
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008 1127

Static and Dynamic Temperature-Aware Scheduling
for Multiprocessor SoCs

Ayşe Kıvılcım Coşkun, Student Member, IEEE, Tajana Šimunić Rosing, Member, IEEE,
Keith A. Whisnant, Member, IEEE, and Kenny C. Gross, Member, IEEE

Abstract—Thermal hot spots and high temperature gradients
degrade reliability and performance, and increase cooling costs
and leakage power. In this paper, we explore the benefits of temper-
ature-aware task scheduling for multiprocessor system-on-a-chip
(MPSoC). We evaluate our techniques using workload character-
istics collected from a real system by Sun’s Continuous System
Telemetry. We first solve the task scheduling problem statically
using integer linear programming (ILP). The ILP solution is
guaranteed to be optimal for the given assumptions for tasks.
We formulate ILPs for minimizing energy, balancing energy, and
reducing hot spots, and provide an extensive comparison of their
thermal behavior against our technique. Our static solution can
reduce the frequency of hot spots by 35%, spatial gradients by
85%, and thermal cycles by 61% in comparison to the ILP for
minimizing energy. We then design dynamic scheduling policies
at the OS-level with negligible performance overhead. Our adap-
tive dynamic policy reduces the frequency of high-magnitude
thermal cycles and spatial gradients by around 50% and 90%,
respectively, in comparison to state-of-the-art schedulers. Reactive
thermal management strategies, such as thread migration, can be
combined with our scheduling policy to further reduce hot spots,
temperature variations, and the associated performance cost.

Index Terms—Continuous system telemetry, multiprocessor
scheduling, reliability, thermal management.

I. INTRODUCTION

A DVANCES in process technology enable manufacturing
multiprocessor SoCs including CPUs, memories and

communication architectures on a single die. The Sun Ul-
traSPARC T1 [15] and the IBM Cell [13] are examples of
such processors. However, in deep submicrometer process
technologies, high power and temperature densities, process
imperfections, and reduced voltage margins have made the
systems much more vulnerable to failures. In addition to
degrading reliability, thermal hot spots and high temperature
gradients bring challenges for performance, cooling costs, and
leakage power. In this paper, we propose static and dynamic
temperature-aware MPSoC scheduling strategies. We show that
our static solution, which targets both hot spots and gradients,
results in significantly better thermal profiles in comparison
to other energy or thermal-based static methods. For dynamic

Manuscript received May 31, 2007; revised August 15, 2007. First published
August 4, 2008; last published August 20, 2008 (projected). This work was sup-
ported in part by Sun Microsystems and by the University of California MICRO
under Grant 06-198.

A. K. Coşkun and T. S. Rosing are with the Computer Science and Engi-
neering Department, University of California San Diego, La Jolla, CA 92093
USA (e-mail: acoskun@ucsd.edu; trosing@ucsd.edu; tajana@ucsd.edu).

K. A. Whisnant and K. C. Gross are with Sun Microsystems, San Diego, CA
92121 USA (e-mail: kwhisnan@myrealbox.com; kenny.gross@sun.com).

Digital Object Identifier 10.1109/TVLSI.2008.2000726

scheduling in MPSoCs, we introduce an adaptive technique,
which can achieve low and stable temperature profiles without
noticeable impact on performance.

Thermal hot spots increase cooling costs, negatively impact
reliability and degrade performance. The significant increase in
cooling costs requires designing for temperature margins that
are lower than the worst-case. Hot spots accelerate failure mech-
anisms such as electromigration, stress migration, and dielec-
tric breakdown, which cause permanent device failures [12].
In fact, a small difference in the operating temperature (i.e.,
10 C–15 C) can result in a 2 difference in the mean time to
failure of the devices [40]. Leakage is exponentially related to
temperature, and a positive feedback loop exists between tem-
perature and leakage, which can cause dramatic increases in
temperature and damage the circuit if not controlled. High tem-
peratures also adversely affect performance, as the effective op-
erating speed of devices decreases with high temperature.

Addressing thermal hot spots alone is not enough to achieve
better reliability, and temperature gradients in time and space
determine device reliability at moderate temperatures [19]. The
failure rate due to thermal cycling increases with the increasing
magnitude and frequency of the temperature cycles [12]. A
10 C increase in the magnitude of cycles can cause about
16 decrease in mean time to failure for metallic structures
[12]. Thermal cycling causes accelerated package fatigue and
plastic deformations of materials, and leads to permanent
failures. Such cycles are created either by low frequency power
changes such as system power on/off cycles, or by workload
rate changes and power management decisions, which happen
much more frequently [27].

Large spatial temperature variations across the chip cause
performance or logic failures. Negative bias temperature insta-
bility (NBTI) and hot carrier injection (HCI) cause the circuits to
fail in meeting timing constraints [16]. In process technologies
below 0.13 m, reliability issues arise due to NBTI and HCI, as
the operating temperatures and electric fields reach high enough
values to accelerate these mechanisms during device lifetime. In
addition, increasing temperature increases local resistances, and
thus circuit delays and IR drop [30]. Global clock networks are
especially vulnerable to spatial variations. Every 20 degrees in-
crease in temperature causes 5%–6% increase in Elmore delay
in interconnects. As a result, clock skew problems become no-
ticeable for spatial variations of even 15–20 degrees [1].

To date, temperature related problems have been addressed
to a limited extent by techniques that lower the average temper-
ature or keep the temperature under a given threshold. Power-
aware synthesis, dynamic power management (DPM), and dy-
namic voltage scaling (DVS) and dynamic thermal management

1063-8210/$25.00 © 2008 IEEE

1128 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

are such techniques. A significant bottleneck of such methods
is the performance impact associated with stalling or slowing
down the processor [33]. When the workload that is going to
run on the system is known (as in some embedded systems),
voltage/frequency levels or architecture configuration can be ad-
justed at the design stage to avoid dynamic thermal management
as much as possible [35]. Despite their significant benefits to
the thermal profile of the chip, conventional power or thermal
management techniques cannot always eliminate the problems
associated with temperature in a cost-effective way. Both tem-
poral and spatial temperature variations cause a number of reli-
ability problems, while state-of-the-art power and thermal man-
agement techniques do not focus on the effects of these varia-
tions.

In this paper, we first propose an integer linear programming
(ILP) based static scheduling method that minimizes both
thermal hot spots and temperature gradients to increase MPSoC
reliability. We formulate ILPs for minimizing energy, balancing
energy and minimizing hot spots (without considering gradi-
ents), and provide an extensive comparison of their thermal
behavior against our technique. Our solution reduces the fre-
quency of hot spots by 35%, spatial gradients by 85%, and
thermal cycles by 61% in comparison to the ILP for minimizing
energy. The static approach sets a baseline for comparison
of dynamic scheduling techniques. It can also be utilized for
systems where workload can be estimated accurately a priori.

We then develop dynamic OS-level scheduling policies. In
contrast to thermal management techniques, which perform
computation migration or clock gating (e.g., [32]) when tem-
peratures reach critical values, our goal is to adjust the workload
distribution to achieve better temporal and spatial thermal pro-
files. We evaluate heuristics that make decisions based on the
current temperature, and we propose a probabilistic scheduling
technique, Adaptive-Random. This technique adapts to the
temperature changes by taking the thermal history into account.
Our analysis shows that Adaptive-Random can reduce the tem-
poral and spatial gradients by 50% and 90%, respectively, in
comparison to state-of-the-art schedulers. When combined with
reactive methods such as thread migration or voltage scaling,
the Adaptive-Random policy decreases the performance impact
of such techniques to below 7%, while achieving better thermal
profiles. In our experimental evaluation, we leverage Sun’s
patented Continuous System Telemetry Harness (CSTH) [9]
to collect and analyze realistic workload information on a real
system.

The rest of this paper starts with a discussion of the
related work. We then explain our static and dynamic tem-
perature-aware scheduling approaches in Section III and in
Section IV, respectively. The experimental methodology and
results are provided in Sections V and VI. We conclude in
Section VII.

