
1

Adaptive Power and Resource Management
Techniques for Multi-threaded Workloads

Can Hankendi Ayse K. Coskun

Electrical and Computer Engineering Department
Boston University, Boston, MA 02215

{hankendi, acoskun}@bu.edu

Abstract—As today’s computing trends are moving towards
the cloud, meeting the increasing computational demand while
minimizing the energy costs in data centers has become essential.
This work introduces two adaptive techniques to reduce the
energy consumption of the computing clusters through power
and resource management on multi-core processors.

We first present a novel power capping technique to constrain
the power consumption of computing nodes. Our technique com-
bines Dynamic Voltage-Frequency Scaling (DVFS) and thread
allocation on multi-core systems. By utilizing machine learning
techniques, our power capping method is able to meet the power
budgets 82% of the time without requiring any power mea-
surement device and reduces the energy consumption by 51.6%
on average in comparison to the state-of-the-art techniques. We
then introduce an autonomous resource management technique
for consolidated multi-threaded workloads running on multi-core
servers. Our technique first classifies applications according to
their energy efficiency measure, then proportionally allocates
resources for co-scheduled applications to improve the energy
efficiency. The proposed technique improves the energy efficiency
by 17% in comparison to state-of-the-art co-scheduling policies.

I. INTRODUCTION

Energy-related costs are among the major contributors to the
total cost of ownership of today’s data centers and high perfor-
mance computing (HPC) clusters. Therefore, future computing
clusters are required to be energy-efficient in order to be able
to meet the continuously increasing computational demand.
Moreover, administration and management of the data center
resources has become significantly complex, due to increasing
number of servers installed on data centers. Therefore, design-
ing autonomous techniques to optimally manage the limited
data center resources is essential to achieve sustainability in
the cloud era.

The achievable maximum performance of a computing
cluster is determined by (1) infrastructural/cost limitations
(e.g, power delivery, cooling capacity, electricity cost) and/or
(2) available hardware resources (e.g., CPU, disk size). Op-
timizing the performance under such constraints (i,e., power,
resource) is critically important to improve the energy effi-
ciency, therefore to reduce to cost of computing. Moreover, the
emergence of multi-threaded applications on cloud resources
bring additional challenges for optimizing the performance-
energy tradeoffs under resource constraints, due to their com-
plex characteristics such as performance scalability and inter-
core communication.

In this work, we present two adaptive management tech-
niques for multi-threaded workloads to improve the energy

efficiency of multi-core servers under power and resource
constraints. We first present a power capping technique to
optimize the performance of multi-threaded applications under
power constraints. The proposed technique adaptively manages
the voltage-frequency (V-F) settings and the number of active
cores depending on the characteristics of the applications.
Our technique dynamically packs the active threads onto
variable number of cores and jointly utilizes DVFS to optimize
performance while meeting the power constraints. As a second
step, we target optimizing resource sharing across applications
that share the same physical resources to improve the energy
efficiency. The optimum resource sharing among consolidated
applications depends on the specific characteristics of the
applications (e.g., scalability with increasing resources). In
order to improve the energy efficiency of server nodes, we
first present a technique to classify the applications according
to their energy efficiency levels. Then, we present an adaptive
resource allocation strategy for consolidating multi-threaded
workloads on multi-core servers. At runtime, the proposed
technique allocates resources proportional to the energy effi-
ciency levels of the co-scheduled applications to improve the
energy efficiency.

The rest of paper is organized as follows. In Section II, we
discuss the significance of our approach to power capping and
consolidation in comparison to state-of-the-art techniques. In
Section III, we present our power capping technique, “Pack &
Cap”, and present our results based experiments on a real-
life multi-core server. We present an autonomous resource
allocation framework for virtual environments and demonstrate
the success of our approach on a real-life system in Section
IV. Section V discusses our future research directions and
concludes the paper.

II. BACKGROUND AND CONTRIBUTIONS

In this section, we first discuss the previous approaches in
power capping and consolidation. We then present our spe-
cific contributions and the significance of our power capping
and consolidation techniques in comparison to state-of-the-art
approaches.

