
Run-Time Energy Management of Manycore Systems
Through Reconfigurable Interconnects

Jie Meng Chao Chen Ayse K. Coskun Ajay Joshi
Electrical and Computer Engineering Department, Boston University, Boston, MA, USA

{jiemeng, chen9810, acoskun, joshi}@bu.edu

ABSTRACT
The active on-chip network channel width has a direct im-
pact on the cache and memory access latency in manycore
processors. A good choice of channel width improves the
application performance and energy efficiency. In manycore
systems, where workload patterns change significantly over
time, setting network channel width statically for the aver-
age or worst-case traffic gives sub-optimal energy efficiency.
This paper proposes a novel, low-cost method to reconfigure
the network channel width at run time to maximize energy
efficiency of applications. We analyze the effect of chan-
nel width choices for two commonly used cache hierarchies,
private and distributed caches, on manycore systems with
an underlying bus or crossbar architecture running parallel
workloads. The proposed reconfiguration policy predicts the
energy-delay product (EDP) for the currently running ap-
plication at various channel widths and chooses the best fit-
ting width to minimize EDP. The experimental results show
that our policy reduces EDP by 49.3% and 23.9% for private
L2 cache and 65.5% and 20.6% for distributed L2 cache on
average in systems with bus and crossbar, respectively, in
comparison to statically setting the channel width.

1. INTRODUCTION
Today’s manycore systems already have dozens of cores on

a single die (e.g., Intel’s 48-core single-chip cloud [16] and
Tilera’s 64-core systems) and the core count is expected to
increase in future. With such large core counts, the on-chip
interconnect network used for L1-L2 cache and L2-memory
controller communication has a significant impact on the
system performance and energy. Conventional interconnect
architectures for manycore systems are statically configured
at design time based on the power, area and performance
targets. However, such large systems undergo considerable
workload changes during their lifetime, making the static
configuration sub-optimal. This paper proposes a low-cost
and adaptive run-time energy management approach using
reconfigurable on-chip networks to improve EDP of many-
core systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’11, May 2–4, 2011, Lausanne, Switzerland.
Copyright 2011 ACM 978-1-4503-0667-6/11/05 ...$10.00.

Future manycore systems are expected to appear in a
number of computing domains such as datacenters, high-
performance computing clusters, and high-performance em-
bedded systems. These domains contain a large variety of
applications (scientific computing, modeling, financial ap-
plications, etc.) that can be parallelized. Similar to the
applications we run today, these future parallel applications
will differ in their performance characteristics, such as in-
structions per cycle (IPC), memory access trends, and com-
munication intensities. Therefore, workload characteristics
are expected to change dramatically at run time.

The network-on-chip (NoC) infrastructure has a direct
impact on application performance and energy efficiency
in manycore systems. Various design techniques improve
performance and energy efficiency by adjusting the network
topologies [20, 21, 14, 31], refining cache coherence protocol
implementation [12, 7, 9, 26], or modifying the NoC pa-
rameters such as channel widths [27], virtual channel design
[19, 29], routing algorithms[15], and flow control [22]. These
techniques assume a static network architecture that does
not adapt to the changes in the network traffic.

As the behavior of workloads in future manycore systems
is expected to vary significantly, it is imperative to adapt the
NoC architecture to the workload properties. For example,
applications that are communication-intensive have higher
performance when wider router-to-router channels are avail-
able. However, this performance increase results in higher
NoC power consumption. Moreover, higher performance re-
sults in higher application IPC, resulting in even higher sys-
tem power. This increase in system power consumption is
justifiable in terms of the overall energy cost if the perfor-
mance benefits are substantial and if the power budgets are
not exceeded. However, for a number of benchmarks, there
is limited increase in performance in such cases, causing a
wastage of power if a high-performance and high-power in-
terconnect infrastructure is selected. Recent research has
started the development of reconfigurable NoC architectures
to improve NoC performance and energy efficiency [28, 33,
21]. However, a unified approach considering the perfor-
mance and power impact of reconfiguration on the entire
system has not been developed.

