
Dynamic Server Power Capping for
Enabling Data Center Participation in Power Markets

Hao Chen∗, Can Hankendi∗, Michael C. Caramanis† and Ayse K. Coskun∗
∗Department of Electrical and Computer Engineering

†Division of Systems Engineering
∗†Boston University, Boston, Massachusetts 02215
{haoc, hankendi, mcaraman, acoskun}@bu.edu

Abstract—Today’s US power markets offer new opportunities
for the energy consumers to reduce their energy costs by first
promising an average consumption rate for the next hour and
then by following a regulation signal broadcast by the indepen-
dent system operators (ISOs), who need to match supply and
demand in real time in presence of volatile and intermittent
renewable energy generation. This paper leverages the power
regulation capabilities of the servers so as to enable the data
centers to participate in these emerging power markets. As the
data center energy consumption continues to grow, proposed
participation in the power markets has the promise to achieve
significant monetary savings. The paper first solves a data center
regulation service (RS) optimization problem to determine the
optimal average power consumption and regulation quantity
that minimize the energy cost. We then propose a dynamic
server power capping technique to modulate the real-time power
consumption in response to ISO requests while maintaining the
desired quality-of-service (QoS). Experiments on a real-life server
demonstrate that our technique can reduce the energy cost by
29% on average compared to using a fixed power cap.

I. INTRODUCTION

Today, the needs to incorporate renewable energy sources
(e.g., hydropower, wind power and solar energy) in power
generation are growing rapidly. However, because of the lack
of reliable and economical large-scale energy storage solutions,
the adoption of these intermittent renewable energy sources
creates challenges for ISOs who need to match supply and
demand in electricity markets by securing some flexible regu-
lation service (RS) reserves in forward markets and dispatching
them in real time [17]. Failing to balance the supply and
demand can lead to catastrophic events such as blackouts.
Hence, power RS reserves have been playing an increasingly
important role in modern power markets.

In tandem with the developments in the power markets,
electricity used by the data centers has grown to account
for 3% of the overall consumption in the US today [8].
Recent advancements in power capping and power manage-
ment techniques for the servers in the data centers (e.g., [3],
[10], [23]) have enabled the data centers to provide some
flexibility in their energy consumption. Therefore, data centers
offer a unique opportunity for providing power RS reserves.
Exploiting this flexibility can help satisfy most of the growth
in data center energy consumption from the renewable energy,
and also provide additional reserves to other less flexible uses
of electricity in our society.

The major contributions of our work are (1) we demon-
strate the proof-of-concept that data centers offer the necessary

capabilities to participate in the emerging power markets,
and (2) we show that the energy costs can be dramatically
reduced when data centers provide RS reserves. We first
formulate and solve the optimization problem to minimize the
energy costs while satisfying both user QoS constraints and
a given ISO signal tracking error constraint. We then propose
a practical technique to modulate the server power based on
the ISO signal. We evaluate our optimization framework and
the runtime implementation policy on a real-life multi-core
server. Power capping, where compute nodes operate below a
given peak power value, is commonly used today for meeting
peak power constraints (e.g., [3], [21]). However, to the best
of our knowledge, ours is the first work to leverage server
power capping for enabling the data center to participate in the
advanced power markets. Our experimental results show that
we can achieve up to 29% monetary savings while satisfying
the performance constraints.

The rest of the paper starts with a discussion of the
background in power markets and data center power cap-
ping/management techniques. Section III outlines the general
operational framework of a data center that participates in the
power market. Section IV introduces our power and perfor-
mance modulation methodology. Section V first solves the RS
optimal bidding problem on a single server, and then provides
our runtime power capping policy. Section VI presents the
experimental results and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the background on the
power market and the RS provision problem, then we outline
the related work on power capping and management.

A. Power Markets and Regulation Service (RS) Provision

Power market RS provisions have been widely studied in
recent years. There are several power markets with different
time-scales, where energy and reserve transactions are cleared
simultaneously. These power markets are adopted to match
electricity supply with demand in real time. Among them,
short-term markets are the most relevant to our work. Short-
term markets contain the day-ahead market [13], the hour-
ahead adjustment market and the 5-minute economic dispatch
market ([9], [14]). Some management mechanisms exist in
the power markets for pricing, allocating energy, and securing
the reserves needed for uncertainty contingency planning.
Reserves secured in the forward markets include primary (also
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Fig. 1. Typical PJM 150sec ramp rate (F) and 300sec ramp rate (S) regulation
signal trajectories.

known as frequency control), secondary (known as regulation
service, RS), and tertiary reserves which are deployed by
commands issued respectively in millisecond, 5 second and
5 minute intervals ([18], [19]). In our work we focus on the
RS reserves in the hour-ahead power market as the price of
reserves is high and data center can modulate their power
at this timescale. Currently, RS reserves are mainly offered
by centralized generators; however, market rules are changing
to allow the demand side to provide reserves as well. For
example, PJM, one of the largest US ISOs, has allowed
electricity loads to participate in reserve transactions since
2006 [17]. Other ISOs are contemplating to follow this trend.

