration files of the target application. We repeat this
procedure five times, where each partition is used as a testing
set once. Furthermore, we repeat the five-fold cross validation
ten times with different randomly-selected partitions.

TABLE III
FILE PATHS CHECKED BY AUGEAS TO IDENTIFY HTTPD CONFIGURATION
FILES. “*” IS A WILDCARD THAT REPRESENTS ANY FILE NAME.

/etc/httpd/conf/httpd.conf
/etc/httpd/httpd.conf
/etc/httpd/conf.d/*.conf
/etc/apache2/sites—-available/*
/etc/apache2/mods—-available/*
/etc/apache2/conf-available/*.conf
/etc/apache2/conf.d/*
/etc/apache2/ports.conf
/etc/apache2/httpd.conf
/etc/apache2/apache2.conf

We use precision and recall as evaluation metrics. Preci-
sion is the fraction of true positives (i.e., correctly predicted
configuration files) to the total number of files predicted as
configuration files, and recall is the fraction of true positives
to the total number of configuration files in the testing set.

C. Evaluation of Extraction

The disambiguation process described in Sec. III-B2 signif-
icantly impacts the parameter and value distributions observed
across the configuration corpus. We demonstrate this impact
by studying the total number of distinct values each key gets
with and without disambiguation. As the configuration files of
the same application may reside in different paths in different
images, we analyze all extracted application key-value pairs
regardless of the paths of the source files.

D. Detecting Misconfigurations with Outlier Analysis

We present a quantifiable demonstration of ConfEx by
automatically detecting injected misconfigurations using Peer-
Pressure [15]. PeerPressure finds the culprit configuration
entry in an image with a single configuration error, where
configurations are provided as key-value pairs. For each key-
value pair, PeerPressure examines the values assigned to the
key across a trusted corpus, and calculates the probability of
the given value being a misconfiguration based on empirical
Bayesian estimation. If a value is an outlier among the values
that are assigned to the same key across the corpus, the
corresponding entry has a high probability of being miscon-
figured. Finally, the key-value pairs are ranked based on the
calculated probabilities, so that the pairs that are ranked higher
are outliers, and hence, the most likely errors.

As PeerPressure is designed for Windows registry, it does
not have configuration discovery and extraction capability. We
use ConfEx to generate configuration key-value pairs for Peer-
Pressure’s outlier analysis. Additionally, we show the impact
of ConfEx’s key-value pair disambiguation on PeerPressure’s
accuracy by using the default Augeas key-value pairs before
disambiguation as a baseline.

We use PeerPressure to detect the application misconfigura-
tions listed in Table IV as well as synthetic /etc/services
misconfigurations. For applications, we inject each miscon-
figuration listed in Table IV to a randomly selected image
that contains the target parameter to be misconfigured. To
generate /etc/services misconfigurations, we randomly

TABLE IV
INJECTED APPLICATION MISCONFIGURATIONS

application name description

httpd url Error 401 points to a remote URL [30]

httpd dns Unnecessary reverse DNS lookups [31]

httpd path Wrong module path

httpd mem MaxMemFree should be in KB

httpd req Too low request limit per connection
MySQL enum Enumerators should be case-sensitive [18]
MySQL buf Unusually large sort buffer [32]
MySQL limit Too low connection error limit [33]
MySQL max Invalid value for max number of connections
Nginx files Too few open files are allowed per worker
Nginx debug Logging debug outputs to a file [34]
Nginx access Giving access to root directory [35]

Nginx host Using hostname in a listen directive [35]

select a service in a randomly chosen image, and change the
port used by the selected service to a random integer between
1 and 10000. For each target misconfiguration, we repeat
the randomized injection 1000 times. For each injection, we
train PeerPressure using the key-value pairs that belong to the
target application from all images except for the misconfigured
image. We then run PeerPressure and record its output ranking
for the injected error.

E. Rule-based Configuration Type Validation

We present a second use case of ConfEx by validating con-
figuration types (such as integer or file path) through syntactic
rules. For this purpose, we randomly select a configuration
file, and for each parameter in this file, we write syntactic type
validation rules using regular expressions similar to those used
in prior work [17], [25]. For example, if the type of a parameter
is IP address, the value assigned to this parameter is validated
using the regular expression “\d{1, 3} (\.\d{1, 3}){3}s.
For each rule, we map the rule to the key that points to the
rule’s target value in the selected file. For example, if the
selected file is the one presented in Fig. 5, we check whether
the value assigned to the keys /directive[l]/arg (for
Augeas keys) and Listen (for ConfEx keys) is a port number
across all known configuration files in our corpus.

