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Abstract— This paper describes a new approach to model-
ing consumers’ utility preferences in price-controlled demand
systems, such as the demand for mobile service or electric
energy. Relaxing the assumption that the consumer group
size is infinite and individual utility preferences are static, we
explicitly model their dynamics through a non-uniform and time
varying probability distribution characterized by a well-defined
dynamically changing parameter. This parameter is embedded
into a stochastic dynamic programming problem used to solve
for the optimal price policy. An analytic characterization of the
optimal policy is derived based on the differential cost function
which leads to an assisted value iteration approach that reduces
computational complexity. Numerical results are provided to
verify and elaborate that optimal policies conform to claims
established in rigorous analytic investigations.

I. INTRODUCTION

The increasing penetration of renewable energy, such as
wind and solar, makes electricity generation less controllable
due to the intermittent nature of these resources. One way
to stabilize the grid, in addition to acquiring additional
reserves from conventional generators, is to allow consumers
to participate into the regulation reserve market and pro-
vide real time regulation service reserves (RSR). Extensive
literature has been published on the promise of demand
management including direct load control of thermostatic
appliances [1], [2], [3], decentralized scheduling of vehicle-
to-grid integration [4], [5], and the optimal coordination of
flexible loads in a micro-grid [6].

This paper introduces explicit modeling of dynamic smart
building occupant preferences that influence the provision of
RSRs. It develops a tractable stochastic dynamic program-
ming (DP) problem for the minimum cost provision of RSRs
that includes these dynamic preferences in its state dynamics.
Broadly speaking, it also contributes to the real time price
demand control literature by pioneering the relaxation of the
usual assumption that demand for service is adequately repre-
sented in the short term by a static probability distribution of
preferences from large group of consumers [7], [8], [9], [10].
For example, the demand for an alternative mobile service
provider’s bandwidth, or the demand for turning on your

*The authors gratefully acknowledge support of the U.S. National Science
Foundation under EFRI Grant 1038230.

1B. Zhang is with the Division of Systems Engineering, Boston Univer-
sity, Boston, MA, 02215 USA e-mail: bowenz@bu.edu.

2M.C. Caramanis is with the Department of Mechanical Engineering and
the Division of Systems Engineering, Boston University, Boston, MA, 02215
USA e-mail: mcaraman@bu.edu.

3J. Baillieul is with the Department of Electrical and Computer Engi-
neering, the Department of Mechanical Engineering, and the Division of
Systems Engineering, Boston University, Boston, MA, 02215 USA e-mail:
johnb@bu.edu.

cooling appliance, has been assumed routinely as uniformly
distributed across some closed set that remains unchanged
regardless of whether the mobile service or energy provider
has been broadcasting repeatedly a high price in the recent
past or whether the room temperature is close to or far from
the thresholds that a cooling zone occupant has selected to
represent its comfort temperature zone. Undoubtedly, this
assumption is restrictive and inaccurate, particularly when
the number of users is finite as is the case with duty cycle
appliances in a smart building or cell phones trying to
connect to a specific base station.

In this work we explicitly model the dynamic nature of
specific appliance preferences and their short term evolution
in response to past control and state trajectories. In other
words, we consider demand preferences to be dynamic and
include them in the system state. Focusing for simplicity of
exposition on a multiple cooling appliance smart building
load, we use a dynamic probability distribution to represent
cooling zone occupant preferences to transition their cooling
appliance from an idle to an active state. We account for
the fact that a sustained broadcast of high prices that has
discouraged turning on idle cooling appliances will increase
the likelihood that the temperature of a typical cooling zone
will be high and raise the occupant’s preference to turn on an
idle appliance and commence cooling. The opposite is natu-
rally true after a sustained period of broadcasting low prices
that encourages idle appliances to turn on. This dynamic
probability distribution can be reasonably characterized by
a single dynamically changing parameter that we embed in
the state space and dynamics of the DP problem. Although
modeling dynamic preferences leads to non-concavity of the
expected utility, we provide an analytical expression of the
locally optimal policy and show that it is globally optimal.
This analytical optimal policy is then used to design an
assisted value iteration (AVI) algorithm that reduces the
solution time of the standard DP. The AVI algorithm also
allows a continuous control space avoiding the need to resort
to computationally undesirable control space discretization in
order to obtain numerical solutions.

The paper proceeds as follows. Sec.II formulates the
problem where we develop the state dynamics, period cost,
the time varying dynamic preferences, and the relevant
Bellman equation. Sec.III compares the consumers’ utility
realization in the traditional time invariant model and our
time varying utility model. It further relates analytically the
optimal policy with the differential cost function. Sec.IV
proposes an assisted value iteration approach and compares
it to the standard approach. Sec.V concludes.