For each participant in the RS reserves power market, an
average power consumption P̄ and an RS reserve provision
R should be declared to the ISO an hour in advance of each
hour. With market clearing prices for energy consumed and RS
reserves, ΠE and ΠR, the participant is charged for its average
energy consumption and credited for the RS reserves such that
the participant pays a net amount of ΠEP̄ −ΠRR. However,
the credit for the RS reserves does not come for free. As the
hour unfolds, the participant is asked to modulate its power
consumption P (t) dynamically so as to track the RS signal
z(t) broadcast by the ISO by ensuring that P (t) ≈ P̄ +z(t)R.
Part of the RS income ΠRR is reduced based on the amount
of the tracking error. Moreover, if the tracking error exceeds
a statistical tolerance constraint, the participant may lose its
contract for RS reserves provision [19].

The RS signal z(t) is the main tool used by ISO to balance
the supply and demand in the power market. This signal is
generated based on the real-time power market situation. The
specific signal dynamics are determined through an integral
proportional filter of the Area Control Error, which measures
the difference between the actual and scheduled net imports
from adjacent balancing areas and frequency excursions out-
side of the tolerance interval [59.980, 60.020Hz] [22]. z(t)
is a scalar in the interval [−1, 1] with an average of zero
over longer time intervals. z(t) is updated every 4 seconds
in increments that do not exceed ±R/(τ/4), where τ is
150 seconds for the fast (F) RS and 300 seconds for the
slower (S) RS. Typical hour-long trajectories of zF (t) and
zS(t) from PJM historical data [22], which in fact conform to
|zF (t+4)−zF (t)| < 4/150 and |zS(t+4)−zS(t)| < 4/300,
are shown in Figure 1.

For intelligent RS provision in the hour-ahead power

market, Caramanis et al. investigate optimal dynamic pricing
policies for RS bidding [2]. Paschalidis et al. propose a market-
based mechanism, which uses the dynamic pricing policy to
enable a smart grid building operator to offer RS reserves and
meet the ISO requirements [15]. Prior work on optimizing
demand-side RS reserves, however, does not consider data
centers as a potential participant.

B. Power Management and Capping

Server power management has advanced significantly in
the recent years. Most of the modern processors support
dynamic voltage-frequency scaling (DVFS) and have power
gating capabilities to tune off idle units (e.g., [10], [23]).
Multi-core processors have additional degrees of freedom in
workload scheduling and allocation; thus, they introduce new
opportunities for power management [24]. Power capping is
another important technique that is widely used for meeting
the peak or average power constraints today. Some modern
processors provide power capping capabilities (e.g., [1], [4]).
Gandhi et al. propose a power capping strategy that inserts
idle cycles during execution to meet a given power budget [6].
For multi-threaded applications, policies that combine DVFS
with thread allocation/migration improve the granularity and
accuracy of capping (e.g., [3], [20]). For a mixture of single
and multi-threaded applications, Ma et al. propose a power
capping technique that power-gates the cores and applies per-
core DVFS [11]. Reda et al. propose to improve performance
under dynamically changing power caps by training power-
performance models for a target server by using thread allo-
cation with DVFS [21].

In virtualized servers, Nathuji et al. propose a power
allocation technique that uses CPU utilization data for each
virtual machine (VM) to allocate a given power budget across
the VMs according to the service level agreement (SLA)
requirements [12]. Resource management policies in virtu-
alized environments affect the performances-power profiles
of the servers. Hwang et al. calculate the optimum number
of virtual cores (vCPUs) for single-threaded applications that
have distinct characteristics (i.e., memory/CPU-bounded) and
they propose a consolidation policy that uses DVFS and core
power gating [7]. Vasic et al. propose to reduce the resource
management overhead by making resource allocation decisions
based on the history of the VMs [25].

