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Abstract—As an initial step in our Green Software research,
this paper investigates whether software optimization at the
application level can help achieve higher energy efficiency and
better thermal behavior. We use both direct measurements and
modeling to quantify power, energy and temperature for a
given software method. The infrastructure includes a new power
estimator for multicore systems developed by regressing mea-
surements from a custom-designed suite of microbenchmarks.
Using our evaluation methodology on a real-life multicore system,
we explore two case studies. In the first one, we use software
tuning for improving the scalability and energy-efficiency of a
parallel application. The second case study explores the effect of
temperature optimization on system-level energy consumption.

I. INTRODUCTION

Energy efficiency is one of the central societal and technical
issues of our time. Data center energy consumption is now
2-3% of total US electricity use and is increasing by 15%
per year [12]. Recent studies show that total cost of a server
will be primarily a function of the power it consumes [10].
A significant body of research exists in system-level energy
management for using low power modes when there is slack.
The common objective in such techniques is to maintain a de-
sired level of performance while reducing energy consumption.
A closely related issue is thermal management: High power
consumption not only increases operational energy costs, but
also causes high temperatures and thus dramatically raises
cooling costs. There has been a move to significantly lower the
energy costs of cooling by using less expensive infrastructures
to replace the HVAC systems used today. Replacing the HVAC
systems, however, results in much less predictability and
significantly higher temperatures, degrading system reliability
and performance.

Considering the complexity of large scale comput-
ing infrastructures as well as time-to-market restrictions,
it is not cost-efficient to address these three pressing
challenges—Performance, Energy, and Temperature (PET)—
solely through novel hardware design. We know that workload
has a significant effect on all three parameters. But while
software optimization for performance is an established field
and there has been significant developments in system-level
energy/thermal management, optimizing software for energy
and thermal efficiency simultaneously is still in its infancy.
Obviously, better software gets better performance; less obvi-
ous is that there is also better software for reducing energy
consumption and thermal problems. For example, the distance

that data must be routed before they can be operated upon
relates directly to the energy required for that operation. There
are similar effects for the variance in component switching.
Reducing this energy per computation often requires non-
obvious software restructuring or introducing non-intuitive
“extra” computations.

A major challenge in jointly optimizing for P, E, and T is the
complex interplay among these metrics. For example, while
higher performance often implies higher power consumption,
selecting an operating point with a higher power value does not
always produce better performance. Also, a method optimizing
the energy efficiency by clustering all the workload in a few
resources temporally or spatially may harm the thermal profile
by creating hot spots on the active resources [6]. Our hypothe-
sis in this research is that optimizing for PET is different from
optimizing for PE or PT only; and that considering all three
parameters, PET, is necessary to improve energy efficiency
while maintaining high performance and reliability. As a part
of this larger hypothesis, in this paper we investigate whether
software optimization at the application level can help achieve
higher energy efficiency and better thermal behavior. We first
present the measurement and modeling framework we have
constructed to evaluate PET tradeoffs accurately. We then use
this framework for two case studies:
• Software tuning for dedup, one of the applications in

the PARSEC benchmark suite of parallel applications [3].
We show that by adopting the appropriate parallelization
model, along with parameter tuning in the application, we
can improve scalability of the application, and also reduce
its energy consumption, temperature, and thermal variation.

• Effect of temperature optimization on system energy con-
sumption. Specifically, we evaluate the PET tradeoffs of
various combinations of a set of custom-designed mi-
crobenchmarks and the mPrime stress test [1]. We show
that temperature reductions limited to a few degrees can
result in considerable energy savings at system level due to
the reduction in cooling power.
The rest of the paper is organized as follows. Section

II discusses the background and related work. Section III
explains our evaluation methodology. We present our case
studies in Section IV and Section V concludes the paper.

II. BACKGROUND

We have seen significant developments in energy manage-
ment research at chip level in the last decade. While most978-1-4577-1221-0/11/$26.00 ©2011 IEEE



conventional runtime management techniques focus on perfor-
mance as the primary objective, more recently researchers have
developed energy-aware workload management techniques—
especially in the embedded systems domain. A vast amount
of prior research exists in dynamic energy and temperature
management. Most well-known methods for controlling energy
consumption are dynamic power management (DPM), where
idle units are put into a low-power sleep state [2], and dynamic
voltage and frequency scaling (DVFS).