A. Power Capping

In recent years, power capping has become a desirable
feature. Therefore, current processor vendors begin to provide
peak power management features in commercial products.



2

AMD has introduced PowerCap Manager for 45 nm Opteron
processors [1]. Intel recently introduce Running Average
Power Limiting (RAPL) methodology with the Sandybridge
architecture, which gives ability to cap peak power consump-
tion on Intel processors [2]. For data center power manage-
ment, HP and Intel jointly offer a power capping technique,
which adjusts power caps according to busy/idle states of
the nodes [3]. This technique utilizes the DVFS states and
the throttling (idle cycle insertion) capabilities at the chip-
level. In addition to sleep modes, power nap modes, in which
the system can enter and exit from low-power modes in
milliseconds, are proposed to cope with the demand variation
patterns in data centers [4].

This paper brings the following important innovations over
the state-of-the-art: (1) Our technique targets caps on peak
server power, while most prior techniques (such as throttling
and DVFS) focus on maintaining an average power consump-
tion value; (2) we do not require any modifications to the
hardware beyond fundamental DVFS capabilities, which are
already included in most processors; (3) we do not require
power metering during runtime which saves large investment
in power metering infrastructure; (4) we use thread packing
in addition to DVFS, which increases the power range and
improves performance compared to applying DVFS alone.
Our approach is also applicable to single-threaded applications
running on multi-core based systems.

B. Consolidation and Resource Management

One line of work on consolidation and resource manage-
ment targets to optimize multiple nodes through techniques,
such as turning off idle cores and load balancing across
server nodes [5]. At the single server node level, a deeper
understanding of workload characteristics (i.e., other than
utilization) is required to reduce resource contention and
improve energy efficiency of the server nodes. Bhadauria et
al. propose co-scheduling algorithms based on bus and cache
accesses of consolidated applications [6]. Authors propose co-
scheduling policies that manage allocated time and space share
of applications to improve energy efficiency. Their proposed
approach relies on offline energy-delay measurements to make
co-scheduling decisions. Dhiman et al. propose a VM migra-
tion technique based on application characteristics to improve
the energy efficiency [7]. Their proposed technique identifies
the workloads that have complementary characteristics and co-
schedule them on the same physical resources. However, their
proposed technique assumes equal resource allocations for co-
scheduled applications. These recent co-scheduling policies
target pairing applications that have contrasting characteristics
to improve energy efficiency.

In contrast to previous work in consolidation and resource
management, we utilize resource management knobs on vir-
tualized systems to dynamically adjust the resources, while
previous work considers equal resource allocation regardless
of the application characteristics [7]. The proposed technique
utilizes runtime monitoring to classify applications according
to their energy efficiency characteristics, and do not rely solely
on offline characterization [6]. Moreover, our technique is able

to provide user-defined performance guarantees for individual
co-scheduled applications.

III. ADAPTIVE POWER CAPPING

In order to be able to optimize the performance under power
constraints, we propose utilizing a logistic regression model.
The logistic regression model takes the performance monitor-
ing data as the input, and outputs the probability of being
optimum for each candidate operating point (i.e., v-f setting,
active core count). In this section, we present the details of
our power capping technique to optimize the performance of
multi-threaded applications under power constraints. Then, we
present our results based on experiments on a commercial
multi-core server.

A. Methodology

Our approach for runtime thread packing and DVFS control
requires an offline step to train the logistic regression model.
In the offline step, we use an extensive set of performance
data collected for the parallel workloads in the PARSEC
benchmark suite [8] to train the classifiers. Each classifier takes
performance counter and per-core temperature measurements
as inputs, and outputs the system operating point with the
highest probability of maximizing performance within a given
power constraint. A classifier instance is trained for each
desired power constraint. During runtime, we recall the model
associated with the desired power constraint using a lookup
table. Then, the control unit sets the system operating point
with the highest probability of being optimal. In this way, our
model is able to constrain the system power under a power
cap at runtime without using expensive power measurement
devices.