Power management of servers is being addressed at many
levels today; however, none of the existing techniques use the
data center as a grid load stabilizer or enable participation
in the power markets. Our work is the first to integrate
RS provision and data center power management techniques
together. This paper solves the data center RS optimization
problem to determine the optimal average power consumption
and the RS quantity to minimize the energy cost. We also
implement a power capping technique on a real-life system
using existing control knobs in virtualized servers to enable
RS signal tracking.

III. GENERAL FRAMEWORK FOR DATA CENTER
REGULATION SERVICE PROVISION

This section gives an overview of the data center power
regulation framework. Figure 2 shows how the different sub-
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Fig. 2. Data center power RS provision framework.

components of the RS provision problem come together. The
whole RS provision process includes the following steps:

(1) The data center first acquires the information of workload
arrivals for the next hour. If such information is not available,
the data center forecasts the workload based on the historical
workload patterns.

(2) Using an estimation of future workload arrivals and the ISO
requirements (e.g., tracking error), the data center computes the
optimal average power consumption P̄ and the RS reserves R,
and bids in the power market for (P̄ , R).

(3) Once the ISO approves the bid, an RS signal z(t) is dy-
namically broadcast to the data center from the ISO. Then the
data center optimally distributes the total power cap P̄+z(t)R
to the cooling units and to each server. The data center also
performs workload allocation to servers.

(4) The cooling system maintains the thermal constraints and
gives temperature feedback to the data center control unit.
Because of the larger time constants involved in cooling
temperature dynamics, ideally cooling power adjustment is
performed less frequently compared to server power regulation.

(5) Each server has multiple cores and different levels of
load queues. Workloads run on the servers and dynamic
power capping is applied to track a given server-level cap.
Performance and QoS feedback from each server is sent back
to the data center control unit.

(6) Based on the feedback from the cooling units and servers,
the data center re-allocates power caps and workloads so as to
track the RS signal dynamically and to improve performance.

(7) The data center repeats the steps above for each hour.

In this paper, we focus on the power regulation of the
computational units (i.e., servers) for fast regulation, as cooling
power can be regulated as part of slower frequency markets due
to the thermal time constants. Server-level power control is the
main building block and a pre-requisite to achieve fine-grained
power control at a few second intervals. Hence, our work
solves the RS signal tracking problem on a single multi-core
server, providing the proof-of-concept for RS signal tracking
capabilities. Our technique can be integrated with data center
level power budgeting techniques and cooling management
techniques. In the rest of the paper, we focus on the single
server sub-problem.

IV. METHODOLOGY FOR POWER-PERFORMANCE
MODULATION

In this section, we describe our methodology for dynami-
cally modulating the server power consumption, P (t), to meet
the ISO power signal, P̄ + z(t)R, for a given (P̄ , R). We
explain how to derive (P̄ , R) in Section V.

We conduct our experiments on an AMD Magny Cours
(Opteron 6172) based server. Magny Cours has 12 process-
ing cores on a single chip. We virtualize the server using
the VMware vSphere 5.1 ESXi hypervisor. We run selected
applications from the PARSEC 2.1 benchmark suite [16],
where each application runs on a VM in isolation (without
any consolidation). We select the PARSEC suite as multi-
threaded workloads are becoming increasingly common in the
data centers as well as in supercomputing clusters. The server
is connected to a Wattsup power meter that measures power
consumption at every second.

In this paper, we use the CPU resource limits control knob
in the hypervisor to tune the power for tracking the RS signal
and control the power-performance settings at runtime. Using
resource limits, we are able to quickly and dynamically change
the server resources allocated to a virtual machine (VM) at
a fine granularity, resulting in finer-grained power regulation
compared to DVFS or power gating. Using models that relate
the amount of resource limits, the power consumption and the
performance of the server, we can set both the power and
the performance at any needed level. Today over 50% of the
data center servers are virtualized; therefore, changing resource
limits is a practical and efficient way to control power and
performance.

Next, we test the capacity of the server for participating
in power markets by using the CPU resource limits control
knobs. We also derive the power-performance model, which
is used in solving the optimal bidding problem (Section V.A),
and the power - resource limits model which is used in the
runtime policy for tracking the ISO signal (Section V.B).