II. PROBLEM FORMULATION

We consider an advanced energy management building
with N cooling appliances. The smart building operator
(SBO) has contracted to regulate in real-time its electricity
consumption within an upper and a lower limit {n̄−R, n̄+R}
agreed upon in the hour-ahead market, where n̄ is the con-
stant energy rate that the SBO purchased in the hour ahead
market and R is the maximum up or down RSR that the SBO
promised to provide. Moreover, the SBO has assumed the
responsibility to modulate its energy consumption to track
n̄+y(t)R with y(t)∈ [−1,+1] specified by the ISO in almost
real time as the RSR signal (usually every 2 or 4 seconds).
To this end the SBO broadcasts a real-time price signal π(t)
to all cooling appliances in order to modulate the number
of connected appliances and hence the resulting aggregated
power consumption. Appliances respond according to their
utility function U(T ) for cooling service which depends
on their current cooling zone temperature T ∈ [Tmin,Tmax].
We assume U(T ) is a monotonic increasing function of T .
The variables Tmin and Tmax specify the threshold temper-
ature value of the comfort zone. Denote u(t) the threshold
temperature value obtained by solving U(u(t)) = π(t), idle
appliances with surrounding temperature T ≥ u(t) will con-
sider to connect. Since the mapping between π(t) and u(t)
is bijective, for the rest of the paper we use u(t) as the
control policy. Deficient ISO RSR signal tracking penalties
and occupant utility realizations constitute period costs. The
objective is to find a state feedback optimal policy that
minimizes the associated infinite horizon discounted cost.
Individual cooling zone preferences are modelled by a dy-
namically evolving probability distribution of idle-appliance-
zone temperatures pt(T ). We proceed to derive the system
dynamics and formulate the period cost of the relevant
dynamic programming problem.

A. State Dynamics

At each time t, the state variables contain the number
of connected appliances i(t), the ISO RSR signal value
y(t), the direction of the RSR signal D(t), and T̂ (t) that
fully characterizes pt(T ). Queues i(t) and N− i(t) constitute
a closed queueing network where the service rate of one
queue determines the arrival rate into the other. Queue
N− i(t) behaves like an infinite server queue with each server
exhibiting a stochastic Markov modulated service rate that
depends on the control u(t) and the probability distribution
pt(T ). Queue i(t) also behaves as an infinite server queue
with each server exhibiting a constant service rate µ . The
dynamics of y(t) and the dependent state variable D(t) =
sgn(y(t)− y(t− τy)) are characterized by transitions taking
place in short but constant time intervals, τy

1, resulting in
y(t) staying constant, increasing or decreasing by a typical
amount of ∆y= τy/150sec [11]. These transitions are outputs
of a proportional integral filter employed in practice by ISOs
to convert system frequency deviations and Area Control

1this varies across ISOs. In PJM it is either 2 or 4 seconds depending on
the type of regulation service offered

Error (ACE) to Regulation Reserve Signals broadcasted to
RSR providers. Since frequency deviation and ACE are
arguably white noise processes resulting from the stochastic
imbalance between demand and supply, y(t) is a Markovian
random variable. We can therefore approximate y(t) by a
continuous time jump Markovian process that allows us to
uniformize the DP problem formulation. To uniformize the
DP problem we introduce a control update period of ∆t << τy
which assures that during the period ∆t , the probability that
more than one event can take place is negligible. We further
set the time unit so that ∆t = 1, and scale transition rate
parameters accordingly. The following state dynamics follow.

1) Dynamics of y(t): The transition probabilities of the
discrete time Markov process y(t) depend on y(t) and D(t).
Statistical analysis on historical PJM data on y(t) trajectories
indicate a week dependence on y(t) yielding the reasonable
approximation

Prob(y(t + τy) = y(t)+∆y|D(t) = 1) = 0.8
Prob(y(t + τy) = y(t)−∆y|D(t) = 1) = 0.2
Prob(y(t + τy) = y(t)−∆y|D(t) =−1) = 0.8
Prob(y(t + τy) = y(t)+∆y|D(t) =−1) = 0.2

.

Denoting by γu
1 (γd

1 ) the rate at which y(t) will jump up by ∆y
during a control update period when D(t) = 1 (D(t) =−1),
and by γu

2 (γd
2 ) the corresponding rate that y(t) will jump

down when D(t) = 1 (D(t) = −1), we have the following
uniformized dynamics of y(t) for ∆t = 1 after time rescaling
from τy to ∆t = 1

Prob(y(t +1) = y(t)+∆y|D(t) = 1) = γu
1

Prob(y(t +1) = y(t)−∆y|D(t) = 1) = γu
2

Prob(y(t +1) = y(t)−∆y|D(t) =−1) = γd
2

Prob(y(t +1) = y(t)+∆y|D(t) =−1) = γd
1

.

Since ∆t << τy, we will have very small value of the above
rates compared with RSR rate change without normalization.

2) Dynamics of i(t): The dynamics of i(t) is governed by
the following arrival and the departure rates.