In this paper, we propose a run-time NoC channel width
configuration policy for optimizing the energy-performance
tradeoff of manycore systems across various workloads. Our
specific contributions are as follows:

• We propose a low-cost NoC reconfiguration policy for con-
figuring the channel width in bus and crossbar topologies
to minimize EDP. Our reconfiguration policy monitors ap-
plication behavior through performance counters, predicts
the EDP at the available widths for the manycore system
based on a regression model derived offline, and selects
the best-fitting width to minimize EDP. This policy is
low-cost, as we reconfigure only when we predict EDP
improvement.

• We provide a comprehensive analysis of the power and
performance trends for a 64-core system that uses the
proposed reconfiguration policy while running PARSEC
[5] and NAS [3] parallel benchmarks. We explore bus
and crossbar topologies, and private and distributed L2
cache architectures for the manycore system. Our policy
achieves up to 89.2% and 56.6% reduction in application
EDP in comparison to statically setting the network chan-
nel width for manycore systems with bus and crossbar, re-
spectively. The average system EDP reduction across the
entire set of 12 parallel applications for the bus is 65.5%
for distributed L2 and 49.3% for private L2. The sav-
ings for the crossbar are 20.6% and 23.7% for distributed
and private L2, respectively. These results demonstrate
promising EDP savings for a highly variant workload mix
running on a real-life manycore system.

The rest of the paper starts with an overview of the related
work. Section 3 provides the details of the target system,
the performance model, and the power model. Section 4
describes our run-time management policy for EDP opti-
mization. Section 5 provides the experimental results, and
Section 6 concludes the paper.

2. RELATED WORK
Energy management of multicore systems has tradition-

ally focused on turning off or slowing down under-utilized
resources. A number of techniques have been introduced
to predict the idle time slots of cores (and other resources)
to minimize the performance impact of power management
(DPM) [4]. Dynamic Voltage and Frequency Scaling (DVFS)
is another commonly used technique, and has been adopted
in recent manycore chip design [16]. Recent research has
also proposed application scheduling and dynamic global
power management (e.g., [35, 17]) to improve energy effi-
ciency. Our run-time reconfiguration technique does not uti-
lize DPM, DVFS, or scheduling based techniques, but such
techniques are complimentary and can be run in conjunction
with our policy.

To address performance and power of manycore systems,
run-time management techniques that explicitly account for
NoC design have been proposed. Nollet et al. propose a
heuristic technique for performance-aware task assignment
and migration for a 3×3 system with a mesh network [30].
Similarly, a thermal management technique for 3D NoC sys-
tems performs traffic-aware downward routing and thermal-
aware vertical throttling to improve throughput [8]. Fiorin
et al. propose using NoC traffic information to determine
resource allocation [13]. All of these techniques improve the
overall system design in terms of performance and/or power
but are sub-optimal for dynamically changing workload as
they assume static interconnection configurations.

For reconfigurable network architectures, recent work pro-
poses techniques such as changing the network topology [21,

28, 33], changing the virtual channel count, network frag-
mentation [1] or router buffer sizes [29], and packet frag-
mentation [18]. Dafali et al. illustrate the general process
and design method of reconfigurable interconnects [11]. Such
techniques focus on improving performance and/or reducing
power. However, most of the prior work on reconfigurable
NoCs investigate multicore systems with a small core count,
use synthetic network benchmarks for evaluation, or do not
perform run-time network configuration, which limits the
advantages of network reconfiguration.

Our approach focuses on designing a run-time reconfigu-
ration policy for adjusting the channel width of the inter-
connects. The goal is to adapt to varying workload charac-
teristics and network traffic for improving energy efficiency
of a large manycore system. We analyze parallel workloads
and develop a prediction model to estimate IPC and EDP
for various NoC configurations. Our run-time policy opti-
mizes EDP by changing the channel width of a bus or cross-
bar only when there is a substantial performance benefit.
A major distinguishing feature of our work is that we con-
nect the network behavior with the architecture-level perfor-
mance parameters to optimize the application performance
and energy simultaneously.

3. METHODOLOGY

3.1 Target System
Our target system is a 64-core processor, where each core

has 2-way issue and out-of-order execution. As a represen-
tative technology node for future chips [23], we assume the
system is manufactured at 22 nm process and has a total
die area of 400 mm2. The cores operate at 1 GHz frequency
and have a supply voltage of 0.9 V. Each core has 2 integer
units, 1 floating point unit, and private 16 KB L1 instruc-
tion and data caches. The core architecture is based on the
cores used in the Intel single-chip cloud [16].