A. Regulation Service Provision Capacity Test

Before issuing a contract to an RS reserve provision
candidate, ISO first gives the candidate a test signal to track
and examines its performance mainly on three aspects: (1)
the capability of consuming a stable power for a period
of time (i.e., 5 minutes); (2) the time required for power
consumption to ramp up to P̄ +R and down to P̄ −R; (3) the
capability of making dynamic power changes at a sufficiently
fine granularity [19]. Our experimental results on the AMD
server show the following:

• Power Stability: We keep the resource limit at a fixed
setting for 10 minutes and observe the fluctuation of the
power consumption. The standard deviation of the power
consumption when a given PARSEC application is in its
parallel phase is 1-3W, which is only 1-2% of P̄ . Note
that if the power dynamics of the application running on
the server changes, resource limits can be adjusted to keep
P (t) stable.
• Ramp-up Capability: Our server shows the ability to

ramp up to 153W and down to 66W (66W is the server
idle power, 153W is the maximum power consumption of
blackscholes) at 1s intervals.
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• Granularity of Modulation: The resource limit control
knob is able to modulate the power consumption in a
granularity of a few milliwatts.

These results show that our server, a typical virtualized
server in data centers, can meet all the ISO test requirements
using the CPU resource limit control knob and it has sufficient
capability for providing RS reserves.

B. Power - Performance Model

Retired Instructions Per Second (RIPS) is a commonly used
metric for evaluating the performance of an application. A
higher RIPS represents a faster processor service rate. We use
RIPS as the performance metric in our power-performance
model. Our model is derived by using regression methods
on the power-performance data we measured on our server
for each PARSEC benchmark. The results show that a linear
regression Pj = C1,j∗RIPSj+C2,j constructs the model with
a least square error of less than 5%, where j represents the type
of the workload (i.e., the specific application). We observe that
C1,j differs depending on the application, while C2,j values are
similar among the workloads. This is expected as in this linear
model, C2,j is the power consumption when RIPSj = 0,
which means C2,j is actually the server idle power, and
therefore is not influenced by the type of the workload. The
data and model fits for each PARSEC benchmark are shown in
Figure 3. We use this linear power-performance model while
simulating the system for computing the optimal (P̄ , R).

C. Power - Resource Limits Model

Figure 4 shows the power consumption of four PARSEC
benchmarks as a function of the CPU resource limits. CPU
resource limits restrict the maximum amount of time-share of
the virtual CPUs (vCPUs) that are scheduled on the physical
cores (pCPUs) and these limits are represented in units of
MHz. The maximum amount of CPU resources that can be
allocated to a VM is equal to the number of vCPUs multiplied
by the frequency of the cores (fcore). For our system, the
maximum amount that can be allocated to the VM is equal
to (12 · fcore) MHz. For most of the benchmarks, power and
CPU resource limits are linearly correlated; therefore, the peak
power consumption is observed at the highest CPU resource
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Fig. 4. Power-resource limit models for the PARSEC applications.

limit. However, for benchmarks such as facesim, power
consumption is constant after reaching a certain amount of
CPU resources, as the benchmark cannot continue to utilize
the resources efficiently.

To capture the various relationships between power and
CPU resource limits, we monitor the overall CPU usage (in
MHz) (i.e., CPUused) and the amount of CPU resources that
are not utilized because of the existing CPU resource limits
on the system (i.e., CPUready). VM statistics (i.e., CPUused
and CPUready) are polled every 2 seconds using the vSphere
SDK for GuestOS library. CPUready metric allows us to
capture the saturating performance effects (e.g., facesim),
as it reflects the amount of CPU resources needed to reach
the maximum performance. The CPUused value captures the
utilization levels of the pCPUs caused by the VM, excluding
the system activity.

We also use feedback from the power meter to update the
power/CPU resource limits models dynamically at runtime. In
other words, power measurements (i.e., Ptot) are fed into the
power-CPU resource limit model to estimate the CPU resource
limit that meets the power constraints. We first remove the idle
power consumption from the measured total power to compute
the dynamic power, Pdyn = Ptot−Pidle. In our runtime policy,
we estimate the CPU resource limit value, (Rcap), that meets
the given power cap by using the Eq. 1, where Pcap is the
target power constraint. From our experiments, the estimation
error of this model is less than 5%.

Rcap(MHz) = (CPUused + CPUready) ∗ Pcap/Pdyn (1)

All applications are run with 12 threads in our experiments.
At lower power caps, running the applications with a high
number of threads might introduce overhead due to potential
resource contention. To reduce the overhead caused by running
a high number of threads at lower power caps, we first derive
the minimum number of active vCPUs (nvCPU ) such that
nvCPU · fcore > Rcap. We then pack the active threads onto
n number of vCPUs by setting thread affinities in the OS,
as in [3]. Limiting the active number of vCPUs reduces the
resource contention and achieves better performance. Note that
thread packing alone often does not provide the sufficient
granularity to match the given power caps; hence, we allocate
Rcap amount of CPU resources for the VM.