Multicore systems are typically under-utilized most of
their life-times, providing opportunities for low cost energy
management through workload scheduling. Solutions to the
workload scheduling problem in prior work include static
optimization methods for a priori known workloads, such as
integer linear program (ILP) based solutions for finding the
optimal voltage schedule and task ordering [16] or minimizing
the data transfer on the bus while guaranteeing average case
performance [17].

Power-aware policies are generally not sufficient to prevent
temperature induced problems, thus efficient thermal modeling
and management methods have been proposed in the last
decade following the gating limitations with temperature. High
temperatures and large thermal variations cause severe chal-
lenges in reliability, leakage power, performance, and cooling
cost. Static (design-time) methods for thermal management
at chip-level are based on thermal characterization at design
time using automated thermal models such as HotSpot [19].
Examples of static methods are temperature-aware floorplan-
ning [18] and adjusting architectural configuration to improve
temperature-dependent reliability [20].

For many systems (especially in high-end computing do-
main) workload is not known a priori; therefore, dynamic and
fast decisions are crucial for achieving desired tradeoff points
between performance and temperature. Conventional dynamic
thermal management controls over-heating by keeping the
temperature below a critical threshold on the chip [19]. There
are also techniques that combine DVFS or clock-gating with
thread scheduling to reduce the performance cost of thermal
management [8], [13]. Temperature-aware workload schedul-
ing is able to achieve high performance while minimizing the
harmful thermal hot spots and gradients [6].

On the data center and HPC research fronts, energy man-
agement has been receiving more attention due to the pressing
limitations resulting from high energy consumption. Power
provisioning techniques analyze the trends in current data
centers and HPC clusters to correlate energy consumption and
performance [9]. Various recent papers focus on developing
new, energy-efficient, high-performance architectures for large
scale computing trends [14]. For virtualized environments,
energy-aware scheduling of virtual nodes is shown to improve
energy savings and performance at the same time [7].

The goal of this work is to extend methods developed
for performance optimization to also account for energy and
temperature, while most prior work targets only one or two of
these parameters. We specifically target software design and
optimization instead of system-level techniques such as OS

scheduler enhancements. Our aims in the longer run are: (1)
to develop widely applicable guidelines for software design,
and (2) to provide an application-specific analysis enabling
the design of better metrics and tools to evaluate P, E, and T
of software. As an intial step in these directions, we provide
an evaluation methodology and two case studies investigating
the effect of software restructuring on P, E, and T.

III. METHODOLOGY

A fundamental component in this research project is to
quantify the values of P, E, and T for a given software
execution method. Our target system in this work is a high-
end 1U server with a 12-core AMD Magny-Cours chip. We
follow two directions for the quantification of P, E, T: direct
measurement and modeling. While direct measurement on the
hardware is useful for real-life verification of the techniques
and concepts, modeling is essential for higher observability
into the system parameters.
A. PET Measurements

Most modern CPUs provide performance counters that can
be used to measure events such as number of retired instruc-
tions, cache misses, etc. We use these performance counters in
the AMD Magny-Cours chip to measure detailed performance
characteristics and also to predict per-core power consumption
(see Section III-B). We use the pfmon [11] utility to collect
performance counter data with a sampling rate of 40ms and
multiplexing interval of 20ms (i.e., multiplexing for measuring
a larger set of performance parameters than the number of
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Fig. 1: Comparison of power estimation with measurement for
microbenchmarks running with 1-6 threads.
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Fig. 2: Validation of the power model for the default dedup
running on 6 cores.



available hardware counters). We also measure both system
and chip level power consumption of the server. For chip
power consumption, we identify the 12V input wires to the
voltage regulator and use a Hall-ect clamp ammeter (Agilent
34134A) to measure the current flow. We then log the current
measurements via an Agilent 34410 multimeter with a sam-
pling rate of 40ms. For system level power consumption, we
use a Watts up? PROes power meter with a sampling rate
of 1s. For temperature measurements, we poll the temperature
sensor on the Northbridge bus using the lm-sensors tool.