The offline characterization step makes use of an L1-
regularized multinomial logistic regression (MLR) classifier
[9]. While previous techniques require manual inputs to select
the performance metrics that are most relevant to energy,
power and delay optimization, we use L1-regularization to
systematically find the relevant inputs and mask irrelevant
ones. In the offline characterization step, we use an exten-
sive set of power, temperature and performance counter data
collected for each PARSEC benchmark at all feasible system
operating points (V-F and thread packing combinations). For
each workload’s parallel phase (region of interest, ROI), we
divide the data into 100 billion µ-op execution intervals. We
then train an MLR classifier for each desired power constraint.

The inputs to the MLR classifier include a set of workload
metrics, which are functions of the system performance-
counter values (e.g., µ-ops retired, load locks, cache misses,
resource stalls, etc.), per-core temperatures, and the current
operating point. Given the inputs during runtime, the logistic
regression calculates the probability of each candidate op-
erating point being optimal under power caps. The output
with the highest probability is then chosen as the current
operating point. At runtime, the system logs performance
counter and temperature data, and calculates the probability
of each operating point being optimal using the set of weights
derived from the MLR classifier corresponding to the current



3

power constraint pc. The runtime overhead of the proposed
technique is minimal, as the model weights are accessed in
the form of a lookup table.

B. Experimental Results

All experiments are performed on a server including an Intel
Core i7 940 45nm quad-core processor, running the 2.6.10.8
Linux kernel OS. We control the system operating points (V-
F settings and thread-packing combinations) using Linux C
library interfaces. To implement data collection and runtime
control, we interface our data measurement and control appa-
ratus to a MATLAB module compiled as a C-shared library.
This module is configured to read lookup tables generated
offline, buffer incoming performance counter and temperature
data, and periodically output control decisions to a control
unit. The runtime overhead for each runtime activation of the
control algorithm is in the range of 10-50ms.

0 10 20 30 40 50 60 70 80 90
100

150

200

Po
w

er
 (W

)

bodytrack

0 10 20 30 40 50 60 70 80 90
1.5

2

2.5

3

Fr
eq

ue
nc

y 
(G

H
z)

0 10 20 30 40 50 60 70 80 90
1

2

3

4

Time (s)

Ac
tiv

e 
C

or
es

Fig. 1. Demonstration of DVFS and thread-packing control for bodytrack
under changing power caps [10].

During the execution of each parallel workload, we peri-
odically change the power constraint to a random value in
the 110W - 180W range, and measure the percentage of the
execution time for which the power is within a tolerance of the
cap value. We do not utilize any power measurements during
runtime control. Overall, we are able to constrain the power
consumption within the given cap 96% of the time within a 5W
margin beyond the power cap. In Figure 1, we demonstrate the
adaptive power capping capabilities of our approach. We also
compare thread packing with using a fixed smaller number of
threads, i.e., thread reduction. While 1-thread fixed or 2-thread
fixed corresponds to running 1 or 2 threads, thread packing
corresponds to executing applications with 4 threads packed
on 1 or 2 cores on a quad-core machine. Thread packing
is capable of matching the lower bound on the power cap
associated with the 1-thread case, but achieves an average of
51.6% reduction in energy. When compared to the 2-thread
case, thread packing is able to achieve a better power range,
and an average of 15.6% reduction in energy.

IV. ENERGY-EFFICIENT CONSOLIDATION

In this section, we present our autonomous resource man-
agement technique on consolidated virtual environments. The
proposed technique first classifies applications according to
their energy efficiency levels through runtime monitoring.
Based on the energy efficiency levels of co-scheduled applica-
tions, our technique adaptively adjusts the resources allocated

for each application at runtime. We first discuss our experi-
mental methodology, then we demonstrate the success of our
approach on a real-life server.