We assume shared memory programming model. We ex-
plore both private and distributed L2 cache architectures
and keep the total L2 size (16 MB) fixed across the two con-
figurations. Thus, in the private L2 architecture, we have
64 L2 caches (256 KB each), while in the distributed cache
architecture there are 16 L2 caches (1 MB each). The many-
core system uses MESI cache coherence protocol for shared
caches. Figure 1(a) and Figure 1(b) illustrate the mem-
ory hierarchy of our target system constructed with private
L2 and distributed L2 caches, respectively. Our target sys-
tem has 16 memory controllers, which are uniformly dis-
tributed across the chip. The architectural parameters of
each core and corresponding memory hierarchy configura-
tions are listed in Table 1.

Table 1: Core Microarchitecture Parameters

Architectural Configuration
CPU Clock 1.0 GHz
Branch Predictor Tournament predictor
Issue 2-way Out-of-order
Reorder Buffer 128 entries
Functional Units 2IntAlu, 1IntMult, 1FPALU, 1FPMult
Physical Regs 128 Int, 128 FP
Instruction Queue 64 entries
L1 ICache 16 KB @ 2 ns
L1 DCache 16 KB @ 2 ns

4-way set-associative, 64 Bytes block
L2 Cache(s) Private L2: 64 x 256 KB @ 5 ns

Distributed L2: 16 x 1 MB @ 6 ns

(a) Private L2 (b) Distributed L2

Figure 1: Two memory architectures with caches and mem-
ory controllers distributed on the chip.

Out of the various network topologies proposed for on-
chip communication in manycore systems, we explore two
low-diameter network topologies: bus and crossbar, due to
their ease of design and programming. Both bus and cross-
bar topologies use long global interconnects that are routed
around the chip in a serpentine fashion. These interconnects
are pipelined to reduce power dissipation and provide high
throughput. Figure 2 shows the physical layout of the bus
and crossbar. The arbitration block for both topologies is
located in the center of the chip. For the crossbar, we adopt
a multiple-write / single-read architecture; i.e., each output
port is connected to multiple input ports through a dedi-
cated channel. The channels in both topologies have flexible
widths: 128-bit, 64-bit, and 32-bit. The channel widths can
be configured at run time by the OS to reduce power and/or
to improve performance.

arbiter

data bus/crossbar

arbitration request/response
and network reconfiguration
control lines

core & cache

Memory controller

Figure 2: Layout of bus/crossbar topology. The channel
width can be configured as 128, 64, or 32-bit. For the cross-
bar, we assume a multiple-write / single-read architecture
with global arbitration.

3.2 Processor Performance Model
We use the M5 full-system simulator [6] for the perfor-

mance modeling of our target system. We model our target
system with the Alpha instruction set architecture (ISA) as
it is the most stable ISA supported in M5. Currently, the
full-system mode models a DEC Tsunami system to boot
an unmodified Linux 2.6 operating system. We select paral-
lel applications from the PARSEC benchmark suite [5] and
NAS Parallel Benchmarks (NPB) suite [3], both of which
have been widely used in parallel system studies.

M5 models a split-transaction bus that is configurable in
both latency and bandwidth. The bus arbitration follows
first-come-first-serve logic, and uses round-robin scheduling
for bus accesses. Our crossbar model uses multiple-write /
single-read architecture. Each dedicated channel associated
with a core is modeled using bus as a building block. The
access pattern follows the same arbitration logic as the bus.

We run PARSEC benchmarks in M5 with sim-large input
sets and NAS with class B problem sets. For NAS bench-
marks, we use a warm-up period of 1 billion instructions
to get past the initialization phase and avoid cold-start ef-
fects. The start of the region of interest (ROI) (i.e. parallel
phase) is pre-defined in the PARSEC hook-libraries, so we

fast-forward to the ROI. We execute 1 billion instructions
in the ROI with the detailed out-of-order CPUs for all the
benchmarks. We collect performance statistics from M5 sim-
ulations and use them as inputs for our power model.