Based on the randomly selected file, we write syntactic
rules for 25, 12, and 25 parameters in httpd, MySQL, and
Nginx, respectively. We use these rules to validate the values
assigned to the corresponding keys, and show the impact of
disambiguation on syntactic configuration validation.

V. RESULTS

This section first discusses the selection of the confidence
threshold in the discovery phase of ConfEx. Then, we compare
ConfEx’s discovery and extraction phases with the baseline
approaches. Sections V-C and V-D demonstrate use cases of
ConfEx to detect configuration errors.

A. Configuration File Discovery

Figure 6 shows the precision and recall ConfEx achieves
on identifying the configuration files of the three target ap-
plications with various Top fidence- With Teon ridence > 0.5,

1.000

10F === = ==T==5L o

1.00
0.995 0.98 0.9 1
0.990 |- - oveemm e | 0.96 08F =l |
— 0.94 oo — _
0.985 - ocoveieeaiii — precision || — precision 0.7k — precision ||
- recall 0.92 oo - recall - recall
0.980 1 1 1 1 N N N 0.90 1 1 1 1 I I I 0.6 L L L L n n n
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
Tmnfirz'z*m-v Z-rmﬁrh'm-w Tconfidence
(a) httpd (b) MySQL (c) Nginx

Fig. 6. Configuration file discovery results using vocabulary-based discovery w.r.t. confidence threshold. With a confidence threshold above 0.5, ConfEx’s
discovery approach achieves above 0.95 precision and recall in all applications we study. Note that the subfigures have different vertical axis scales.

ConfEx achieves above 0.95 precision and recall for all three
applications.

The precision of discovery typically increases with the in-
creasing Ton fidence- This is because with a high Teon fidences
the input text files with a few important words that don’t
exist in the vocabulary are labeled as non-configurations,
reducing false positives. T¢op fidence has a higher impact on
Nginx’s precision compared to httpd and MySQL as Nginx
uses parameter names and command words that are commonly
found in other text files (such as user and include).

While increasing the precision, the increasing Tton fidence
decreases recall. The impact of 7.0y, fidence O recall is more
obvious in MySQL configuration files, which tend to be
diverse where some configuration files contain rarely-used
parameters. In addition, MySQL configuration files include
fewer configuration commands compared to httpd and Nginx,
decreasing the number of words in W (i.e., set of important
words in the input text file) that also exist in the vocabulary.

The consistently high precision and recall in Fig. 6a indi-
cates that most of the words in the httpd vocabulary are unique
to httpd (such as LoadModule and IfModule).

In the rest of our study, we use the Tty ridence = 0.5. This
prevents misprediction of the non-configuration files that have
two words in their W, if only one of these words exist in the
vocabulary with a min_cardinality,, < 2, while considering
that an input configuration file’s Wy, may contain words that
are not seen during the training.

Figure 7 compares the baseline discovery approach of
checking the standard configuration file paths with the
proposed vocabulary-based discovery. The default approach
achieves ideal precision, i.e., all labeled configuration files
are correctly labeled without false positives. This is because
the standard configuration file paths (such as those shown in
Table III) do not contain text files that are not configurations.
However, as shown in Fig. 7b, only 19% of Nginx configu-
ration files can be found with this approach as the remaining
configuration files are not located in the default paths in the
target images.

Overall, ConfEx successfully identifies 34156 target config-
uration files (out of 34241), while the baseline can identify
only 12249 of the configuration files. In the remaining 85
files that are missed by ConfEx, approximately half of the

1.00 1.0
0.98}- 0.8
& =06
a 0.96 - g 00
0094 8 | L o4l
o fault
0.92 3 default 0.2 [defau
I ConfEx I ConfEx .
0.90 L 0 T — L
httpd MySQL Nginx httpd MySQL Nginx
Application Application
(a) precision (b) recall
Fig. 7. Comparison of the default path-based and ConfEx’s vocabulary-

based discovery approaches (T¢on fidence = 0.5). The default approach can
identify only 19-75% of the application configuration files, leading to low
recall. ConfEx successfully identifies more than 98% of these files while
resulting in less than 2% false positives in Nginx.

parameter names are uncommon. As these parameter names
are not seen during vocabulary generation, the corresponding
files are labeled as non-configuration files. ConfEx’s low-
est precision, which is over 98%, is observed with Nginx,
where ConfEx labeled 347 of the non-configuration files
as Nginx configurations among over 300,000 unlabeled text
files. These mislabeled files contain words that are used as
parameter names in Nginx such as the word include in file
/etc/1ld.so.conf.