B. Power Estimation

The power and thermal measurements collected from the
chip are not sufficiently fine-grained to determine per-core
power and temperature; per-core data are necessary to create
a thermal profile appropriate for making PET management
decisions. For building a model to predict per-core power con-
sumption, we have custom-designed a set of microbenchmarks.
Microbenchmarks are useful in model building as they enable
the stressing of different components of the CPU separately.
Performance counter data and actual power consumption data
are collected simultaneously while running these microbench-
marks. We then use linear regression to derive a model for
predicting power from the performance data. The accuracy
of the model depends on the nature of the microbenchmarks
and the selection of hardware counters. Our multithreaded
microbenchmarks are as follows.
In-cache matrix multiplication (double): This is a matrix
multiplication program running on an array of doubles. Pro-
gram data fit in L1 cache. The program uses vector instructions
with aggressively unrolled loops and achieves slightly over
80% of the maximum achievable FLOPs. The performance
scales almost linearly with the number of cores. Its purpose
is to stress the floating point units of the CPU.
In-cache matrix multiplication (short): Similar to the pre-
vious benchmark, but uses the short data type. It achieves
about 70% of the maximum CPU utilization. This program
scales close to linearly. Its purpose is to stress the integer
units.
Intensive memory access without sharing: This program
continuously accesses data from the main memory. It consists
of a for loop where in each iteration an integer in the next
cache block is read, incremented, and written back. The data
size is chosen to exceed the size of the largest cache so that
data are actually read from main memory every time. Each
thread accesses its own portion of the data with no sharing
among the threads. Its purpose is to stress the memory units.
Intensive memory access with sharing: This program ac-
cesses data from main memory in a similar way as the previous
one, but this time data are shared among threads. This program
scales quite well, although not linearly. Its purpose is to
represent shared cache access among the CPU cores.
Intensive memory access with frequent synchronization:
This is another memory intensive program. Frequent spin-lock
based synchronization is used before accessing shared data.

TABLE I: Hardware events and coefficients used in the re-
gression model for predicting power.

Hardware Event Coefficient
Constant Coefficient 28.1184
CPU CLK UNHALTED 6.0284
RETIRED UOPS 2.989
RETIRED MMX AND FP INST:ALL -1.9054
RETIRED SSE OP:ALL 0.094
L2 CACHE MISS:ALL 695.9063
DISPATCH STALLS 1.3658
DISPATCHED FPU:ALL 4.6154
RETIRED BRANCH INST 31.9637

This program scales poorly. Its purpose is to represent intense
data sharing among the CPU cores.
In-cache matrix multiplication (short-simple): This version
uses the simplest matrix multiplication program on the short
data type. It uses three levels of loops with no loop unrolling
or vector instructions. This program scales near linearly. Its
purpose is to stress the branch prediction unit.

We use the hardware events listed in Table I as the input
metrics for the regression-based power model. Also in the table
are the coefficients computed using regression. All counter
values are normalized with CPU CLK UNHALTED, which
itself is normalized with 84,000,000 (the number of cycles
in 40ms at 2.1 GHz frequency). The power model includes
standby idle power. Power for individual cores is derived
by using individual performance counters for each core and
dividing the power accordingly. We do not explicitly model the
temperature-dependence of leakage power as the temperature
ranges we observe are mostly in the range of 50−60oC. Figure
1 compares the measured power and estimated power for the
microbenchmarks.

We have validated our model using the PARSEC suite [3]
running native input set. Figure 2 compares the measured
power and estimated power for dedup (default version, no
modifications to the benchmark). Figure 3 demonstrates the
average estimation error for the entire PARSEC suite.

C. Thermal Model

For thermal simulations, we use HotSpot-5.0 [19]. HotSpot
requires chip layout and power traces for the units on the
die to calculate the transient temperature response. We derive
the dimensions of each core and L2-caches from the layout
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Fig. 3: Power estimation model error for PARSEC.