Optimization Engine 

(P, R) 

QoS (Tp
j,tol) 

ISO: ΠE, ΠR, 
εtol, c and a 
sample z(t)  

P vs. RIPS 

Workloads 

Server Specifics 
(Pidle, etc.) 

Simulator  
(Optimizer) 

 

Fig. 5. The overview of the optimal bidding engine.

V. SERVER LEVEL POWER REGULATION
SERVICE PROVISION

In this section, we introduce our technique for server-level
RS provision. Given server and workload properties, we first
describe how to find the optimal (P̄ , R). We then describe the
runtime policy for tracking the power cap imposed by the ISO,
P̄ + z(t)R, with a small tracking error.

In our work, we assume that a server runs one application
at a time. Incoming workloads are maintained in a first-in-
first-out (FIFO) queue. If the server is idle and the queue is
not empty, the server starts running the next workload in the
queue. This servicing policy is straightforward and widely used
in today’s data centers. Our approach is generalizable to servers
with multiple priority queues, where jobs with higher priorities
are serviced first.

A. Optimal Bidding Engine

The very first step of providing RS at the hour-ahead power
market is to compute the average power and RS amount, (P̄ ,
R), for bidding in the power market every hour. The optimal
bid should minimize the monetary costs while meeting the ISO
requirements and user QoS constraints. We design a bidding
engine to calculate the optimal bid.

We first formulate the optimization problem. We use a
metric called tracking error to evaluate the tracking perfor-
mance, which is defined as ε(t) = |P (t) − (P̄ + z(t)R)|/R.
For a data center, the total system time T for an application
(i.e., waiting time plus processing time) is one of the most
significant QoS indexes for the customers. However, as a data
center runs thousands of applications per hour in general, it
is highly inefficient or even impossible to look at the QoS
constraint for each individual workload in the hour-ahead
bidding optimization process. In fact, in a real-life data center,
a large number of customer workloads are the same type, with
the same priority and QoS requirements. Thus, we categorize
workloads by type j (i.e., blackscholes, streamcluster, etc.)
and priority level p (high, medium, low, etc.), and define
their system time as T jp . Then we set statistical constraints
on both ε(t) and T jp , ∀p, j. We denote the mean and standard
deviation of ε(t) and T jp by ε̄, σε and T̄ jp , σT j

p
. ε̄ and σε define

the tracking performance, which will affect RS revenues.
Moreover, the data center will be disqualified for providing
RS in the power market if a probabilistic tolerance of tracking
error is exceeded. T̄ jp and σT j

p
define the user QoS contract

guarantees, i.e., workloads from customers are guaranteed to

perform within a certain QoS tolerance at a given confidence
level. In this work, we focus more on computing workloads
rather than real-time services, hence we set QoS tolerance
as constraints instead of using real-time SLA delay penalties
while formulating the problem.

We study the sample frequency distributions of the ε(t) and
T jp trajectories for a sufficiently large number of simulations
and notice that they mostly fit the Gamma distribution [5],
Γ, with parameter shape k: kε = ε̄2/σ2

ε , kT j
p

=
¯
T jp

2
/σ2

T j
p

and scale θ: θε = σ2
ε /ε̄, θT j

p
= σ2

T j
p
/

¯
T jp , for ε(t), an T jp .

Hence when we solve the optimal bidding problem, we use
Gamma distribution to construct the probabilistic constraints.
We also assume the probabilistic tolerance of the tracking error
given by the ISO is εtol, the QoS tolerance on each workload
group (p, j) from data center users is T j,tolp , and the statistical
confidence level required on these tolerances is Pconf .

Finally, based on the given workload and server informa-
tion, we apply limits on P (t) based on the maximum achiev-
able power value Pmax and the server idle power Pidle which
is basically the minimum achievable power value, assuming
that the server is never shut down. The optimization problem
is formulated as follows:

minimize
P̄ ,R

ΠEP̄ − (ΠRR−ΠRc[σ2
ε + ε̄2])

subject to Γ−1(kε, θε, Pconf ) > εtol,

Γ−1(kT j
p
, θT j

p
, Pconf ) > T j,tolp ,

P̄ +R < Pmax,

P̄ −R > Pidle,

P̄ ≥ 0, R ≥ 0.