B. The Impact of Disambiguation

In Fig. 8, we focus on the number of distinct values per
configuration key across all known configuration files to show
how ConfEx’s disambiguation step changes the distribution of
the extracted key-value pairs.

When disambiguation is applied to the key-value pairs
in the httpd configuration corpus, the number of distinct
values assigned to individual keys reduce significantly. This
is because an Augeas key can correspond to different pa-
rameters in different images. For example, directive[1]
and directive[2] can correspond to Listen and
Redirect, respectively, in one file, but Redirect and
Listen, respectively, in another, giving the impression that
the directive[1l] and directive[2] keys both have
two distinct values. This problem is resolved by ConfEx’s

) . : : @ 250 F - - -
3 150 default El 500 1 default
g - = ConfEx] g i - - ConfEx ||
- -
£ 100 g0} 1
7 Z 100} | 1
o \
; 50 - g 50 ‘]
0 el # 0 v .
10 100 1000 10 100 1000
key # key #
(a) httpd (b) MySQL

70

v 200F T T T . 0 r T T
s . default Seof: default
2 300t -- Confex{{ S 50f] - - ConfEx |
‘g - *g 40+ R
5 200 1 S 30! g
1] - 0 1
© 100} ‘\ | T 20 1 b
G 3 G 10F 1 1
0 . <SS # ol vm-cnccmo oo

1 10 100 1000 1 10 100 100010000

key # key #
(c) Nginx (d) /etc/services

Fig. 8. The number of distinct values per key across application configuration corpora before and after ConfEx’s disambiguation. The keys are sorted
individually for each line. Each key corresponds to a single configuration parameter when using the disambiguated keys. The default Augeas keys, however,
may correspond to different parameters in different images. Disambiguation substantially changes the distribution of the observed key-value pairs.

disambiguation, where a key consistently corresponds to the
same parameter across different files and images.

In Fig. 8b, the impact of disambiguation appears to be less
significant for MySQL. However, upon further inspection, we
observed that the keys do not correspond to the same parame-
ters. For example, the first two disambiguated keys in Fig. 8b
correspond to the MySQL passwords assigned to client and
mysqgl_upgrade in the configuration file, whereas the first
two keys in the default keys correspond to the passwords as-
signed to mysqgl, connector_python, and mysgladmin
in addition to client and mysql_upgrade.

The Nginx distributions shows a decrease in the num-
ber of distinct values per key after disambiguation. The
first key in both default and disambiguated distributions,
server/server_name, illustrates how the number of dis-
tinct values per key decreases. When using the disambiguated
keys, the key server/server_name covers all Nginx
server name entries across the images. However, with the
default keys, this key is used only if there is a single
server/server_name is declared in the configuration file.
If there are multiple server names in the same file, Augeas
assigns an index to the key (server/server_name[l],
server/server_name [2], etc.), preventing the compari-
son of server names across images using the same key.

Applying disambiguation to network services configurations
reveals an interesting fact that is not visible when using the
default Augeas key-value pairs: There is a single service, X11,
that uses more than 60 ports for both tcp and udp connections.
All other services use at most two ports.

C. Detecting Misconfigurations with PeerPressure

Given an image with an injected misconfiguration, PeerPres-
sure ranks all the configuration key-value pairs in the image
with respect to their probability of being an error. Figure 9
shows the fraction of injected errors that are ranked within
the top five suspects by PeerPressure among 1000 randomized
injections of our target misconfigurations. Using Confex’s
disambiguated keys consistently leads to similar or higher
rankings compared to using default Augeas keys, making it
easier to pinpoint the injected error.