We use application IPC, defined in Equation (1), as the
metric to evaluate the performance of the benchmarks. For
single-threaded systems, IPC is a commonly used perfor-
mance metric and it tends to have a strong correlation with
the power consumption [10]. However, the use of IPC as a
performance metric for multicore systems and parallel work-
loads needs special attention, considering the potential inac-
curacies [2]. For example, instruction path of multithreaded
workloads running on multiple processors can vary substan-
tially, and the execution time of threads in parallel appli-
cations differ considerably. Our goal is to evaluate the im-
pact of the run-time policy on the entire application’s per-
formance. We use the application IPC as our performance
metric as it reflects the performance of the entire system.
Out of execution cycles per core, the largest cycle count is
used to calculate IPC as it represents the total number of
cycles it takes to execute 1 billion instructions on the 64-core
(num cpu = 64) system.

IPCapp =

Pnum cpu
i=1 Committed Instructionscpu[i]

max1≤i≤num cpu Number of Cyclescpu[i]

(1)

3.3 Processor Power Model
We use McPAT 0.7 [25] to estimate the run-time dynamic

and leakage power of the cores in our target system. Mc-
PAT utilizes M5 performance results to compute the power
consumption. To improve accuracy for run-time power com-
putations, we calibrate the McPAT outputs to match the
published power of Intel 48-core processor [16]. Intel sys-
tem is designed using 45 nm technology, therefore we scale
its power to 22 nm. The switching power dissipated by a
CMOS device is proportional to f ·V 2

dd, where f is the oper-
ating frequency and Vdd is the supply voltage. While the Vdd

dependency of the processor leakage power is exponential,
we estimate it as a second order polynomial of Vdd around
its nominal value since the Vdd variation is only around 20%
of default setting [34]. As both our target system and the
Intel chip operate at 1 GHz, we estimate the processor power
of the equivalent 22 nm core using Equation (2).

Power22nm = Power45nm · (
Vdd22nm

Vdd45nm

)2. (2)

The reported average core power and supply voltage for
Intel SCC for the 45 nm technology are 1.83 W and 1.14 V
[16], respectively. For 22 nm, using Equation (2) and Vdd =
0.9 V, we estimate the average core power as 1.14 W. We
then compute the average power using McPAT across all the
benchmarks and obtain the scaling factor, R, between the
average McPAT power and Power22nm. We use R to scale
each benchmark’s core power consumption as follows:

Power22nm scaled = R · Power22nm McPAT (3)

where Power22nm McPAT is the core power computed by
McPAT and Power22nm scaled is the scaled power value we
use in our experiments. A similar calibration approach has
been introduced previously in [24].

We compute the L2 cache power using CACTI 5.3 [36].
As CACTI does not model the 22 nm process technology,
we use CACTI to calculate the power estimation at 32 nm
technology and then use the same scaling method as above.

3.4 Network Performance and Power
For the bus and crossbar network topologies, we use energy-

optimized repeater-inserted pipelined channels that are 75
mm long and have 30 pipeline stages. Each pipeline stage is
designed using PTM for 22 nm technology [23], is 2.5 mm
long and has a latency of 500 ps. Each of the pipeline stage is
optimized for low power and consumes 39 fJ of fixed energy
per bit-time and 238 fJ of data dependent dynamic energy
per bit-time according to SPICE computations.

We assume that the packet size is equal to a single cache
line of 512 bits, and the flit size is the same as the channel
width. We use packetsize/flitsize to calculate the number
of flits per packet. The total packet latency is calculated
as a sum of the arbitration latency, time of flight for a flit,
and serialization latency. The channel throughput is inverse
of the latency of a single pipeline stage. Each packet is
saved in its local buffer until arbitration is complete. Then,
the input port serializes the packet into multiple flits and
transmits them through the network.

The fixed power consumed by the network depends on
physical channel width and pipelining stages, while the data
dependent power depends on network packet injection rate
and flit count in each packet. Across different channel widths,
the total bus power of in our workloads varies from 0.6 W to
2.0 W while crossbar power varies from 25.2 W to 26.6 W.
The variation in crossbar power is lower than the variation
in the bus power as the fixed power component is dominant.