II. RELATED WORK

A. Scheduling

In the literature, a number of power-aware scheduling tech-
niques have focused on voltage scheduling in single-processor
systems. In [6], a DVS method based on decomposing on-chip

and off-chip workload is presented. Kim et al. compare the per-
formance of well-known DVS algorithms in [14]. Quan et al.
introduce fixed priority DVS scheduling techniques with con-
stant and variable voltage levels [25].

In multicore systems, performing power-aware scheduling
while ensuring timing and performance constraints introduce
high complexity. A power management strategy for mission
critical systems containing heterogeneous devices is proposed
in [21]. A static scheduling method optimizing concurrent com-
munication and task scheduling for heterogeneous network-on-
chips is proposed in [10]. Rong et al. formulates the ILP for
finding the optimal voltage schedule and task ordering for a
system with a single core and peripheral devices [26]. In [28],
MPSoC scheduling problem is solved with the objectives of
minimizing the data transfer on the bus and guaranteeing dead-
lines for the average case, using ILP and constraint program-
ming, respectively. Minimizing energy on MPSoCs using DVS
has been formulated using a two-phase framework in [42]. In
[24], a functional unit rotation approach and load balancing are
combined with low power scheduling to reduce temperature in
VLIW processors.

In this paper, we propose temperature-aware task scheduling
strategies for MPSoCs. First, using integer linear programming
(ILP), we formulate the problem of finding an optimal task allo-
cation on an MPSoC for minimizing and balancing temperature,
while maintaining performance and precedence constraints of
jobs. Our paper differs from [26], as we look into systems with
multiple processing units and optimize the system for not only
power but also for temperature. Our thermally-aware scheduling
approach achieves the best possible temperature profile for a
given performance constraint.

For MPSoCs in high end computing domain, where work-
load is not known a priori, making dynamic and fast decisions
for workload allocation is crucial for performance. Thus, the
dynamic techniques we focus on are low overhead OS level
scheduling methods, as opposed to high complexity strategies
with aggressive performance and energy optimization goals.
Next, we discuss the MPSoC thermal management strategies,
and compare our dynamic scheduling techniques to conven-
tional dynamic thermal management.

B. Thermal Modeling and Management

As power-aware policies are not always sufficient to pre-
vent temperature induced problems, thermal modeling and
management methods have been proposed. HotSpot [33] is an
automated thermal model, which calculates transient temper-
ature response given the physical characteristics and power
consumption of units on the die. A fast thermal emulation
framework for field-programmable gate arrays (FPGAs) is
introduced in [2], which reduces the simulation time consider-
ably while maintaining accuracy. Static methods for thermal
and reliability management are based on thermal characteri-
zation at design time. In [35], hot spots are predicted based
on the execution profile of the multimedia benchmarks. A
simulated-annealing-based thermal floorplanning method at
microarchitecture level is presented in [29]. Including tem-
perature as a constraint in the co-synthesis framework and in
task allocation for platform-based system design is introduced

COŞKUN et al.: STATIC AND DYNAMIC TEMPERATURE-AWARE SCHEDULING FOR MULTIPROCESSOR SoCs 1129

TABLE I
SUMMARY OF ALL THE ILP OBJECTIVE FUNCTIONS

in [11]. Reliability aware microprocessor (RAMP) provides a
reliability model at architecture level for temperature related
intrinsic hard failures [36]. It analyzes the effects of application
behavior on reliability and optimizes the architectural config-
uration and power/thermal management policies for reliable
design. In [27], it is shown that aggressive power management
can adversely affect reliability due to fast thermal cycles, and
the authors propose an optimization method for MPSoCs that
can save power while meeting the reliability criteria.

Dynamic thermal management controls overheating by
keeping the temperature below a critical threshold. Computa-
tion migration and fetch toggling are examples of such tech-
niques [33]. Heat-and-Run performs temperature-aware thread
assignment and migration for multicore multithreaded systems
[8]. Kumar et al. propose a hybrid method that coordinates
clock gating and software thermal management techniques
[17]. The multicore thermal management method introduced in
[7] combines distributed DVS with process migration. In [37],
dynamic MPSoC temperature-aware scheduling methods that
take core temperatures into account while making decisions are
proposed.

The dynamic scheduling methods we propose optimize the
thermal profile of the MPSoC with minimal impact on perfor-
mance. By making decisions based on the temperature readings,
we show that hot spots and high magnitudes of temporal and
spatial variations can be mostly prevented. Our technique can
be combined with more aggressive thermal management strate-
gies to reduce their performance cost while further lowering
and balancing the temperature. Our work in dynamic temper-
ature-aware scheduling differs from previous thermal manage-
ment techniques, as we propose a policy that adapts to changes
by probabilistically assigning workload to cores based on their
temperature history. We next describe our static and dynamic
scheduling techniques in Sections III and IV.

III. OPTIMAL STATIC SCHEDULING

In this section, we describe a static task scheduling approach
for minimizing the frequency of thermal hot spots and large

temperature gradients in order to increase system reliability and
ease the temperature related design challenges. In addition to
our technique, we formulate static scheduling for minimizing
energy, balancing energy, and minimizing the thermal hot spots
(i.e., without considering temperature gradients). This way, for
the first time, we provide a comparison of various static sched-
uling techniques in terms of their efficiency in handling thermal
issues.

Our goal in static optimization is finding a task schedule for
the MPSoC where the deadline and dependence constraints
of tasks are met, and the best possible temperature profile
is achieved throughout the execution. Achieving the best
temperature profile corresponds to minimizing and balancing
the temperature across the MPSoC as discussed in Section I.
Addressing both the hot spots and gradients is our solution’s
(demonstrated as Min-Th&Sp) distinguishing feature from
the other energy and thermal-based static strategies shown in
Table I. Our method utilizes ILP, which is commonly used for
solving scheduling problems (e.g., [28]). The ILP solution gives
optimal results assuming the estimates for task execution times,
deadline, and temperature profile are accurate. We provide the
objective functions of all the ILPs we solve in this paper in
Table I. Minimizing and balancing the hot spots (Min-Th)
reduces the thermal hot spots, but there is no consideration
for spatial gradients. For energy balancing (Bal-En), the ILP
minimizes the maximum energy consumption for each core,
which balances the energy profile on the system. The ILP for
minimizing energy (Min-En) minimizes the cumulative sum
of all the active and idle state energy. Next, we explain the
formulations in detail.

In our system model, we assume the MPSoC contains pro-
cessor units, ; , and we model the
applications using task graphs. In the graph , each
vertex represents a task , which is a function or col-
lection of functions to be performed. Each edge in the graph

shows that task is dependent on in order to
perform computation. A simple example task graph is shown in
Fig. 1. We assume the deadlines and worst-case execution
times of tasks are known a priori.

1130 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

Fig. 1. Example task graph.

We assume each PU has discrete voltage settings ;
(in decreasing order). Each voltage setting

can be associated with a computation speed in terms of cy-
cles/second. Thus, the energy consumption for executing at
speed can be expressed as , where

is the function for power consumption and is the ex-
ecution time of . The power consumed during task execu-
tion is a monotonically increasing and convex function of the
computation speed [41]. Assuming the tasks execute up to their
WCET and is given as the execution time in the default
(highest) processor frequency, the WCET for running at pro-
cessor speed is computed as: .

The objective function of our ILP (Min-Th&Sp) has two
parts: 1) minimizing and balancing the thermal hot spots (
in Table I) and 2) minimizing the spatial gradients (). The
first part of the objective function minimizes the maximum time
spent above the threshold for each core, which balances the
thermal hot spots across the chip. Consequently, it reduces the
magnitude of temporal variations in temperature. However, it
does not consider the spatial gradients on the die.