A. Methodology

We performed all experiments on an AMD 12-core Magny
Cours (6172) server, virtualized by VMware vSphere 5.0
ESXi hypervisor. Magny Cours is a single-chip processor
that comprises two 6-core dies (similar to AMD Istanbul
architecture) attached side by side. Each core has a 1 MB
private L2-cache and each 6-core die has a 6 MB shared
L3-cache and a local NUMA node. All cores share a 16
GB off-chip memory. We create two VMs, VM-0 and VM-
1, on top of the hypervisor. Our target environment is HPC-
type applications, which already utilizes the cores for smaller
number of cores. In order to be able to evaluate the impact of
increasing resources on the performance of HPC applications,
we limit our experiments with 2 VMs. Each VM runs Ubuntu
Server 12.04 as its OS and is initialized with either 12 or 6
virtual CPUs (vCPU) depending on the experiment and 8 GB
of virtual memory. We use the default vmkperf utility to
poll the following performance counter data from the physical
CPUs at every 2 seconds: CPU cycles, retired instructions, and
L3-cache misses. These metrics determine the performance
and power characteristics of the applications, as shown in
previous work [11].

Each vCPU runs as a process (i.e., world in ESXi) on the
hypervisor, thus it is possible to derive VM-level performance
measurements through configuring vmkperf to poll perfor-
mance counter readings for vCPUs. We use esxtop utility to
collect VM-level CPU utilization at every 2 seconds. We mea-
sure system power by using a Wattsup PRO power meter with
a 1 second sampling rate, which is the minimum sampling rate
provided for this meter. As total system power determines the
electricity cost of a server, we choose to evaluate system power
rather than component power (i.e., processor, disk, etc.). We
run PARSEC multi-threaded benchmarks in our experiments
as a representative set of multi-threaded workloads in HPC
clusters. We evaluate the parallel phases of the applications,
as they dominate the compute cycles on real-life systems.

B. Autonomous Resource Management

We first study the degree of performance isolation and actual
performance of HPC-like applications in virtualized servers.
Our observations show that, due to high performance isolation
in virtual servers, it is more important to adjust resources
allocated to co-scheduled applications rather than choosing the
applications pairs.

Following our observations, we propose to adjust re-
sources of co-scheduled applications according to their energy-
efficiency level [12]. In order to classify application energy-
efficiencies, we utilize Instruction-per-cycle (IPC)*CPU uti-
lization metric. We evaluate throughput-per-watt as the energy
efficiency metric, as it evaluates the useful work done (re-
tired instructions) for each watt consumed. By utilizing the
IPC*CPU utilization metric, we classify applications using
DBSCAN (Density-based spatial clustering of applications



4

with noise) clustering algorithm. DBSCAN discovers the clus-
ters automatically based on a density reachability threshold,
ε [13]. For 13 PARSEC benchmarks, DBSCAN discovers 4
application classes, as Class-4 are the most power efficient
benchmarks, where as the Class-1 corresponds to the low-
est power efficiency class. We then distribute the available
resources proportional to the energy efficiency class of the
applications. The results of the offline benchmark classification
with DBSCAN is implemented as Lookup table (LUT) to be
used at runtime. We first sample the IPC and CPU utilization
of the applications, then we access the LUT to determine the
class of the current sample (i.e., phase) of the application.
Therefore, we are able to capture the potential phases that
might occur during the execution of an application. In case an
outlier phase or application is detected, we rerun the DBSCAN
to classify the benchmarks to include the outliers.

In vSphere ESXi environment, it is possible to adjust the
limits of the allocated resources (i.e., CPU and memory)
for each VM. Resource limits restrict the resource usage of
the VMs through forced idleness. We utilize CPU resource
limits settings as our main control knob for resource alloca-
tion management according to our application classification
scheme. We utilize a multi-core desktop as a management
node to adjust the resource limits of individual application.
Management node monitors VM performance and collect
appropriate performance statistics (i.e., retired instructions,
clock cycles. CPU utilization) from the ESXi hypervisor. The
resource allocation routine is triggered through the vSphere
SDK to enforce resource allocation decisions based on the
energy efficiency class of the co-scheduled applications.