(2)

where ΠE is the hour ahead clearing price of power and ΠR is
the hour ahead clearing price of RS reserves, both in $/kWh.
In general ΠR ≈ ΠE . c is the penalty coefficient on the second
moment of the tracking error.

The optimal bidding engine is shown in Figure 5. The
electricity price information (ΠE and ΠR), a sample RS signal
z(t), the tracking error tolerance given by the ISO (εtol) and the
server specific information, e.g., Pidle are saved in the engine.
The inputs of the engine are the information on the workloads
and customer QoS contracts for the next hour. Using the
workload information, a power-RIPS model (see Section IV)
is derived first. Then along with the Power-RIPS model, all
these inputs are sent to a simulator which simulates the whole
RS provision process. The simulator uses exhaustive search to
find the optimal (P̄ , R) values that satisfy the constraints. It
is possible to first conduct a sensitivity analysis on P̄ and R
and use the results to construct a more structure search. Using
exhaustive search, simulation takes only a few seconds; so it
is not necessary to optimize the search for the problem size
we focus on in this work.

In this paper, we assume that workload information (i.e.,
workload types and arrival rates) for the following hour is
provided in advance. This is reasonable as for many real-life
cases in the data centers, workload information is provided by
customers to the data center some time before applications start
executing. (e.g., in the case of batch job submissions in high-
performance computing clusters). It is common to allocate a set



z(t) 

Hypervisor 
Rcap 

VM  
Stats 

(P, R) 

Ptot(t-1) 

VM#Pcap = P + z(t)R

CPU(used+rdy )Pcap
Ptot−Pidle

Fig. 6. The overview of the runtime power capping technique. Our technique
receives input from the ISO and the VM (e.g., CPUready , etc.) to make CPU
resource limit adjustments so as to keep the power consumption close to the
current power cap.

of servers for specific types of applications (i.e., a blackscholes
server, etc.). Mechanisms for workload forecasting can be
designed and used in conduction to our optimization technique.

We solve the problem for a system with a single queue
in this work. However, as shown in the equations above, it is
straightforward to use the same formulation for optimizing the
power regulation for a system with multiple priority queues.

B. Runtime Policy

The goal of the runtime policy is to track the RS signal on a
virtualized server environment. Our power capping technique
is implemented on a manager node (i.e., vCenter, which is
part of the VMware virtualization framework), which have
permissions to perform administrative tasks such as changing
the resource limits on the ESXi hosts. Figure 6 shows the
overview of our implementation. Our power capping technique
receives three inputs: (1) (P̄ , R) signals from the optimization
engine, (2) the real-time power measurements (i.e., P (t− 1))
from the power meter and (3) CPU resource usage statistics
from the VM. The output of the power capping module is
the CPU resource limit that is expected to keep the power
consumption of the server close to the current power constraint.

After receiving the RS signal z(t), we derive the corre-
sponding power cap value, Pcap = P̄ + z(t)R. We then use
Eq. (1) to calculate the CPU resource limit that matches the
Pcap. After calculating the CPU resource limit, our policy
communicates with the ESXi host to reconfigure the VM CPU
resource limits by using the vSphere SDK library. We monitor
the power consumption and the power cap value every second,
and adjust the CPU resource limits if the average absolute
tracking error over the last two 2 seconds is larger than 2W.

In our implementation, workload arrivals are managed
through a queue manager module, qMan. qMan monitors the
workload queue and executes applications based on the arrival
time. Multi-threaded workloads consist of serial I/O phases and
a parallel phase (i.e., region-of-interest (ROI)). In real-life ap-
plications, the parallel phases of the multi-threaded workloads
dominate the compute cycles of the data centers; thus it is
important to consider the ROI of the multi-threaded workloads
to accurately evaluate the benefits of our technique. To evaluate
only the ROIs of the PARSEC workloads, we synchronize the
RS signal arrivals with the start and the end points of the
ROIs. In default PARSEC package, ROIs of the benchmarks
are marked with ROI_start() and ROI_end() functions
of the HOOKS library that is included in the PARSEC package.
We utilize the HOOKS library to detect the entrance and the exit
points of the ROI. When a PARSEC benchmark is in its I/O
stage, we pause the RS signal and wait for the benchmark to

reach its ROI. We continue to receive the RS signal, when
a benchmark reaches the ROI. Therefore, we evaluate our
technique only for the ROI portions of the applications.