Spatial gradients increase when several jobs are clustered in
neighboring units, while the rest of the units are idle. Contrarily,
when the workload is spatially spread out on the die, because
of the effect of heat transfer from hot to cool cores, more even
temperature distributions are achieved. For example, a checker-
board arrangement of the workload where each active core has
an idle neighbor reduces the spatial gradients in comparison to
having all active cores on one half of the MPSoC and idles ones
on the other half. Therefore, reducing the high spatial differen-
tials requires avoiding scheduling jobs in neighboring cores at
the same time. We call this situation overlap, where two jobs
are scheduled in next-door neighbors at the same time. Thus, in
the second part of the objective function (in Table I), we min-
imize the total overlap. We only take into account side-by-side
neighbors in our overlap computations, as it is shown that heat
sharing among neighbor units with adjoining sides have a signif-
icant effect on temperature [33]. Minimizing the sum of and

addresses both balancing thermal hot spots and minimizing
the spatial gradients.

Table III provides the complete formulation of the ILP for
Min-Th&Sp, and the variables used in the formulation are de-
fined in Table II. In the first part of objective function, (), we
minimize the total time spent above a given threshold in order to
eliminate the hot spots and balance temperature. We use “time
spent over a temperature threshold” (represented with) as a
metric for profiling the thermal behavior of tasks, and also as a

TABLE II
VARIABLES USED IN THE ILP

TABLE III
ILP FORMULATION FOR Min-Th&Sp

metric for evaluating our ILP. This metric has also been used
in previous work as well [18]. Minimizing the average or peak
temperature does not adequately capture the temperature pro-
files. For example, a system that experiences 90 C temperature
for an hour is expected to have worse reliability than a system
that has 90 (i.e., same peak temperature) for a second. Or,
two systems can have the same average temperature but very
different thermal profiles. Having a time-based metric addresses
such differences.

To compute the time spent above the threshold for each task
, we perform thermal simulations. The temperature pro-

file for a job depends on the allocation and the floorplan of the
MPSoC in addition to the individual power characteristics of
the job. We initially assume the time spent above the threshold
for each task is equal to the execution time (WCET) of the
task . We solve the ILP (Min-Th&Sp) for
the given task graph, maintaining the deadlines and precedence
constraints among jobs. We next perform thermal simulation
and record the time spent above the threshold temperature for
each task. Afterwards, we insert these new estimates in the
ILP, and solve the ILP again to get the final scheduling results.
We set the threshold temperature to 85 C in our simulations,
as 85 C is considered a high temperature for many processors
[31]. To verify the accuracy of this thermal estimation method,
we performed simulations on five randomly generated task sets,

COŞKUN et al.: STATIC AND DYNAMIC TEMPERATURE-AWARE SCHEDULING FOR MULTIPROCESSOR SoCs 1131

each set containing ten tasks. First, we solved the ILP using the
thermal estimates we obtained as described above. We then sim-
ulated the temperature response for the schedule determined by
the ILP, and recorded the time spent above the threshold. Iter-
ating on this loop several times (i.e., getting new estimates
from thermal simulation, feeding them into the ILP, and solving
the ILP again with the new values), we have observed that
the error in temperature estimation stays below 5%.

In the computation of the component of , is an in-
teger variable that is 1 iff task is scheduled to run at fre-
quency and is the thermal estimate for at frequency

. The ILP formulation we provide here for Min-Th&Sp can
be applied to systems that have dynamic power management
(DPM) or dynamic voltage scaling (DVS). For the cases without
power management or DPM only, there is only one voltage set-
ting, so . For DPM, the estimates should be de-
rived through simulations with DPM, as putting the cores into
sleep state is expected to affect the thermal behavior. For DVS
cases, we assume that each task will run on a fixed frequency.
We then need to evaluate the thermal profile of each task for all
frequency/voltage levels.

In the second part of the objective function of Min-Th&Sp
(in Table III), we compute the total overlap in the schedule.
We use two additional variables while formulating the overlap:

is an integer variable which is equal to 1 only if cores and
are adjacent to each other in the floorplan; is an integer

variable that is equal to 1 only if the completion time of is
greater than the start time of . The variables check if two
tasks are scheduled on neighbor units. The product is
equal to 1 if precedes and if starts before finishes.
So, when , there is an overlap of and . The
difference quantifies the duration of the overlap.

Table III also demonstrates the ILP constraints that guarantee
the deadlines and task precedence. The integer variables de-
fined in (a) assure that each task is assigned to only one core
and (b) shows that each task runs at a fixed voltage setting. Con-
straint (c) computes the finish time of tasks to guide the prece-
dence and deadline constraints. We use two sets of precedence
constraints. The first set, (d), makes sure the dependences be-
tween tasks are satisfied, so that a consumer task does not start
before all its producer tasks complete. In addition to this, if sev-
eral tasks are scheduled on the same core, a task can only start
after the previously scheduled tasks are completed (f). We de-
fine the variables in (g) to help defining the constraints in (f).
Constraint (e) ensures that all tasks with deadlines finish before
their deadlines. We next provide the details for the other ILP
formulations we presented in Table I, and point out their differ-
ences with Min-Th&Sp.

Minimizing and balancing the thermal hot spots: Min-Th
minimizes the maximum time spent above threshold tempera-
ture for each core in order to minimize and balance the thermal
hot spots. In the ILP formulation for Min-Th, the second part
of the objective function is eliminated (i.e.,) as this ILP
does not consider spatial gradients. The rest of the formulation
is the same.

Energy balancing: The ILP formulation for Bal-En has the
overlap set to zero , and the temperature variable in

Min-Th&Sp is replaced with , which is the energy per task
for running at frequency . is an integer variable that
is 1 iff runs at frequency . Summing the expression
computes the energy consumed per task.

Minimizing energy: The ILP for Min-En is applicable to
systems with DPM, DVS, or both. For systems with DPM only,
the ILP is solved for only the default frequency of the system.
For DVS, the term computes the energy per task for
the frequency level task is assigned. In that case, the timing
parameters (e.g., , , etc., in Table II) are computed consid-
ering the voltage settings of tasks.

While computing the total energy , we consider the
energy consumed during all active and idle periods. In order
to compute the length of idle time slots, we define an integer
variable, , which is 1 iff task starts before , and there
is no other task whose start time is between and . Min-
imizing the total energy involves minimizing the energy con-
sumption during idle time slots as well. is the energy spent
during all idle times, and the idle(y) function computes the en-
ergy for individual idle time slots. For example, when we apply
a fixed timeout dynamic power management (DPM) strategy
which puts cores into sleep state if the idle time is longer than a
given timeout , the energy during idle time slot can
be computed as follows. Here, and are the en-
ergy and time overhead for switching into and out of the sleep
state, respectively

if (1)

if (2)

We have described the detailed formulations of the ILPs for
Min-Th&Sp,Min-Th,Min-En, andBal-En. These ILP for-
mulations include multiple nonlinear equations. Solutions to
similar nonlinear problems have been presented in [26] and [41].
Such problems can be solved by ILP solvers after linearization
using standard techniques [5]. We next describe the lineariza-
tion techniques we used.

First, when two integer variables are multiplied, we introduce
a third variable instead of the product, and create additional con-
straints to define this variable. Assuming variables and
are multiplied, we add a third 0–1 variable in the formu-
lation with the following constraints:

(3)

(4)

When multiplying binary (1-0) variables with integer values
such as , we use the following linearization, where is a
suitably large bound for the variables. We define a new variable

, such that . The following constraints satisfy the
multiplication:

(5)

(6)

(7)

1132 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

To linearize the step function introduced by the variables,
we use (8). The multiplications in this equation are linearized
using the methods previously discussed

(8)

Though converting the nonlinear problem to a linear one is
possible through these techniques, including integer variables
in the formulation causes the problem size to grow exponen-
tially as the number of tasks increase. As a result, it may be-
come infeasible to solve an allocation problem for many tasks.
For large task sets, ILPs can be solved using LP relaxation and
randomized rounding techniques [39]. For many NP-hard prob-
lems, randomized rounding is shown to yield the best approxi-
mation known by any polynomial time algorithm [39].