4. RUN-TIME RECONFIGURATION
This section discussed the proposed reconfiguration policy.

The goal is to maximize the energy efficiency of manycore
systems by selecting the best-fitting network channel width
at run-time. We use EDP as a metric to evaluate energy ef-
ficiency. We calculate the EDP for an application as follows:

EDP = System Power · application running time2 (4)

= System Power · (
max application exec cycs

system frequency
)
2

where system power includes core power, cache power and
NoC power. As we execute the same number of instructions
in each application, we estimate the running time by divid-
ing the maximum number of application execution cycles
among all the cores by the system frequency.

The run-time reconfiguration policy is illustrated in Fig-
ure 3. First, we start running the application with 32-bit
channel width for an interval of 10 million cycles (10 ms).
We collect the performance statistics (L2 or memory in-
jection rates, committed and execution instruction counts,

Figure 3: Flowchart illustrating the run-time reconfiguration
policy with 32-bit channel-width as initial configuration.

branch misprediction rate, current IPC, etc.) during the in-
terval and feed them into our polynomial model to estimate
IPC for all the available bus (or crossbar) width configura-
tions. In our evaluation, we collect the performance data
using the M5 simulator. In a real-life system, the statistics
are collected through performance counters. The perfor-
mance counters in typical high-end processors today can be
polled at the granularity of 10 ms (e.g., the minimal interval
in Intel V TuneTM is 10 ms). We use the IPC estimates to
predict EDP for all available channel-width configurations.

We apply regression analysis to form a model for estimat-
ing the application IPC. Regression analysis is a technique
for modeling and analyzing the relationship between a set of
variables, and it is widely used for modeling and prediction.
Through regression analysis, we build a polynomial offline
and use it to predict IPC at run-time with the performance
counter data. Since computing a polynomial at every inter-
val has very low computational cost, the performance impact
of run-time prediction is negligible. Our policy is capable of
handling the performance phase changes both within an ap-
plication and among applications. We predict EDP after
IPC is estimated. This prediction is based on the inverse re-
lationship between IPC and EDP, which is verified using our
performance and power models. In this work, we use cali-
brated power models to accurately estimate system power.
If fine-grained power measurements are available, such mea-
surements could be used during offline analysis as well.

The run-time configuration decisions are made by com-
paring the estimated EDP values for different interconnect
configurations. If the current EDP is not the lowest, we
select the interconnect width with lowest EDP for the ap-
plication and initiate the reconfiguration process described
below. After an application finishes, we collect the power
and performance statistics and use them to refine the re-
gression model for IPC prediction. In Section 5, we provide
the numerical details of our regression model.

The EDP prediction is performed at every interval, and
the OS initiates the reconfiguration if necessary. If reconfig-
uration is required, OS throws a system call to stall all cores
until all network ports are notified with the new configura-
tion. The overall time overhead for broadcasting the new
configuration is less than 100 cycles. The time for system
call is in the order of 0.01ms [32], thus system call dominates
the reconfiguration time overhead. As our interval length is
set to 10 ms, the reconfiguration overhead is minimal.

The hardware overhead for network reconfiguration in-
cludes a set of multiplexers required to convert packets into
flits of appropriate sizes. Figure 4 show hardware overhead
at bus input and output ports, respectively for the 64-core
system. This hardware includes 16304 2:1 multiplexers and
2048 4:1 multiplexers, and consumes less than 0.01 W at 22
nm technology. The area overhead is negligible.

arbiter

data bus/crossbar

arbitration request/response
and network reconfiguration
control lines

core & cache

Memory controller

512-bit source register

128 128 128 128

4:1

6464

2:1

64

2:1 2:1

32 32

2:1 2:1 4:1

128-bit bus input port

128-bit bus output port

32 32 32 32

512-bit destination register

2:1

(a) Bus input port

arbiter

data bus/crossbar

arbitration request/response
and network reconfiguration
control lines

core & cache

Memory controller

512-bit source register

128 128 128 128

4:1

6464

2:1

64

2:1 2:1

32 32

2:1 2:1 4:1

128-bit bus input port

128-bit bus output port

32 32 32 32

512-bit destination register

2:1

(b) Bus output port

Figure 4: Hardware overhead for reconfiguration

5. EXPERIMENTAL RESULTS
In this section, we evaluate our reconfiguration policy and

compare it with the bus and crossbar network with fixed
channel width. We run four PARSEC benchmarks (blacksc-
holes, bodytrack, canneal, and fluidanimate) and eight NAS
benchmarks (cg, dc, ep, is, lu, mg, sp and ua).