VI. EXPERIMENTAL RESULTS

In this section, we describe our experimental framework
and quantify the benefits of our technique.

A. Workload Generation

As we focus on the hourly RS provision, we need to
generate workload over one hour for the server to process.
We generate the workload using Monte Carlo simulation and
based on a general queuing model, where applications arrive at
each queue in the system following an exponential distribution.
Such models are commonly used to mimic the workload arrival
behavior in real data centers. Queues with different priorities p
can have different workload arrival rates, λp. We use a single
queue in our experiments.

For each workload i, a random number ri1 ∈ [0, 1] is
generated and this number is used to determine the workload
inter-arrival time, i.e, τ i = −ln(1− ri1)/λ (can be generalized
to multiple priority queues using τ ip and λp). In addition, we
use another random number, ri2, to determine the type of the
workload i. For example, in our experiments four benchmarks
are selected from the PARSEC-2.1 suite. We number the
workloads and use ri2 ∈ [1, 4] to determine the type of the
workload i. E.g., ri2 = 1 means the application is blackscholes,
etc. We also run experiments for homogeneous workload
arrival cases (i.e., the system runs workloads consisting of
only blackscholes or only streamcluster). Such homogeneous
execution scenarios can be achieved by configuring the data
center job allocation policy accordingly.

We set the workload arrival rates to achieve approximately
50% system utilization, which is a typical scenario in today’s
data centers. That is, the server is busy in processing workloads
for 50% of time when no capping is applied.

B. Optimal Bidding Solution

We solve the optimization problem provided in Eq. 2 using
the following values: ΠR = ΠE = 0.1$/kWh, c = 1, Pconf =
0.85, εtol = 0.2 [19], Pidle = 66W . Pmax changes depending
on the workload type. For PARSEC workloads running on our
AMD server, Pmax is in the range of 130W to 170W. As we
have only one priority queue, the system time tolerance for the
workload type j is T j,tol. This tolerance depends on workload
type, as even without any power capping, the runtimes are
different among the workloads. In order to have a unified
evaluation criteria among different types of workloads, we
calculate the the system time of each application as a multiple
of its shortest finishing time, T j,min, which is the time the
application spends on the system without any power capping or
resource restrictions. We use T tol to represent unified system
time tolerance, which is T tol = T j,tol/T j,min, for all j. In
our experiments we set T tol = 8, which means we allow the
system time of a workload to be eight times of its shortest
finishing time. For the case of multiple priorities, we can use
a smaller T tol for the higher priority workloads and a larger
T tol for the low priority workloads.
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Fig. 7. 1-hour ISO signal power capping of streamcluster workload by ad-
justing the CPU resource limits. We both show the actual power consumption
and the power cap values (top figure) and the dynamic adjustment of CPU
resources (bottom figure)

The optimal (P̄ , R) values for different workloads are
shown in Table I. The first two rows are for the homogeneous
workload cases, in which all workloads arriving are of the
same type, i.e., streamcluster and blackscholes. The last three
lines are the results of the heterogeneous workloads cases,
in which we have four different applications. Without loss
of generality, we create the heterogenous workloads queues
using blackscholes, canneal, streamcluster and facesim. We run
the experiment for the heterogenous case three times, where
each instance has the same RS signal but a different workload
queue, as the workloads are generated probabilistically using
exponential distribution.

We observe that the optimal RS reserve R is always 30%
of its corresponding average power consumption P̄ and around
23% of the maximum power consumption Pmax for each
case. This result implies that the the optimal solution does
not change significantly among different workloads. Based on
these results, it is possible to design a faster optimal bidding
method where the optimal solution search is centered around
R = 0.23 ∗ Pmax. Such heuristics would be useful when
expanding the optimization to large problem sizes.

After we compute the optimal bids for the average power
consumption and the RS reserves (P̄ , R), we implement our
policy to track the ISO power signal P̄ + z(t)R, on our real-
life server. We evaluate the tracking accuracy, the user QoS,
and the monetary savings.

C. Tracking Performance

We first investigate the homogeneous workload case. Fig-
ure 7 shows 1-hour long power profile for streamcluster
workload. The result shows that except for the idle period at
the very beginning, during which time we are unable to tune
the power by resource limits control knobs, our runtime policy
enables our server to dynamically track the ISO power cap very
accurately. The average tracking error is 18% of R including
idle period and 6% of R without considering the idle period.
For the homogeneous blackscholes workload, which is a CPU
intensive workload while streamcluster is a memory-intensive
workload, the average tracking error is 15% of R including the
idle period and 5% without considering the idle period.