In this section, we presented a methodology for statically
optimizing task scheduling with temperature-aware objectives.
We also formulated other energy and thermal based ILPs for
comparison purposes. In Section VI, we demonstrate that
our technique performs significantly better than the other
static approaches we discussed. Using the ILP provides an
optimal solution for the given assumptions, and this way we
can constitute a baseline for comparing dynamic scheduling
approaches. Moreover, if the workload can be estimated a
priori, static optimization can be utilized for achieving low and
stable temperature profiles at runtime. However, in many sys-
tems, workload changes dynamically and online methods are
required to manage temperature and reliability. To address this,
we propose dynamic temperature-aware scheduling approaches
in Section IV.

IV. DYNAMIC TEMPERATURE-AWARE SCHEDULING

Workload characteristics typically vary dynamically during
execution, making it hard to predict workload ahead of time es-
pecially in high-end computing domain. Thus, dynamic man-
agement of temperature is required to achieve higher system re-
liability and to reduce the design challenges caused by hot spots
and temperature variations. To avoid high performance impact,
temperature-aware scheduling has to be fast and easy to imple-
ment.

In this section, we present OS-level temperature-aware sched-
uling techniques with negligible performance overhead. These
techniques mitigate the thermal hot spots and large temperature
variations by taking into account the temperature measurements
of the MPSoC and adapting to changes. When combined with
previously introduced reactive thermal management methods
such as thread migration [8] and voltage scaling [33], our tech-
niques can achieve even lower and more stable thermal pro-
files while reducing the performance impact of reactive tech-
niques significantly. The thermally-aware policies we investi-
gate are cost-effective and can be easily implemented into ex-
isting schedulers at the OS level.

The techniques we propose make decisions based on the tem-
perature measured on the MPSoC. Current chips typically con-
tain several thermal sensors, and these sensors can be read by
a Continuous System Telemetry Harness (CSTH) for collecting
and analyzing time series sensor data [9].

We next discuss the multiprocessor schedulers in state-of-art
operating systems. We then follow with two previously intro-
duced reactive thermal management methods that are applicable
to MPSoCs. Finally, we explain the dynamic temperature-aware
scheduling techniques we propose.

A. State-of-the-Art Load Balancing Schedulers

Many modern OS schedulers are based on multilevel queuing,
which mixes several elements such as priority, round-robin, and
shortest-job-first scheduling principles. For performance rea-
sons, some amount of load balancing is commonly integrated
in the scheduler. In Linux 2.6, each processor in the multipro-
cessor system has a queue, and a task stays in a queue for cache
affinity. Tasks are moved to different queues only when the load
is unbalanced (i.e., when length of a queue is less than one fourth
of another). Solaris migrates threads to other processors when
a core becomes overloaded. The thread migration in Solaris is
performed based on giving priority to locality, following the as-
sumption that the threads on nearby cores share the same caches.

In this paper, we implemented a dynamic strategy (DLB)
where the scheduler balances the workload by sending work-
load to the least busy processor at each interval. This dynamic
load balancing strategy is in principal similar to load balancing
performed by operating systems such as Solaris, which balances
the workload in the processors’ queues at regular intervals. We
used an interval of 20 s in our experiments, which provided a
balanced workload profile.

B. Thermal Management Techniques for MPSoCs

Several techniques have been proposed in the literature to
control the thermal behavior of MPSoCs. Here we discuss two
previously introduced methods for managing temperature. Both
of these techniques are reactive, that is they are activated only
when a critical temperature is reached.

Dynamic thread migration (DTM) is an MPSoC thermal
management method that migrates threads from hot processors
to cooler ones. For minimizing the performance impact of
thread migration, Heat-and-Run proposed loading the cores
as much as possible and migrating workload when critical
temperature values are observed [8]. In our implementation of
this technique, we migrate the thread from the hot processor to
the coolest processor available at that moment. The threshold
temperature for migration is set at 85 C, which is considered
a high temperature for our system. Similar temperature values
are shown as critical for other CPUs as well [31].

Voltage scaling for thermal management (VSTM) performs
dynamic voltage and frequency scaling when the temperature
reaches the threshold [33]. This technique lowers the temper-
ature on the hot cores by reducing power consumption. In our
implementation, we assume two built-in voltage/frequency set-
tings for each core. Normally all jobs run at full speed .
If a core reaches the critical temperature (85 C , the frequency/
voltage level of the particular core is reduced to the lower setting

until the current job terminates. In our experiments, we
picked as two thirds of . Lower frequency settings can
be used as well; however, this would increase the performance
cost.

COŞKUN et al.: STATIC AND DYNAMIC TEMPERATURE-AWARE SCHEDULING FOR MULTIPROCESSOR SoCs 1133

C. Low-Overhead Temperature Aware Scheduling

The policies we propose have negligible overhead in compar-
ison to the existing decision-making process in OS-level multi-
processor schedulers, and they can be implemented in the OS
scheduler with minimal changes. We first discuss two heuristic
methods that make scheduling decisions based on the current
temperature and floorplan. We then present a more advanced
approach that adjusts the likelihood of each processor receiving
workload based on the temperature history.

Heuristic Techniques: Reactive methods for thermal man-
agement have to trade off performance to control temperature.
The heuristics we investigate here avoid excessive heating of
cores by making scheduling decisions based on the current tem-
perature of the cores. The two heuristics we implemented are:
1) coolest, where for each ready job, the scheduler selects the
coolest processor for allocation and 2) coolest-FLP, where the
principle is same as (1), but in addition the scheduler gives pri-
ority to processors that have “idle” neighbors. Horizontal heat
transfer plays an important role in determining the temperature,
as discussed previously in [29] and in Section III. Coolest-FLP
exploits the fact that a significant amount of heat transfer occurs
among neighboring units on the die, and active processors with
idle neighbors will result in lower and more evenly distributed
temperatures on the MPSoC. This way, the spatial variations in
temperature can also be reduced.

Random Policy with Temperature Aware Adaptation: The
scheduling policies we have discussed so far have different
strengths. Load balancing achieves better load distribution and
higher performance. On the other hand, making scheduling
decisions based on current temperature decreases the hot spots
and temperature gradients. In order to achieve a balanced load
distribution, avoid thermal problems and yet avoid introducing
significant complexity to the scheduler, we developed a proba-
bilistic policy called Adaptive-Random.

This policy updates probabilities of sending workload to
cores at each interval based on an analysis of the temperature
history on the chip. Taking the history into account provides
the ability to allocate workload on units exposed to lower
thermal stress or that are on cooler parts of the MPSoC. For
example, in Fig. 2, we see three cores with the same current
temperature, but different histories. Assuming all cores are
idle, the Coolest policy would not differentiate among these
three cases. Adaptive-Random favors core 1 due to core
1’s lower temperature average in the history window. Core 1
is indeed a better choice than the others, as the thermal history
suggests Core 1 and its neighbors have been under lower
thermal stress. This way, Adaptive-Random achieves a
better load distribution for performance purposes.

In Adaptive-Random, the new probability value for each
core is computed using (9) at each job arrival. In the equation,

is the new probability, is the previous probability, and
is the weight. values saturate at 0 and 1. In order to evaluate
the thermal stress on each core, is computed at regular inter-
vals using a sliding window of temperature history. The thermal
constant of our system is on the order a few hundred millisec-
onds, so we set the interval and sliding window lengths at 1 s
in order to account for the rapid changes in temperature. As we

Fig. 2. Effect of temperature history.

compute only (9) at workload arrivals, the computation cost of
our technique is negligible, and we do not have to stall execu-
tion. Once the probabilities are updated, the core for allocating
the current job is selected through generating a random number

(9)

The probability values are decremented or incremented by
or , depending on whether the temperature has risen

above the threshold temperature , or dropped below a
second threshold , respectively. In our simulations, we set

at 80 C. We used a threshold lower than 85 C to prevent
hot spots before they occur. In order to avoid allocating work-
load to cores that have temperatures slightly below 80 C, we
used a second threshold, , set to 75 C in our experiments.
We do not increase unless in the last interval the core tem-
perature has dropped below . Threshold values lower than
75 C can introduce performance cost, as a number of cores
would be idle until their temperatures are below the threshold.
Moreover, setting the second threshold too low increases the
temperature swing, which may accelerate the thermal cycling.
Increasing the threshold value closer to 80 C reduces its ef-
fect. For applying our technique to different systems, different
threshold values can be selected following the same principles
depending on the system and workload characteristics. There
are three cases we consider while adjusting probability values.