With the default keys, PeerPressure suffers from having
an incorrect view on the distribution of configurations as
discussed in Sec. V-B. This problem becomes more significant

=
o

0.8

0.6

0.4

The fraction of errors that are
among the top 5 suspects

L @ O o

R \)Q,%o% -«
NiRe)

6“\69,@(9‘025\

Misconfiguration

Fig. 9. The fraction of injected errors that are ranked within the top
five suspects by PeerPressure among 1000 randomized injections for each
misconfiguration. services is the /etc/services misconfiguration.

when the number of keys are used for the misconfigured
parameter across the corpus is large (e.g., more than five),
such as in services misconfigurations. Moreover, when the
misconfigured image has files that have substantially different
parameter ordering than the files seen in the corpus, the
parameters in the image are represented by keys that use
different indexing. As a result, common configuration entries
become outliers in the corpus and have high PeerPressure
rankings. However, PeerPressure can still detect the injected
errors with the default keys if the parameter ordering in the
misconfigured image is similar to the majority of images seen
in the corpus.

In files and debug errors, outlier detection performs poorly
both with the default Augeas keys and ConfEx’s disam-
biguated keys. This is because compared to the other injected
errors, the parameters being misconfigured in files and debug
have a flatter value distribution with a large number of distinct
values across the corpus. Hence, the injected erroneous value is
not perceived as an outlier by PeerPressure. This is an inherent
weakness of outlier analysis and can be avoided by using a
larger configuration corpus.

D. Rule-based Type Validation

Fig. 10a shows the number of configurations that use the
keys for which we have written syntactic validation rules

2 0

o c

= 18000 S 10000

©

5 15000 [-.|| = defafult, g 1000 — gefafult
=y I ConfE I ConfEx
£ 12000 |- all 2

S 9000 S LOO feferoeeeee
kot ©

% 6000 2 100
(0] . >

2 3000 £ Ao m
‘*6 o

+ 3

0
httpd MySQL Nginx
Application

httpd MySQL Nginx
Application

(a) Number of checked configurations (b) Number of values marked as invalid

Fig. 10. The number of configuration entries checked and marked as invalid
using rule-based type validation. With the default keys, all values that share
the same key are checked using the same rule although they belong to different
parameters in httpd, resulting in a high number false negatives. In MySQL and
Nginx, default Augeas keys can capture only a subset of the target key-value
pairs that can be validated by the given rules.

for both default Augeas and ConfEx’s disambiguated keys.
As the same default Augeas key can correspond to multiple
parameters in httpd, all values that share the same key are
checked using the same rule even if they correspond to
different parameters. This results in over 2500 values being
marked as invalid as seen in Fig. 10b. The same problem
does not occur with MySQL and Nginx as their Augeas
keys are not shared by different parameters. However, when
using the default keys, the validation misses 1068 (19%) and
6894 (46%) of the target MySQL and Nginx parameters,
respectively.

With ConfEx’s keys, the validation rules detect only three
invalid values, and one of these values is also captured with
the default keys. We have found that these values are to be
replaced by a script (e.g., one of the values is __ _PORT__),
and are indeed syntactically invalid.

VI. RELATED WORK

Finding and preventing errors is a major focus of the
research on software configurations. Execution trace analy-
sis and binary instrumentation have been shown to provide
insight on the root causes of configuration errors [12], [36].
Due to their intrusiveness, however, instrumentation and trace
analysis are often impractical on production workloads. Some
techniques can validate configurations before deployment to
avoid service disruptions and outages. Source code analy-
sis [18], [28], [29], [37] and natural language processing
on application documentations [14], [38] have been used to
infer configuration constraints. Configuration entries that do
not comply with these constraints are then marked as errors.
Application-agnostic statistical techniques such as PeerPres-
sure [15], EnCore [17], and ConfigV [16] use previously
observed configurations to learn about the common patterns,
and identify deviations as potential errors. These techniques
require key-value pairs that represent configurations for anal-
ysis and validation, and do not address discovery or extraction
for text-based configuration files.

Recently, Huang et al. proposed SAIC [39], a tool to help
users discover text-based configuration files in cloud instances
with unlabeled content. To identify configuration files, SAIC
analyzes the change patterns of files over the lifetime of
a cloud instance. Hence, SAIC is only applicable to cloud
instances that have multiple versions where the configuration
file locations remain the same and configurations are modified.