We follow the reconfiguration policy introduced in Sec-
tion 4, and first run the system for 10 million cycles and
collect the performance counters for IPC prediction. In cur-
rent processors, each core typically has n = 2 to 5 physical
counters; however, using multiplexing we can monitor up to
2n events. The performance data we collect are branch mis-
prediction rate, L2 injection rate (L1 misses/cycle), memory
injection rate (L2 misses/cycle), memory boundedness (L2
misses/instructions), number of load locks-store conditionals
per instruction (LLSC), number of committed instructions,
number of executed instructions and IPC.

We use regression with least square fit to estimate the ap-
plication IPC at all available channel widths. Our regression
models are constructed with the linear and cross terms of the
selected performance counters. We select 10 benchmarks
among the 12 applications as the training set to construct
the initial regression model, and use ep and fluidanimate as
the test set. The purpose of the test set is to quantify the
error margin of the regression model when new workloads
arrive. Recall that our policy updates the regression model
with new data when needed. Figure 5 shows the regression
model for estimating the IPC at channel width of 128-bit
for a system with private L2 caches. We train our regression
model with the initial 10 benchmarks, and the average pre-
diction error for the training set is less than 0.001%. When
an application from the training set arrives, we predict IPC
accurately, select the channel width with minimum inverse
IPC, and perform reconfiguration if needed. When the test
benchmark fluidanimate arrives and executes for 10ms, we
predict its IPC at 64 and 128-bit channels using the existing
polynomial model constructed with 10 benchmarks, and the
prediction error reaches 32.0%. After fluidanimate finishes,
we use its performance characteristics to calibrate our re-
gression model. We use the same approach for predicting
the IPC of any new benchmark, such as ep. The prediction
error for ep reduces from 29.4% to 14.8% when the model is
updated with the 11th benchmark.

Once we predict IPC, it is possible to estimate the EDP,
as EDP is inversely proportional to IPC. Figure 6 shows
the inverse of the estimated IPC for system with bus topol-
ogy and private L2 from our regression model, and Figure
7 shows the EDP for each application. The figures show
the same trends for all the benchmarks except fluidanimate,
which is in the test set. Also, for bus topology with dis-
tributed L2 and crossbar topology, the inverse IPC has the
same trend of EDP across all the benchmarks. Observing
the same trends verifies that using inverse IPC provides a

Figure 5: Regression results for predicting IPC for 128-bit
bus configuration. Processor has private L2 caches.

Figure 6: Inverse IPC for estimating EDP for a system with
private L2 caches.

Figure 7: EDP for private L2 using different channel widths.

good estimate of the relative EDP values at 64 and 128-bit
bus configurations. Thus, we use inverse IPC to make the
reconfiguration decisions.

We see that for some applications such as cg and is, higher
NoC width does not improve performance. This is due to
the fact that the performance of such programs is not dom-
inated by the network traffic, thus increasing the channel
width does not provide better performance. For such cases,
the run-time reconfiguration policy maintains the baseline
configuration of 32-bit channel width. For other applica-
tions (canneal, dc, mg, etc.), we observe that increasing the
channel width decreases EDP. In these cases, the policy re-
configures the channel width to 128-bit which provides us
the best performance among the available width settings.
Fluidanimate achieves highest performance when the chan-
nel width is 64-bit wide while the policy selects 128-bit due
to the IPC prediction error discussed earlier. Although the
misprediction causes 8% less reduction in EDP by choosing
128-bit channel width rather than 64, fluidanimate still ben-
efits from our reconfiguration function by achieving 34.5%
decrease in EDP. Overall, our policy reduces the application
EDP up to 84.9%, achieving 49.3% average reduction across
the entire workload set by increasing the channel width only
for benchmarks with an EDP gain.