1) If there are processors that have exceeded in the past
interval, their values are set to 0.

2) When the temperature of a core is between and ,
no action is taken.

3) For cores that were below the second threshold in the
last interval, we increase their by [see (10)]. While
calculating , we evaluate , which is the average
temperature below divided by . This way, if a core
is cooler than another, its is greater. We selected the

value as 0.1 empirically. We simulated values between
0 and 0.5 at incrementation steps of 0.05, and selected the

with the best average case results for reducing hot spots
and variations. For different MPSoCs, similar studies can
be carried out to select the best value

(10)

1134 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

TABLE IV
POWER AND AREA DISTRIBUTIONS OF THE UNITS

This scheduling policy can be implemented on a real system
easily with very low overhead. Collecting the thermal data and
computation of weights do not impose noticeable performance
impact. The random number generator can be implemented
through a linear-feedback shift register (LFSR), which often
already exists on the chip for test purposes. The rest of the
computations (i.e., averages and ratios) are carried out incre-
mentally throughout the execution. Another benefit of this
policy is that it achieves better load balancing than making
decisions solely on instantaneous temperature. The Adap-
tive-Random policy addresses the issues of maintaining a
balanced and low temperature profile as well as distributing the
thermal stress to cores as evenly as possible throughout system
lifetime.

We next evaluate all the static and dynamic techniques
we presented. The experimental methodology is explained in
Section V and we provide the results in Section VI.

V. EXPERIMENTAL METHODOLOGY

In this section, we provide the details of the experimental
setup. Our experimental results are based on the data collected
from an UltraSPARC T1 processor, which contains eight cores
and memory, communication, and input/output (I/O) units. This
MPSoC has been manufactured in 90-nm process technology.
The processors are in-order execution cores and have multi-
threading capability. In each core, four threads share an integer
pipeline. Every two cores share an L2-cache and the cores
communicate through shared memory. The power distribution
among the units and relative sizes of each unit on the chip are
provided in Table IV. The power data are updated values for
those reported in [20], and they include the leakage estimates.
UltraSPARC T1 (floorplan shown in Fig. 9) runs a multilevel
queuing scheduler with basic load balancing capabilities as
default.

We leverage continuous system telemetry harness (CSTH) [9]
in our work to gather detailed workload characteristics of real
applications. CSTH collects and analyzes real time data from
hardware sensors, (e.g., currents, voltages, and temperatures) as
well as software variables (e.g., performance metrics, memory
accesses, etc.). CSTH runs as a part of the existing system soft-
ware stack; therefore, the data processing does not introduce ad-
ditional overhead.

To perform the thermal evaluation of the scheduling tech-
niques we propose, we need to have a power consumption trace
for each unit on the die. If we know when each unit is active
or idle, we can estimate the instantaneous power consumption
using the average power values. For SPARC cores, the peak
power consumption is very close to the average power values

[20]. Therefore, for cores, our goal is to determine when each
core is active.

We sampled the utilization percentage for each hardware
thread at every second using mpstat [23]. mpstat provides
the distribution of user, kernel, and idle times. We recorded the
utilization traces for half an hour for each benchmark.

To determine the active/idle time slots of cores more accu-
rately, we used the kernel probes in DTrace [23] for recording
the length of user and kernel threads. DTrace is a comprehen-
sive dynamic tracing framework for Solaris. It should be noted
that the lengths of threads we measure may not correspond to
the overall execution time for a thread. For example, a thread
might run for several minutes, but due to context switches, the
continuous execution slices are of shorter length. Based on the
length of the threads and the utilization traces obtained using
mpstat, we reconstruct the workload trace.

We ran a set of benchmarks, which are grouped in four cat-
egories: 1) web server; 2) database applications; 3) commonly
used integer benchmarks; and 4) multimedia benchmarks. For
generating web server workload, we used SLAMD [34], which
is a distributed application for load generation. The number of
clients and threads can be tuned, allowing for simulating various
workload intensity. We ran SLAMD with one client, and 20 and
40 threads per client to achieve medium and high utilization ra-
tios, respectively.

To generate workload for database applications, we installed
MySQL, and tested it with a multithreaded benchmarking tool,
sysbench. We tested the MySQL database with various table
sizes and number of threads. Using sysbench, we created a
table with 1 million rows and 100 threads to access the database.
For servers, combination of web and database applications are
very commonly observed; therefore, we included the Web&DB
application in our benchmark set as well. We also ran compiler
(gcc) and compression/decompression (gzip). For the multi-
media benchmarks, we ran MPlayer (integer) with a 640 272
sample video file. While simulating gcc and gzip, we ran six
simultaneous copies of the application to increase the system
utilization. While simulating MPlayer, we ran four instances of
the video application for the same reason. We did not increase
the number of applications further as these applications tend to
become I/O and memory bound.

We summarize the details for our benchmarks in Table V. In
Table V, we demonstrate the system utilization, which is aver-
aged over all cores and throughout the execution. We also pro-
vide the maximum thread lengths measured. We gathered addi-
tional information for each benchmark using cpustat, such
as cache misses and floating point instructions (see Table V).
We use these characteristics to model the power consumption
of the crossbar and floating point unit. We report the L2 cache
misses, as these give an idea about how frequently the crossbar
is accessed. The memory and floating point statistics are per
100-K instructions. In Table V, we compare the thermal profiles
of the benchmarks as well. The “X” marks show the benchmarks
that have high percentage (over 25%) of hot spots (i.e., HS) and
high-magnitude thermal cycles (i.e., TC). The classification for
spatial gradient profiles are similar to that of hot spots, so we
report only one of them here. The benchmarks without “X” are

COŞKUN et al.: STATIC AND DYNAMIC TEMPERATURE-AWARE SCHEDULING FOR MULTIPROCESSOR SoCs 1135

TABLE V
WORKLOAD CHARACTERISTICS

prone to hot spots and variations for a low to medium percentage
of time.

We implemented a simulator to fairly compare different
scheduling techniques. In our simulation, we took represen-
tative traces collected at runtime for each workload category.
For evaluating static approaches, based on these traces, we de-
signed task graphs consisting of ten tasks for each benchmark
that matched the utilization and task length characteristics. We
simulated task graphs with and without task dependences. For
dynamic approaches, we ran a half-hour trace collected for
each benchmark with dynamically changing workload.

We solved the ILPs in our static method using lp_solve [22],
which could solve an ILP for a set of ten tasks in 2 hours. In
the first step of the simulator, the scheduler is given a list of
jobs and their start times, which is provided by the ILP solution.
The scheduler then applies a fixed scheduling strategy based on
the ILP results. Thus, the performance overhead of this method
during runtime is minimal. For dynamic approaches, the sched-
uler makes its decisions based on the arriving jobs and the cur-
rent system state (e.g., temperature or load of cores, depending
on the policy).