TABLE II: HotSpot Parameters
Parameter Value
Die Thickness 0.1 mm
Core Area 13.44 mm2

L2 Area 8.06 mm2

Heat sink side 80 mm
Heat spreader side 40 mm
Convection Capacitance 140 J/K
Convection Resistance 0.1 K/W

provided by AMD [5]. AMD Magny-cours consists of two
AMD Istanbul 6-core chips that reside side by side in the same
package. For constructing the thermal model, we focus on one
of the 6-core chips since temperature behavior of each chip is
mostly independent from the other. Figure 4 shows the layout
we use in the thermal simulations. Using our power estimation
model, we generate the per-core power traces. We compute
L2-cache power using CACTI [21] and use a fixed L2-cache
power value of 1.5W. As caches have low temperature, using
a fixed power value has acceptable inaccuracy. All thermal
simulations are initialized with steady-state values, which is
necessary when the simulation time is not long enough to
warm up the package and the chip. Table II summarizes the
HotSpot configuration.

IV. CASE STUDIES

A. Parallelization of dedup

The purpose of the first case study is to illustrate the effect
of code restructuring on PET. We use dedup, a kernel that ex-
ecutes a data compression method called “deduplication” [4].
It combines local and global compression to achieve very high
compression ratios. Deduplication has become a mainstream
method to compress storage footprints for new generation
backup storage systems and to compress communication data
for bandwidth-optimized networking appliances [4].

Pipelined Parallelization Model: The original dedup
kernel in PARSEC [3], which we call the default version, uses
a pipelined programming model to parallelize the compression.
There are five stages, the middle three of which are parallel.
The first stage reads the input stream and breaks it up into
coarse-grained chunks to get independent work units for the
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Fig. 4: HotSpot layout for AMD Istanbul 6-core chip
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Fig. 5: Scaling of default version and the parameter-tuned task-
decomposed version of dedup.

threads. The second stage anchors each chunk into fine-grained
segments with rolling fingerprinting [15]. The third stage
computes a hash value for each data segment. The fourth stage
compresses each data segment with the Ziv-Lempel algorithm
and builds a global hash table mapping hash values to data.
The final stage assembles the deduplicated output stream
consisting of hash values and compressed data segments.

The default version of dedup uses a separate thread pool
for each parallel pipeline stage. Each thread pool has a number
of threads equal to the number of available cores to allow the
system to fully work on any stage, should the need arise. The
OS scheduler is responsible for thread scheduling. In order to
avoid lock contention, the number of queues is scaled with the
number of threads, with a small group of threads sharing an
input and output queue at a time.

Task-decomposed Parallelization Model: The pipelined
parallelization results in threads that have widely varying
workloads. This ultimately causes large differences in power
consumption in both time and space. Due to a lack of data
reuse and increased need for synchronization, performance and
scaling also suffer. In this paper, we propose to parallelize
dedup using a task-based scheme: the three parallel stages
of the original method are merged into a single stage. Each
thread now takes one task from the first stage and performs all
computation of that task. Upon completion, the result of the
task is supplied to the final stage. As before, the initial and
final stages are performed in serial.

This method reduces synchronization overhead since three
parallel stages are now merged into a single stage. It also
increases data reuse. And since all threads now perform similar
tasks, the power consumption and temperature profiles are
more uniform. Figure 5 shows the scaling result of the default
version and the final parameter-tuned task-based version. The
proposed version achieves stable scalability and outperforms
the default version as number of cores increases. We have
observed this trend up to 12-cores with performance of our
version nearly 1.8× that of the default.

Parameter Tuning: The amount of work each thread
does between two synchronizations has a direct impact on
performance. If this amount is too small, threads will spend
more time in synchronization. If this amount is too large,
threads will spend more time waiting for the queue to have
a sufficient number of tasks. Therefore, this amount must be
tuned for each application-platform pair. The default version
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Fig. 6: Total chip power consumption of Dedup ROI (From left: default version, task-decomposed version before parameter
tuning, task-decomposed version after parameter tuning).

Fig. 7: Per-core temperature for Dedup ROI (From left: default version, task-decomposed version before parameter tuning,
task-decomposed version after parameter tuning).

of PARSEC dedup takes 20 tasks from the queues every
time. This is a parameterized value that can be changed in the
program source code. For our task-decomposed version, we
empirically determine that a value of 10 balances the amount
of wait time and synchronization time.