In prior studies, the extraction of configuration key-value
pairs have performed using several methods: Parsing known
configuration files with custom scripts (e.g., [14]), crawl-
ing erroneous files from mailing lists and technical forums
(e.g., [11]), parsing files located in default paths using con-
figuration parsing libraries (e.g., [17]), and using standardized
configuration stores such as Windows registry (e.g., [15]). In
image repositories and multi-tenant cloud environments, how-
ever, configuration file locations are unknown, and configura-
tion parsers produce key-value pairs that lack the consistency
and robustness required for meaningful statistical analysis.

Existing tools for handling configurations focus on central-
ized management rather than extracting key-value pairs in a
cloud environment. Tools such as Chef [40] and Ansible [41]
have configuration editing capabilities that are restricted to
search-and-replace based on regular expressions, but they can-
not extract configuration data from text files. CFEngine [42]
can parse standard file formats such as XML and JSON, but
not application-specific files formats such as in httpd and
Nginx configurations. Several tools, including Puppet [23] and
bcfg2 [24], can edit application-specific files by leveraging
Augeas library [22]. As we show in this work, using Augeas
library alone is not sufficient for parameter extraction for a
robust corpus-based analysis.

To the best of our knowledge, our work is the first to intro-
duce a configuration analytics framework to enable discovery
and analysis of configurations in image repositories and multi-
tenant cloud platforms.

VII. CONCLUSION

In this work, we have proposed ConfEx, a framework to
discover and analyze text-based software configurations in
multi-tenant cloud platforms. Our framework enables the use
of existing configuration analysis tools, which are designed
for key-value pairs, with loosely-structured text-based config-
urations in the cloud. To discover configuration files in cloud
instances with unlabeled content, ConfEx keeps track of the
words that appear as the first word of non-comment lines in
text files. To parse these files, ConfEx leverages a community-
driven configuration parser, Augeas. It then disambiguates the
key-value pairs generated by Augeas to achieve key-value
pairs that represent application configuration parameters and
are consistent across different files and cloud instances. Our
results have shown that ConfEx achieves over 98% precision
and recall on identifying configuration files and consistently
improves the efficacy of detecting configuration errors through
outlier analysis and syntactic validation.

[1]

[2]

[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: Understanding and dealing
with over-designed configuration in system software,” in Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE, 2015, pp. 307-319.

V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury, “Deter-
mining configuration parameter dependencies via analysis of configura-
tion data from multi-tiered enterprise applications,” in Proceedings of
the 6th International Conference on Autonomic Computing, ser. ICAC,
2009, pp. 169-178.

R. Johnson. (2010) More details on today’s outage. https://goo.gl/
3Q0VUn.

L. Y. Liang. (2013) Linkedin.com inaccessible on thursday because of
server misconfiguration. https://goo.gl/FBa57m.

Y. Sverdlik. (2012) Microsoft: misconfigured network device led to azure
outage. https://goo.gl/WhbvzK.

K. Thomas. (2011) Thanks, amazon: The cloud crash reveals your
importance. https://goo.gl/CVOsMX.

M. Welsh. (2013) What i wish systems researchers would work on.
https://goo.gl/eCzVNj.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USENIX symposium
on internet technologies and systems, vol. 67. Seattle, WA, 2003.

A. Rabkin and R. H. Katz, “How hadoop clusters break,” IEEE Software,
vol. 30, no. 4, pp. 88-94, 2013.

Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, ser. SOSP, 2011, pp. 159-172.

T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in /2th
USENIX Symposium on Operating Systems Design and Implementation,
ser. OSDI, 2016.

M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI, 2012, pp. 307-320.

F. Behrang, M. B. Cohen, and A. Orso, “Users beware: Preference
inconsistencies ahead,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE, 2015, pp. 295-
306.

R. Potharaju, J. Chan, L. Hu, C. Nita-Rotaru, M. Wang, L. Zhang,
and N. Jain, “Confseer: Leveraging customer support knowledge bases
for automated misconfiguration detection,” Proc. VLDB Endow., vol. 8,
no. 12, pp. 1828-1839, Aug. 2015.

H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
misconfiguration troubleshooting with peerpressure,” in Proceedings of
the 6th Conference on Symposium on Opearting Systems Design &
Implementation, ser. OSDI, 2004, pp. 17-17.

M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing configuration file specifications with association rule
learning,” Proc. ACM Program. Lang., vol. 1, pp. 64:1-64:20, Oct.
2017. [Online]. Available: http://doi.acm.org/10.1145/3133888

J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “Encore: Exploiting system environment and correlation in-
formation for misconfiguration detection,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS, 2014, pp. 687-700.
T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou,
and S. Pasupathy, “Do not blame users for misconfigurations,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP, 2013, pp. 244-259.