In the next step of the simulator, power values are derived
based on each unit’s execution profile. Dynamic power man-
agement or voltage scaling is also applied at this stage, de-
pending on the policy simulated. For cores, we used average
power values for the active and idle states for UltraSPARC T1.
In the average case, the ratio between active and idle state power
is 7.4. We estimated the dynamic power at the lower voltage
levels based on the relationship between power, frequency and
voltage (i.e.,). We assumed two built-in voltage/fre-
quency settings in our simulations. To account for the leakage
power, we used the second-order polynomial model proposed
in [38]. This model computes the change in leakage power for
the given differential temperature and voltage values. We de-
termined the coefficients in the model empirically to match the
normalized leakage values in [38]. This second-order model is
shown to match closely with measurements. As we know the
amount of leakage at the default voltage level for each core,
we scaled it based on this model for each voltage level, taking
both the temperature and voltage change into consideration. We
used a sleep state power of 0.02 W, which is estimated based
on sleep power of similar cores. For DPM, we implemented a
fixed timeout policy [3] with timeout set to 100 ms. In addition,

we investigate a combined policy of DPM and DVS. The hy-
brid DPM/DVS policy selects the lowest frequency possible for
each task considering the deadline constraints, and shuts down
the cores based on the fixed timeout policy. For the crossbar,
we used a simple power model, where the power consumption
scales according to how many cores are active and their L2 ac-
cess characteristics derived from traces in Table V.

The next step is to obtain the temperature distributions using
a thermal simulator. We used HotSpot version 2 [33] as the
thermal modeling tool, and modified it accordingly our MPSoC.
The thermal package characterization was based on the package
properties of the UltraSPARC T1. We performed the thermal
simulations using a sampling interval of 10 ms, which provided
a good precision. We used steady-state temperature values ob-
tained through HotSpot as the initial temperature.

Using the experimental methodology described before, we
evaluated all the static and dynamic techniques we discussed.
We provide the experimental results in Section VI.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate all of the scheduling techniques
we discussed in Sections III and IV. We start by comparing the
energy and temperature-aware static scheduling approaches in-
troduced in Section III. We then provide results for the low-over-
head dynamic scheduling techniques and compare them against
the static baseline case. We evaluate the scheduling techniques
by comparing their efficiency of reducing thermal hot spots, spa-
tial gradients, and temporal fluctuations (i.e., thermal cycles).
We show results for systems with DPM and DVS strategies to
demonstrate how the schedulers perform when the system has
power management capabilities.

The hot spot results show the percentage of time spent above
85 C, which is considered a high temperature for our system.
For Intel 1.5 GHz Pentium 4 processor and AMD 1.2 GHz
Athlon processor, the recommended maximum die temper-
atures are 72 C and 95 C, respectively [31]. The spatial
gradient results summarize the percentage of time gradients
above 15 C are observed. Device delay is correlated with
on-resistance, which increases with temperature. Gradients of
even 15 C–20 C start causing clock skew and delay issues
[1]. The spatial gradient distribution is calculated by evaluating
the temperature difference between hottest and coolest cores at
each sampling interval.

We report the temporal fluctuations of magnitude above 20 C
for only the cases with DPM and DVS/DPM, because going
into sleep state causes large magnitude of variations in temper-
ature. We do not provide thermal cycling results for the case
of no power management due to the lack of significant tem-
poral variations (i.e., the results are not available for this case
in Table VI). The number of cycles to failure can be approx-
imated using Coffin–Manson model [12]. For example, if we
compute the failure rate for metallic structures, assuming the
same frequency of cycles, when increases from 10 C to
20 C, failures happen 16 times more frequently. Thermal cy-
cling results were obtained by computing the over a sliding
window and averaging the s of all cores.

1136 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

TABLE VI
SUMMARY OF EXPERIMENTAL RESULTS

Fig. 3. Distribution of thermal hot spots, with DPM (ILP).

A. Static Scheduling Techniques

We next provide an extensive comparison of the ILP based
techniques. We refer to our static approach as Min-Th&Sp.
As discussed in Section III, we implemented the ILP for min-
imizing thermal hot spots (Min-Th), energy balancing (Bal-
En), and energy minimization (Min-En) to compare against
our approach. To the best of our knowledge, this is the first time
in the literature static MPSoC scheduling techniques are com-
pared extensively to evaluate their thermal behavior.

We first show average results over all the benchmarks. Fig. 3
demonstrates the percentage of time spent at certain temperature
intervals for the case with DPM. The figure shows that Min-
Th&Sp achieves a higher reduction of hot spots in comparison
to the other energy and temperature-based ILPs. The reason for
this is that, avoiding clustering of workload in neighbor cores
reduces the heating on the die, resulting in lower temperatures.

Fig. 4 shows the distribution of spatial gradients for the av-
erage case with DPM. In this plot, we can observe how Min-Th
increases the percentage of high differentials while reducing

Fig. 4. Distribution of spatial gradients, with DPM (ILP).

hot spots. While Min-Th reduces the high spatial differentials
above 15 C, we observe a substantial increase in the spatial
gradients above 10 C. In contrast, our method achieves lower
and more balanced temperature distribution in the die.

In Fig. 5, we show how the magnitudes of thermal cycles vary
with the scheduling method. We demonstrate the average per-
centage of time the cores experience temporal variations of cer-
tain magnitudes. As can be observed in Fig. 5, Min-Th&Sp
reduces the thermal cycles of magnitude 20 C and higher sig-
nificantly. The temporal fluctuations above 15 C are reduced
in comparison to other static techniques, except for Min-En.
The cycles above 15 C (total) occur 17.3% and 19.2% of the
time for Min-Th&Sp and Min-En, respectively. Our formu-
lation targets reducing the frequency of highest magnitude of
hot spots and temperature variations, therefore, such slight in-
creases with respect to Min-En are possible.

In the plots discussed before and also in Table VI, we ob-
serve that the Min-Th&Sp technique successfully reduces hot
spots as well as the spatial and temporal fluctuations. Power

COŞKUN et al.: STATIC AND DYNAMIC TEMPERATURE-AWARE SCHEDULING FOR MULTIPROCESSOR SoCs 1137

Fig. 5. Temporal variations, with DPM (ILP).

Fig. 6. Percentage of hot spots (dynamic techniques).

management (see DPM and DVS&DPM results for Min-En
in Table VI) reduces the hot spots to some extent, but it cannot
eliminate them effectively. Moreover, applying power manage-
ment creates thermal cycles and larger spatial gradients due to
the considerable decrease of power in sleep state. For example,
Bal-En has high magnitude of cycles for 16% of the time
(for DPM). Min-En reduces this percentage to about 7%. This
reduction is due to the decrease in high temperatures. Min-
Th&Sp can further decrease the frequency of cycles to less than
3%. We also observe that combining DVS with DPM reduces
both high temperatures and temperature variations in compar-
ison to applying only DPM.

The temperature balancing approaches Min-Th and
Min-Th&Sp achieve much lower frequency of spatial gra-
dients in comparison to energy-based techniques. For the
cases with DVS&DPM, Min-Th&Sp bounds the frequency
of spatial gradients to below 1.5% for all benchmarks except
Web-high, which has over 90% utilization and a considerably
high percentage of thermal hot spots.
Min-Th&Sp achieves more dramatic reductions in hot spots

and gradients for benchmarks with lower system utilization
(e.g., gcc and gzip), since the optimization method has more
freedom to distribute the workload across the chip. As utiliza-
tion increases (e.g., Web & DB and Web-high), we observe an

Fig. 7. Comparison of hot spots and performance cost

Fig. 8. Spatial gradients (dynamic techniques).

increasing percentage of hot spots; however, the thermal cycles
decrease as the system does not go into sleep state as often.

We have seen that our technique, Min-Th&Sp, outperforms
other energy and temperature-based ILPs in terms of reducing
both hot spots and temperature gradients. Minimizing energy
(Min-En) reduces the hot spots due to the decrease in power,
and manages to reduce gradients to some extent. However, by
considering thermal profiles of tasks and the location of cores on
the chip, Min-Th&Sp can achieve lower and more even tem-
perature profiles.

Next, we evaluate the dynamic scheduling techniques. As our
technique Min-Th&Sp performs the best among other static
techniques in terms of reducing hot spots and variations, in Sec-
tion VI-B, we only compare the dynamic approaches to Min-
Th&Sp.