We then investigate the heterogeneous workload case,
where the workload consists of different applications. The
results of the three experiments are shown in Figure 8. We
achieve high tracking performance for all three experiments,
with the average tracking errors as 15%, 10% and 16% of R
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Fig. 8. 1-hour power profile of the server running the heterogeneous
workloads when we apply our proposed power capping technique.

including the idle period and 7%, 8% and 7% without con-
sidering the idle periods, respectively. Note that the constraint
for the tracking error was 20% in the problem formulation.

All the results confirm that our runtime policy is able to
track the ISO power cap very accurately and satisfy the track-
ing error tolerance in both homogeneous and heterogeneous
workload cases. This result is very promising as it shows
that the success of the optimization is not constrained by the
workload type.

D. Workload QoS Evaluation

In our work, the QoS values of the workloads are evaluated
by the workload system time, which is represented in relation
to the workload shortest finishing time, so that all workloads
have a unified QoS evaluation scale. Figure 9 shows the
average system time over each of the 1-hour experiments.
We compare the optimal RS provision case (i.e., (P̄ , R))
against the case without providing any RS (i.e., (P̄ , 0)) for
two homogeneous workloads and three heterogenous workload
sets (i.e., Mix1, Mix2 and Mix3).

As Figure 9 shows, the optimal RS case provides similar
performance when compared to the case without RS reserves.
Providing RS even improves the performance for some cases
(i.e., Mix2). Overall all the QoS constraints are satisfied within
the tolerance T tol. Thus, providing RS do not cause significant
performance degradation and provides energy cost savings.

E. Monetary Savings

The monetary costs of the energy in the RS provision case
is calculated by the objective function in Eq. 2. If no RS
provision is claimed, the monetary costs are calculated based
on the energy consumed, in our case which is ΠE ∗ E, E is
the energy consumed of the server during the hour.

In our experiments, we evaluate a single multi-core server
and run experiments for an hour. However, data centers gen-
erally contain thousands of servers. We assume a data center,
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TABLE I. THE OPTIMAL BIDS AND THE MONETARY COSTS
COMPARISON

P̄ R $ w/o Cap ∗ $ fixed P̄ ∗∗ $ (P̄ , R) ?

Streamcluster 116.7 35 119.2 113.8 84.0
Blacksholes 117.6 35 115.42 115.6 82.8

Mix 1 116.5 34 127.2 116.2 82.7
Mix 2 115.9 34 128.7 117.3 82.0
Mix 3 115.9 34 126.3 115.4 82.1

∗ w/o Cap stands for the case without any power cap.
∗∗ fixed P̄ stands for the case with a fixed power cap P̄ (i.e., R = 0).
? (P̄ , R) stands for the case of the optimal RS provision.

which consists of 10,000 identical servers, and calculate the
monetary costs of it in various power capping scenarios. Table
I shows the monetary costs ($) per hour for the data center
for three cases: (1) the case without any power caps, (2) the
provision without regulation (i.e., with a fixed power cap P̄ ),
and (3) the case of proposed optimal RS provision (i.e., with
P̄ , R). We evaluate all three cases for 2 homogeneous and 3
heterogenous workload sets. The energy consumption for non-
RS provision cases (i.e., case (1) and (2) ) is calculated based
on the power measurements from the power meter.

As the results shown in Table I, the proposed optimal RS
provision case reduces the energy costs by around 29% by
providing RS for all type of workloads. In comparison to the
case without any power cap, the proposed technique provides
up to 36% monetary savings.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the capability and the benefits
of data centers to provide power RS. We have constructed a
server-level RS provision framework and solved the optimiza-
tion problem for computing the RS reserves that maximize the
energy cost savings subject to tracking error and customer QoS
constraints. We have also implemented a runtime policy on a
real-life server for RS provision by using the CPU resource
limit control knob. Our experimental results show that our
technique is capable of providing RS and meeting the QoS
guarantees, while also reducing the energy costs by 29% on
average. In our future work, we plan to investigate a wider
range of application domains, such as real-time enterprise
and transactional workloads. We are also going to investigate
varying timescale markets for other power sources (cooling
storage, network, etc.) in data centers to take part in. Other
directions include integrating our technique with workload
forecasting and data center power budgeting techniques.
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