We next evaluate our policy for systems with a distributed
L2 cache architecture for bus and crossbar. The simulated
EDP for a system with a bus is illustrated in Figure 8. We
see that for the distributed cache architecture, 128-bit chan-
nel width provides the lowest EDP for all the benchmarks.
This is because the network traffic between L1 and L2 caches
is heavier than the traffic between L2 caches and memory
controllers in the private L2 architecture. Thus wider chan-
nel width for interconnects is preferred. Using a 128-bit bus
decreases EDP by up to 89.2% and provides an average re-
duction of 65.5% in comparison to a 32-bit bus.

Figure 9 presents the results for a 64-core system with
distributed L2 and the crossbar. For ua and fluidanimate,
32-bit channel width is a better choice in crossbar topology.
This is because the proportion of crossbar power in the en-
tire system power is much higher than the power percentage
of the bus in the prior experiment. Our reconfiguration pol-
icy achieves up to 56.6% reduction in EDP in comparison
to using fixed channel width of 32-bits. The average EDP
decrease is 20.6% across all the benchmarks. In comparison

Figure 8: EDP for distributed L2 with bus topology.

Figure 9: EDP results for a system with crossbar and with
distributed L2 caches.

to statically setting the width at 128 bits, we obtain a max-
imum EDP decrease of 42.1% and an average EDP decrease
of 9.9% by using our reconfiguration policy. The simulation
results for crossbar with private L2 architecture achieve EDP
savings up to 37.9% and average saving of 20.2% in compar-
ison to statically setting the channel width to 32 bits.

Among all the experiments, we observe an application
EDP decrease up to 89% when the minimum EDP setting
is used instead of setting the width at 128 bits. System
level EDP savings of our reconfiguration policy reach 65.5%
across the 12-benchmark parallel workload set. In addition
to changing channel width, it is possible to reconfigure be-
tween bus and crossbar topologies. From Figure 8 and Fig-
ure 9, we compare EDP with 128-bit crossbar and with 128-
bit bus using distributed L2 architecture and observe an
application EDP reduction up to 54.8% when we use cross-
bar instead of the bus. However, for benchmarks with low
network activity (such as blackscholes), bus has lower EDP
due to its lower power consumption, providing motivation
to implement an approach for topology configuration.

Note that the IPC values of the applications are expected
to increase if the buses are replaced with scalable NoC archi-
tectures, such as mesh or clos topologies. Also, some bench-
marks benefit from running on a different ISA in terms of
their performance. We plan to expand our work for a wider
set of NoCs, architectures, and benchmark suites in future.

6. CONCLUSION
In this paper, we have proposed a low-cost policy to re-

configure the on-chip network channel in manycore systems
to optimize the energy efficiency. The policy uses regression
analysis to model the IPC of an application at the available
channel widths based on performance counter data. At run-
time, the policy determines the interconnect configuration
with the lowest EDP for the current application, and recon-
figures if necessary. We run parallel workload suites, PAR-
SEC and NAS-NPB, for evaluation. Our technique reduces
application EDP up to 89% and 57% with bus and crossbar,
respectively, in comparison to statically setting the channel
width. Across a workload mix of 12 parallel benchmarks,
the average savings are 65.5% and 20.6%, respectively, for a
manycore system with bus and crossbar with distributed L2,
showing significant potential savings in real-life computing
clusters running diverse sets of workloads.

7. REFERENCES
[1] S. Akram, R. Kumar, and D. Chen. Workload adaptive shared

memory multicore processors with reconfigurable interconnects.
In SASP, pages 7 –14, 2009.

[2] A. Alameldeen et al. IPC considered harmful for multiprocessor
workloads. IEEE Micro, 26(4):8 –17, Aug. 2006.

[3] D. Bailey et al. The NAS parallel benchmarks. Technical
Report RNR-94-007, March 1994.

[4] L. Benini, A. Bogliolo, and G. D. Micheli. A Survey of Design
Techniques for System-Level Dynamic Power Management.
IEEE Trans. VLSI, 8(3):299–316, 2000.

[5] C. Bienia et al. The PARSEC benchmark suite:
characterization and architectural implications. In PACT, 2008.

[6] N. Binkert et al. The M5 simulator: Modeling networked
systems. IEEE Micro, 26(4):52 –60, Aug. 2006.