B. Dynamic Scheduling Techniques

In this section, we evaluate the dynamic scheduling tech-
niques we discussed in Section IV. Fig. 6 shows the average
case temperature distribution over time for dynamic cases, and
also compares them against Min-Th&Sp. For example, load
balancing results in temperatures over 85 C for close to 20%
of the time. Adaptive-Random can reduce the hot spots to
around 14% without any performance impact.

1138 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

Fig. 9. Thermal maps. (a) DLB. (b) Adaptive-Random.

Fig. 7 demonstrates how effective the dynamic techniques
are in reducing hot spots, and also compares the performance
cost. The left axis provides the average percentage of time hot
spots (over 85 C) are observed, for the case without DPM. We
show the normalized performance of each policy with respect
to the baseline case of load balancing on the right axis. To eval-
uate the performance impact, we computed the average delay
in the completion time of jobs with respect to the baseline case
of load balancing. In thread migration, we assumed each migra-
tion takes 200 ms, according to the results provided in [4]. All
the results regarding the Adaptive-Random technique are aver-
aged over a hundred runs in order to obtain statistical conver-
gence. While the aggressive reactive techniques (migration and
voltage scaling) achieve reduced percentage of hot spots, their
performance cost is very high. When these techniques are com-
bined with Adaptive-Random, the hot spots can be further
reduced to below 1%, while at the same time the performance
degradation is reduced considerably, from 15% to below 7%.

In Fig. 8, we show how each dynamic technique effects spa-
tial gradients. While Coolest-FLP results in very similar hot
spot and thermal cycle percentages in comparison to Coolest,
it reduces the frequency of high spatial gradients dramatically.
This is due to the effect of heat sharing, as discussed previ-
ously in Section IV. Even though Adaptive-Random is a dy-
namic technique, it can almost eliminate the large gradients, and
achieve very similar results to the baseline case ofMin-Th&Sp.

Fig. 9 shows thermal maps of MPSoCs (a) and (b), which
have been scheduled with DLB and Adaptive-Random,
respectively. Load balancing causes high spatial tempera-
ture differences (above 20 C) frequently, whereas Adap-
tive-Random typically achieves a more uniform thermal
profile.

Fig. 10 compares the dynamic techniques to Min-Th&Sp in
terms of the frequency of large magnitude of thermal cycles
observed. Adaptive-Random can reduce the frequency of
cycles that have magnitude greater than 20 C by around 50%,
with respect to load balancing.

We evaluate all the dynamic scheduling techniques and the
reactive management techniques in Fig. 11 in terms of how they
perform in reducing thermal cycles. Combining Adaptive-

Fig. 10. Temporal variations, dynamic techniques (with DPM)

Fig. 11. Temporal variations (all dynamic techniques).

Randomwith thread migration or voltage scaling eliminates the
high-magnitude cycles, at a much more reasonable performance
cost than solely applying thread migration (DTM) or VSTM. A
PI-controller based technique for temperature-aware DVS (such
as [7]) can reduce the performance overhead of DVS. However,
it should be noted that VSTM forces the cores to run at the lower
voltage/frequency setting until the current job finishes, which

COŞKUN et al.: STATIC AND DYNAMIC TEMPERATURE-AWARE SCHEDULING FOR MULTIPROCESSOR SoCs 1139

is expected to achieve lower temperatures with respect to the
PI-controller approach.

Table VI shows a detailed comparison of load balancing
(DLB), Adaptive-Random, Min-En, and Min-Th&Sp. We
can observe that ILP methods achieve dramatic reductions
in thermal hot spots, e.g., Min-Th&Sp decreases the per-
centage from 19 to around 4 for cases with DPM. Even though
Adaptive-Random is an online technique, it can reduce the
temporal fluctuations considerably, and performs very closely
to Min-Th&Sp in terms of decreasing the frequency of high
spatial gradients.

In this section, we have evaluated all the static and dynamic
scheduling techniques we discussed. We showed that, our static
temperature-aware optimization method Min-Th&Sp outper-
forms the other ILPs for reducing energy and hot spots in terms
of reducing hot spots and large temperature gradients. Our solu-
tion reduces the frequency of hot spots by 35%, spatial gradients
by 85% and thermal cycles by 61% in comparison to the ILP for
minimizing energy. For dynamic management of temperature,
we have demonstrated that our policy, Adaptive-Random,
can reduce the temporal and spatial gradients by 50% and 90%
respectively in comparison to state-of-the-art schedulers at neg-
ligible performance overhead.

VII. CONCLUSION

In this paper, we have investigated static and dynamic temper-
ature-aware scheduling techniques for MPSoCs. We first pro-
posed a static ILP-based optimization method to set a baseline
for dynamic techniques. Our ILP minimizes the hot spots, as
well as the temperature variations in time and space. We formu-
lated ILPs for minimizing energy, balancing energy, and mini-
mizing hot spots (without considering gradients), and provided
an extensive comparison. We demonstrated that our static tem-
perature-aware scheduling method outperforms the other ILP-
based approaches in terms of reducing both hot spots and gradi-
ents, e.g., it reduces the frequency of hot spots by 35%, spatial
gradients by 85% and thermal cycles by 61% in comparison to
the ILP for minimizing energy.

We also developed an adaptive dynamic policy, which mod-
ifies the workload allocation policy based on the temperature
history. While the adaptive method performed slightly better in
eliminating hot spots than existing load balancing techniques, it
provided 50% and 90% reductions in temporal and spatial tem-
perature variations respectively. In addition, we demonstrated
that the performance overhead of reactive techniques such as
thread migration and voltage scaling can be reduced dramati-
cally when they are combined with the Adaptive-Random tech-
nique, while achieving lower and more stable temperatures.

ACKNOWLEDGMENT

The authors would like to thank T. Marsh at Sun Microsys-
tems for his help in setting up the experiments on UltraSPARC
T1. They would also like to thank the anonymous reviewers for
their valuable feedback.

REFERENCES

[1] A. H. Ajami, K. Banerjee, and M. Pedram, “Modeling and analysis
of nonuniform substrate temperature effects on global ULSI intercon-
nects,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 24,
no. 6, pp. 849–861, Jun. 2005.

[2] D. Atienza, P. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli,
and J. M. Mendias, “A fast HW/SW FPGA-based thermal emulation
framework for multi-processor system-on-chip,” in Proc. DAC, 2006,
pp. 618–623.

[3] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 3, pp. 299–316, Jun.
2000.

[4] S. Bouchenak and D. Hagimont, “Pickling threads state in the java
system,” in Proc. Technol. Object-Oriented Languages Syst. (TOOLS),
2000, p. 22.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[6] K. Choi, R. Soma, and M. Pedram, “Dynamic voltage and frequency
scaling based on workload decomposition,” in Proc. ISLPED, 2004,
pp. 174–179.

[7] J. Donald and M. Martonosi, “Techniques for multicore thermal man-
agement: Classification and new exploration,” in Proc. ISCA, 2006, pp.
78–88.

[8] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-run: Lever-
aging SMT and CMP to manage power density through the operating
system,” in Proc. ASPLOS, 2004, pp. 260–270.

[9] K. Gross, K. Whisnant, and A. Urmanov, “Electronic prognostics
through continuous system telemetry,” in Proc. MFPT, 2006, pp.
53–62.

[10] J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints,” in Proc. DATE, 2004, pp. 234–239.

[11] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin, “Thermal-aware task allocation and scheduling for embedded
systems,” in Proc. DATE, 2005, pp. 898–899.

[12] JEDEC Solid State Technology Association, Arlington, VA, “Failure
mechanisms and models for semiconductor devices,” JEDEC publica-
tion JEP122C, 2006. [Online]. Available: http://www.jedec.org

[13] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the cell multiprocessor,” IBM J. Res.
Development, vol. 49, no. 4/5, pp. 589–604, Jul./Sep. 2005.