W. Chen, H. Wu, J. Wei, H. Zhong, and T. Huang, “Determine
configuration entry correlations for web application systems,” in /EEE
40th Annual Computer Software and Applications Conference, ser.
COMPSAC, vol. 1, June 2016, pp. 42-52.

D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar,
“Context-based online configuration-error detection,” in Proceedings of
the USENIX Annual Technical Conference, ser. USENIXATC, 2011, pp.
28-28.

[21]

[22]
(23]
[24]

[25]

[26]

(27]

[28]

[29]

[30]
(31]
(32]
[33]
[34]
[35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

S. Zhang and M. D. Ernst, “Proactive detection of inadequate diagnostic
messages for software configuration errors,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015, 2015, pp. 12-23.

D. Lutterkort, “Augeas—a configuration api,” in Linux Symposium, Ot-
tawa, ON, 2008, pp. 47-56.

J. Loope, Managing Infrastructure with Puppet: Configuration Manage-
ment at Scale. ”O’Reilly Media, Inc.”, 2011.

N. Desai, “Befg2: A pay as you go approach to configuration complex-
ity,” Australian Unix Users Group (AUUG2005), vol. 10, 2005.

W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation,”
in Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE’17, 2017, pp. 88-97.
[Online]. Available: http://doi.acm.org/10.1145/3084226.3084244

P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou, “Confvalley: A
systematic configuration validation framework for cloud services,” in
Proceedings of the Tenth European Conference on Computer Systems,
ser. EuroSys 15, 2015, pp. 19:1-19:16.

S. Baset, S. Suneja, N. Bila, O. Tuncer, , and C. Isci, “Usable declarative
configuration specification and validation for applications, systems, and
cloud,” in Proceedings of the Industrial Track of the 18th International
Middleware Conference, ser. Middleware Industry’17.

S. Zhou, S. Li, X. Liu, X. Xu, S. Zheng, X. Liao, and Y. Xiong,
“Easier said than done: Diagnosing misconfiguration via configuration
constraints analysis: A study of the variance of configuration constraints
in source code,” in International Conference on Evaluation and Assess-
ment in Software Engineering, ser. EASE’17, 2017, pp. 196-201.

S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong, “Confmapper:
automated variable finding for configuration items in source code,” in
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2016, pp. 228-235.

T. Osbourn. Cannot wuse a full wurl in a 401 er-
rordocument directive - ignoring! http://tosbourn.com/
notice-cannot-use-a- full-url-in-a-401-errordocument-directive-ignoring/.
Apache core features. https://httpd.apache.org/docs/2.4/mod/core.html.
Optimize mysql configuration with mysql tuner. https://stackoverflow.
com/questions/25166602.

MySQL 5.7 reference manual. https://dev.mysql.com/doc/refman/5.7/en/
blocked-host.html.
Debugging nginx.
debug/.

Nginx pitfalls and common mistakes. https://www.nginx.com/resources/
wiki/start/topics/tutorials/config_pitfalls/.

S. Zhang and M. D. Ernst, “Which configuration option should i
change?” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE, 2014, pp. 152-163.

S. Nadi, T. Berger, C. Kistner, and K. Czarnecki, “Mining configuration
constraints: Static analyses and empirical results,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE,
2014, pp. 140-151.

D. Jin, M. B. Cohen, X. Qu, and B. Robinson, “Preffinder: Getting the
right preference in configurable software systems,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE, 2014, pp. 151-162. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2643009

Z. Huang and D. Lie, “SAIC: identifying configuration files for
system configuration management,” CoRR, vol. abs/1711.03397, 2017.
[Online]. Available: http://arxiv.org/abs/1711.03397

M. Taylor and S. Vargo, Learning Chef: A Guide to Configuration
Management and Automation. “O’Reilly Media, Inc.”, 2014.

L. Hochstein, Ansible: Up and Running: Automating Configuration
Management and Deployment the Easy Way. O’Reilly Media, Inc.,
2014.

M. Burgess and R. Ralston, “Distributed resource administration using
cfengine,” Software: practice and experience, vol. 27, no. 9, pp. 1083—
1101, 1997.

https://www.nginx.com/resources/admin- guide/