In order to evaluate impact of our technique on the overall
energy efficiency of a cluster in a real-life scenario, we gener-
ate 50 random workload sets, each consists of 10 benchmarks
(i.e., 5 co-scheduling pairs). In Figure 2, we compare our ap-
proach with application selection based co-scheduling policies
(i.e., using MPC*Utilization and IPC*Utilization metrics), and
also with hybrid techniques (e.g., Proposed technique together
MPC*Utilization application matching policy). We also report
average throughput-per-watt, throughput, power and energy
with respect to the baseline case, where each application
is given the maximum amount of resources without any
limits. The proposed technique together with MPC*Utilization
application selection policy improves the energy efficiency
by 21% on average, whereas MPC*Utilization policy alone
improves the energy efficiency by only 4% with respect to the
baseline.

V. FUTURE WORK

As an initial step to improve the energy efficiency of data
centers, our research targets improving the efficiency of single
server nodes. We plan to test and extend our techniques
for larger scale computing clusters with additional resource
management capabilities (e.g., VM migration). In addition,
there are many diverse set of applications that run on the
cloud resources. Currently, our techniques target the HPC
domain. However, we plan to extend the application domain
to enterprise and big data domains as they are the potential
candidate that are expected to dominate the compute cycles
on clusters.

0.6

0.7

0.8

0.9

1

1.1

1.2

Bas
e (

Max
 Li

mits)

MPC*U
tiliz

ati
on

IPC*U
tiliz

ati
on

Prop
os

ed
 + 

MPC

Prop
os

ed
 + 

IPC

Prop
os

ed

N
or

m
al

iz
ed

 w
.r.

t b
as

el
in

e

Performance/Power/Energy Comparison for Various Policies

 

 
Throughput/Watt
Throughput
Power
Energy

Fig. 2. Average throughput-per-watt, throughput, power and energy compar-
ison normalized w.r.t baseline case.

As a future research direction in power capping, we plan to
combine our resource management and power capping tech-
niques to improve energy efficiency of consolidated servers
under power constraints. We plan to utilize the virtual control
knobs for power management, and then our current resource
management framework can easily be extended to operate ef-
ficiently under power constraints. Combining two approaches
will provide a robust and efficient framework that can be
utilized for both resource, power and cost management for
large scale computing clusters.

REFERENCES

[1] T. Samson, “AMD brings power capping to new 45nm Opteron line,”
http://www.infoworld.com/d/green-it/amd-brings-power-capping-
new-45nm-opteron-line-906, 2009.

[2] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in Proceedings of Interna-
tional Symposium on Low Power Electronics and Design (ISLPED),
2010, pp. 189–194.

[3] “HP-Intel Dynamic Power Capping,” http://www.hpintelco.net/pdf/
solutions/SB HP Intel Dynamic Power Capping.pdf, 2009.

[4] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” in Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS ’09, 2009.

[5] X. Fan, W. dietrich Weber, and L. A. Barroso, “Power Provisioning
for a Warehouse-sized Computer,” in In Proceedings of International
Symposium on Computer Architecture (ISCA), 2007, pp. 13–23.

[6] M. Bhadauria and S. A. McKee, “An Approach to Resource-aware Co-
scheduling for CMPs,” in ACM International Conference on Supercom-
puting, 2010, pp. 189–199.

[7] G. Dhiman, G. Marchetti, and T. Rosing, “vGreen: A System for Energy-
efficient Computing in Virtualized Environments,” in ISLPED, 2009, pp.
243–248.

[8] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[9] E. Alpaydin, Introduction to Machine Learning, 2004.
[10] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack &

Cap: Adaptive DVFS and Thread Packing Under Power Caps,” in
International Symposium on Microarchitecture (MICRO), 2011, pp. 175–
185.

[11] M. Khan, C. Hankendi, A. Coskun, and M. Herbordt, “Software Op-
timization for Performance, Energy, and Thermal Distribution: Initial
Case Studies,” in Green Computing Conference and Workshops (IGCC),
2011, pp. 1 –6.

[12] C. Hankendi and A. Coskun, “Adaptive Energy-Efficient Resource Shar-
ing for Multi-threaded Workloads in Virtualized Systems (CHANGE-
DAC),” in International DAC Workshop on Computing in Heteroge-
neous, Autonomous and Goal-oriented Environments, 2012.

[13] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise,” in
International Conference on Knowledge Discovery and Data Mining,
1996, pp. 226–231.