[14] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min, “Performance
comparison of dynamic voltage scaling algorithms for hard real-time
systems,” in Proc. RTAS, 2002, p. 219.

[15] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way mul-
tithreaded SPARC processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29,
Feb. 2005.

[16] H. Kufluoglu and M. A. Alam, “A computational model of NBTI and
hot carrier injection time-exponents for MOSFET reliability,” J. Com-
putational Electron., vol. 3, no. 3, pp. 165–169, Oct. 2004.

[17] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A coordi-
nated hardware-software approach for dynamic thermal management,”
in Proc. DAC, 2006, pp. 548–553.

[18] E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, and P. Bose, “Investigating
the effects of task scheduling on thermal behavior,” presented at the
Proc. TACS, Boston, MA, 2006.

[19] C. J. Lasance, “Thermally driven reliability issues in microelectronic
systems: Status-quo and challenges,” Microelectron. Reliab., vol. 43,
pp. 1969–1974, 2003.

[20] A. Leon, L. Jinuk, K. Tam, W. Bryg, F. Schumacher, P. Kongetira, D.
Weisner, and A. Strong, “A power-efficient high-throughput 32-thread
SPARC processor,” in Proc. ISSCC, 2006, p. 98.

[21] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware
scheduling under timing constraints for mission-critical embedded sys-
tems,” in Proc. DAC, 2001, pp. 840–845.

[22] “Lp_solve,” 2004. [Online]. Available: http://www.lpsolve.source-
forge.net/5.5/

[23] R. McDougall, J. Mauro, and B. Gregg, Solaris Performance and
Tools. NJ: Sun Microsystems Press, 2006.

[24] M. Mutyam, F. Li, V. Narayanan, M. Kandemir, and M. J. Irwin,
“Compiler-directed thermal management for VLIW functional units,”
in Proc. LCTES, 2006, pp. 163–172.

[25] G. Quan and X. Hu, “Energy efficient fixed priority scheduling for real-
time systems on variable voltage processors,” in Proc. DAC, 2001, pp.
828–833.

[26] P. Rong and M. Pedram, “Power-aware scheduling and dynamic
voltage setting for tasks running on a hard real-time system,” in Proc.
ASPDAC, 2006, pp. 473–478.

[27] T. S. Rosing, K. Mihic, and G. De Micheli, “Power and reliability man-
agement of SoCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 15, no. 4, pp. 391–403, Apr. 2007.

1140 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

[28] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano, “Com-
munication-aware allocation and scheduling framework for stream-ori-
ented multi-processor system-on-chip,” in Proc. DATE, 2006, pp. 3–8.

[29] K. Sankaranarayanan, S. Velusamy, M. R. Stan, and K. Skadron, “A
case for thermal-aware floorplanning at the microarchitectural level,”
J. Instruction-Level Parallelism, vol. 7, pp. 1–16, 2005.

[30] M. Santarini, “Thermal integrity: A must for low-power IC digital de-
sign,” in Proc. EDN, Sep. 2005, pp. 37–42.

[31] Y.-H. Shih and J.-G. Hwu, “An on-chip temperature sensor by utilizing
a MOS tunneling diode,” IEEE Electron Device Lett., vol. 22, no. 6, pp.
299–301, Jun. 2001.

[32] K. Skadron, “Hybrid architectural dynamic thermal management,” in
Proc. DATE, 2004, pp. 10–15.

[33] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proc. ISCA,
2003, pp. 94–125.

[34] Sun Microsystems, “SLAMD distributed load engine,” [Online]. Avail-
able: www.slamd.com

[35] J. Srinivasan and S. V. Adve, “Predictive dynamic thermal manage-
ment for multimedia applications,” in Proc. ICS, 2003, pp. 109–120.

[36] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for life-
time reliability-aware microprocessors,” in Proc. ISCA, 2004, p. 276.

[37] K. Stavrou and P. Trancoso, “Thermal-aware scheduling for future chip
multiprocessors,” EURASIP J. Embedded Syst., vol. 2007, p. 40, 2007.

[38] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full-chip leakage
estimation considering power supply and temperature variations,” in
Proc. ISLPED, 2003, pp. 78–83.

[39] V. V. Vazirani, Approximation Algorithms. Berlin, Germany:
Springer, 2003.

[40] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, “Thermal
performance challenges from silicon to systems,” Intel Technol. J., Q3,
vol. 23, p. 16, 2000.

[41] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation for collab-
orative processing in wireless sensor networks,” Mobile Netw. Appl.,
vol. 10, pp. 115–131, 2005.

[42] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage
selection for energy minimization,” in Proc. DAC, 2002, pp. 183–188.

Ayşe Kıvılcım Coşkun received the B.S. degree in
microelectronics engineering from Sabanci Univer-
sity, Turkey, in 2003, together with a minor degree in
physics, and the M.S. degree in computer engineering
from the University of California San Diego (UCSD),
La Jolla, where she is currently pursuing the Ph.D.
degree in computer science and engineering.

She has been an intern with Sun Microsystems in
the System Dynamics Characterization and Control
Team since June 2006. Her research interests include
reliability and temperature modeling and optimiza-

tion in multicore SoCs, and fault tolerant computer architectures. Her advisor at
UCSD is T. Rosing. She worked as a summer intern with Ecole Polytechnique
Fédérale de Lausanne (EPFL) in summer 2005, working with Dr. G. De Micheli
and Dr. Y. Leblebici.

Tajana Šimunić Rosing received the M.S. degree
in electrical engineering from University of Arizona,
Tucson with a thesis topic on high-speed intercon-
nect and driver-receiver circuit design, and the Ph.D.
degree from Stanford University, Stanford, CA, in
2001, concurrently with finishing her Masters in
Engineering Management. Her Ph.D. dissertation
was entitled “Dynamic management of power
consumption”.

She is currently an Assistant Professor with the
Computer Science Department, University of Cali-

fornia San Diego (UCSD), La Jolla. Her research interests include low-power
system design, embedded systems, and wireless system design. Previously, she
was a full time researcher with HP Labs while working part-time at Stanford
University. At Stanford, she has been involved with leading research of a number
of graduate students and has taught graduate level classes. Prior to pursuing her
Ph.D., she worked as a Senior Design Engineer with Altera Corporation. She
has served at a number of Technical Paper Committees, and has been an Asso-
ciate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS.

Keith A. Whisnant received the B.S., M.S., and Ph.D. degrees in computer en-
gineering from the University of Illinois at Urbana-Champaign, Urbana-Cham-
paign. His dissertation focused on the design of a reconfigurable runtime envi-
ronment that provides a wide variety of software-implemented fault tolerance
techniques to user applications.

He is a member of the System Dynamics Characterization and Control Team,
Sun Microsystems. He is the chief architect for developing software around the
group’s research into telemetry, proactive fault monitoring, and electronic prog-
nostics. Through a JPL fellowship, he applied his fault tolerance runtime envi-
ronment towards protecting spaceborne parallel scientific applications. He was
also involved in the design and implementation a fault injection software frame-
work for validating and evaluating dependable systems.

Kenny C. Gross received the Ph.D. degree in nu-
clear engineering from the University of Cincinnati,
Cincinnati, OH, in 1977.

He is a Distinguished Engineer for Sun Microsys-
tems and is team leader for the System Dynamics
Characterization and Control Team, Sun’s Physical
Sciences Research Center, San Diego. He specializes
in advanced pattern recognition, continuous system
telemetry, and dynamical system characterization for
improving the reliability, availability, and service-
ability of enterprise computing systems. He holds

167 U.S. patents issued and pending and has authored about 166 scientific
publications.

Dr. Gross was a recipient of the 1998 R&D 100 Award for one of the top
100 technological innovations of that year, for an advanced statistical pattern
recognition technique (MSET) that was originally developed for nuclear and
aerospace applications and is now being used for a variety of applications to
improve quality and availability for enterprise computer servers.