Figure 6 shows the total chip power consumption for the
three versions of dedup: the default version, the initial task-
based version, and the parameter-tuned task-based version.
The power consumption varies largely in the default version.
This is due to the imbalance in load distribution of the
pipelined model. The initial task-based version overcomes this
because threads have more similar workloads. The parameter-
tuned version improves the balance further, achieving a nearly
uniform power trace throughout the ROI. The drop in power
at the end occurs when the tasks finish. Figure 7 shows the
thermal simulation results. The improved versions have more
stable temperatures in both time and space.

Overall, our parameter-tuned task-based model improves
energy efficiency with a 30% reduction in CPU energy and
a 35% reduction in system energy compared to the default
version. Per-core maximum temporal thermal variance and
spatial thermal variance among cores are reduced by 56% and
41%, respectively.
B. Effect of Temperature Optimization

To investigate the effects of temperature optimization, we
first run experiments to derive the temperature time constant.
In Figure 8, we show that optimizing temperature at µs
granularity has substantial benefits for reducing temperature.
This granularity can easily be targetted at software level. We
then investigate mPrime stress test as well as two of the
microbenchmarks introduced in Section III: in-cache matrix
multiplication (double), MM, and Intensive memory access
with frequent synchronization, Spinlock.
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Fig. 8: Transient thermal response of a core when it switches
between active and idle power states at a frequency of 10ms,
1ms, 100µs, and 1µs.

mPrime is a software application that is part of a distributed
project GIMPS which aims to find new Mersenne prime
numbers. mPrime includes a ‘torture test’ to stress various
components of the processor and it is widely used for testing
the reliability of the over-clocked systems. We run the torture
test to explore the effects of temperature optimization on
system and chip power consumption. Figure 9 shows both chip
and system level power consumption as well as temperature
sensor readings from the Northbridge bus. Our experiments
show that 25oC ∆T translates into 10W ∆Chip-power and
17W ∆System-power. This implies that optimizing temper-
ature would potentially result in lower chip power through
reducing leakage and lower system energy through reducing
the fan power.

In addition to mPrime stress test, we measure power
and temperature for two of the microbenchmarks, MM and
Spinlock. These two microbenchmarks have different charac-
teristics in terms of power, temperature and energy. MM has
the highest power consumption across all microbenchmarks,
whereas Spinlock has the lowest power consumption. Figure
10 shows chip and system power measurements and peak
core temperature values from HotSpot simulations. At chip
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level, power consumption difference of these two microbench-
marks are 10.8W and the system-level power consumption
difference is 23.5W . After subtracting the chip-level power
difference, there is still 12.7W system-level power difference.
MM performs all of its task in cache. This property of MM
minimizes the power consumed by memory, so memory power
can only be a minor factor on the change in system level
power consumption. Note that the system uses a dynamic fan
control algorithm by default. Higher power consumption of
MM increases the fan speed, potentially explaining the major
portion of the system level power difference of 12.7W . MM
also has 3oC observable difference in peak core temperature
in comparison to Spinlock.

V. CONCLUSIONS

In this paper we have presented initial results in application-
level software optimization for performance, energy, and
thermal distribution. We believe that this approach fills an
important gap, and has the potential for providing a hardware-
independent reduction in computing cost.

We have set up an evaluation infrastructure and tested
it in two case studies. The infrastructure includes a new
power estimator, which was developed using a new suite of
microbenchmarks. We showed the utility of the predictor with
respect to the benchmarks from the PARSEC suite with an
average error of less than 5%.

The first case study demonstrates the effect of code re-
structuring on performance, energy, and thermal distribution.
The variation in effects illustrates the potential of the overall

approach. In particular, the stability of the thermal behavior
is likely to improve cooling efficiency. The second case
study investigates the effects of temperature optimization.
By analyzing the thermal time constant, we first show that
optimizations at application level can potentially improve the
thermal behavior. We also show potential savings both at
system and chip level by studying temperature and power
behavior of different workloads.

Our future work includes various other software optimiza-
tion techniques to improve power, energy and temperature
behavior of emerging parallel workloads that are frequently
used in both HPC clusters and data centers.
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