[7] J. A. Brown, R. Kumar, and D. Tullsen. Proximity-aware
directory-based coherence for multi-core processor
architectures. In SPAA, pages 126–134, 2007.

[8] C.-H. Chao et al. Traffic- and thermal-aware run-time thermal
management scheme for 3D NoC systems. In NOCS, pages 223
–230, May 2010.

[9] L. Cheng et al. Interconnect-aware coherence protocols for chip
multiprocessors. In ISCA, pages 339 –351, 2006.

[10] A. Coskun, T. Rosing, and K. Gross. Utilizing predictors for
efficient thermal management in multiprocessor SoCs. IEEE
Trans. CAD, 28(10):1503 –1516, oct. 2009.

[11] R. Dafali et al. Key research issues for reconfigurable
network-on-chip. In ReConFig, pages 181 –186, 2008.

[12] N. Eisley, L.-S. Peh, and L. Shang. In-network cache coherence.
In MICRO-39, pages 321 –332, dec. 2006.

[13] L. Fiorin et al. MPSoCs run-time monitoring through
Networks-on-Chip. In DATE, pages 558 –561, 2009.

[14] B. Grot et al. Express cube topologies for on-chip
interconnects. In HPCA, pages 163 –174, 14-18 2009.

[15] M. Hayenga et al. SCARAB: A single cycle adaptive routing
and bufferless network. In MICRO-42, pages 244 –254, 2009.

[16] J. Howard et al. A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS. In ISSCC, pages 108 –109, 2010.

[17] C. Isci et al. An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget. In MICRO-39, pages 347 –358, 2006.

[18] Y. Kang et al. Dynamic packet fragmentation for increased
virtual channel utilization in on-chip routers. In NOCS, pages
250–255. IEEE Computer Society, 2009.

[19] J. Kim. Low-cost router microarchitecture for on-chip networks.
In MICRO-42, pages 255 –266, 2009.

[20] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology
for on-chip networks. In MICRO-40, pages 172 –182, dec. 2007.

[21] M. Kim et al. Polymorphic on-chip networks. In ISCA, pages
101 –112, June 2008.

[22] A. Kodi et al. iDEAL: Inter-router dual-function energy and
area-efficient links for network-on-chip (NoC) architectures. In
ISCA, pages 241 –250, 2008.

[23] K. Kuhn et al. Technology options for 22nm and beyond. In
Junction Technology (IWJT), pages 1–6, May 2010.

[24] R. Kumar et al. Single-ISA heterogeneous multi-core
architectures: the potential for processor power reduction. In
MICRO, pages 81–92, Dec. 2003.

[25] S. Li et al. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In MICRO-42, pages 469 –480, 2009.

[26] M. Marty and M. Hill. Coherence ordering for ring-based chip
multiprocessors. In MICRO-39, pages 309–320, 2006.

[27] D. Matos et al. The need for reconfigurable routers in
Networks-on-Chip. In Reconfigurable Computing:
Architectures, Tools and Applications. 2009.

[28] M. Modarressi et al. An efficient dynamically reconfigurable
on-chip network architecture. In DAC, 2010.

[29] C. Nicopoulos et al. ViChaR: A dynamic virtual channel
regulator for network-on-chip routers. In MICRO, pages
333–346, 2006.

[30] V. Nollet et al. Centralized runtime resource management in a
network-on-chip containing reconfigurable hardware tiles. In
DATE, pages 234–239 Vol. 1, Mar. 2005.

[31] S. Scott, D. Abts, J. Kim, and W. Dally. The blackwidow
high-radix clos network. In ISCA, pages 16 –28, 2006.

[32] K. Shen. Request behavior variations. In ASPLOS, pages
103–116, 2010.

[33] M. Stensgaard et al. ReNoC: A Network-on-Chip architecture
with reconfigurable topology. In NOCS, pages 55–64, 2008.

[34] H. Su et al. Full chip leakage-estimation considering power
supply and temperature variations. In ISLPED, 2003.

[35] R. Teodorescu et al. Variation-aware application scheduling and
power management for chip multiprocessors. In ISCA, 2008.

[36] S. Thoziyoor et al. CACTI 5.1. Technical report, HP
Laboratories, Palo Alto, April 2008.