The arrival rate a(t) depends on the policy u(t). Denote
by pu(t) the proportion of idle appliances with cooling zone
temperature T ≥ u(t). Since idle appliances observe the price
broadcast by the SBO at a rate λ and decide to connect and
resume cooling when the price is smaller than their utility
for cooling at time t, the arrival rate into i(t) is

a(t) = [N− i(t)]λ pu(t) = (N− i(t))λ
Tmax∫

u(t)

p(T )dt. (1)

This says that a(t) equals the product of the number of
idle appliances that observe the broadcast price times the
probability that T ≥ u(t).

The departure rate d(t) is independent of u(t), It equals
the product of active appliances times the inverse of the
average duration of a cooling cycle. Modelling the cooling
cycle duration as an exponential random variable with rate
µ such that 1/µ equals the average energy consumption per
energy packet transaction [3], we have

d(t) = i(t)µ. (2)



The stochastic dynamics of i(t) in the homogenized model
is thus given by i(t+1) = i(t)+ ĩ where the random variable
ĩ satisfies the following probability relations p(ĩ = 1) = a(t)

p(ĩ =−1) = d(t)
p(ĩ = 0) = 1−a(t)−d(t)− γ

,

where γ = γu
1 + γu

2 = γd
1 + γd

2 is the total probability that the
ISO RSR signal will change in one interval.

3) Dynamics of D(t): Recalling that D(t) = sgn(y(t)−
y(t − 1)), it is clear that the dynamics of D(t) are fully
determined by the dynamics of y(t), namely D(t) equals
to the directional changes of y(t). We next argue that the
dynamics of T̂ (t) are also determined by y(t).

4) Dynamics of T̂ (t): By means of extensive simulation
reported below, the feature parameter characterizing the
consumers’ dynamic preferences, T̂ (t), is shown to be a
linear function of y(t) over a reasonable range of inputs.

Based on related literature [12] and [13], we use standard
energy transfer relations to simulate the dynamics of the
frequency histogram of idle appliance cooling zone temper-
atures, which appear to conform to a three parameter func-
tional representation pt(T ) = f (T̂ (t),Tmin,Tmax). We use two
RSR signal trajectories and associate them with a reasonable
RSR tracking policy to simulate the corresponding dynamics
of idle appliance temperature trajectories. The first is a
standard ISO RSR signal trajectory that aspiring RSR market
participants must demonstrate that they have the ability to
track. This is referred to in the PJM manual as the standard
T-50 qualifying test [11]. The second is an actual historical
RSR signal downloaded from the PJM web site [14]. We
record the temperature levels prevailing across the N cooling
zones when a control trajectory is applied that results in
near-perfect tracking of the ISO RSR requests implied by
the aforementioned two signals. Simulation results indicate
that the time evolution of the probability distribution of cool-
ing zone temperatures conforms to a dynamically changing
trapezoid characterized fully by T̂ (t); see Fig. 1.

Fig. 1. Trapezoid probability distribution function p(T ) with T ∈
[Tmin,Tmax] parametrized by a single parameter T̂ . Height of the trapezoid
is h = 2/(Tmax + T̂ −2Tmin).

Fig. 2 shows the accuracy of using a trapezoid function to
model the dynamic frequency distribution of idle appliance
cooling zone temperatures. We discretize temperature into
20 intervals and perform a Monte Carlo simulation involving
16000 appliances to generate a relatively smooth frequency
distribution. The on and off duty sub-cycles are both assumed

to be 10 minutes long. The idle appliance price-detection-
rate is assumed to be 1 detection per minute. PJM’s RSR
signal is broadcast every 4 seconds. In Fig. 2, blue curves
represent the simulated probability distributions as observed
at different times. Trapezoids with T̂ (t) = 5 and T̂ (t) = 6 are
shown in the upper and the lower figure, respectively. The red
curve represents the average of the blue curves at the same
temperature. The red curve is then approximated by an exact
trapezoid shown by the green curve in Fig. 1. Note that T̂ (t)
and the trapezoid approximation are the mean statistics of the
observed frequency distributions. Note that for a fixed ε , the
trapezoids are completely specified by two static quantities,
Tmin and Tmax, and the time varying parameter T̂ (t).

Fig. 2. Monte Carlo simulation is used to determine the probability
distribution of idle appliances’ temperature. We observe that mean value
of these curves conform to a time varying trapezoid shape featured by T̂ (t).

Based on the observed time series of y(t) and T̂ (t), we
find a significant negative correlation in both simulations
with values -0.9833 and -0.8106, respectively. The simulation
results support the reasonableness of using the following
relationship between T̂ (t) and y(t):

T̂ (t) = α0 +α1y(t)+ω, (3)

where α0 corresponds to the value of T̂ (t) when the build-
ing’s energy consumption level is n̄, α1 < 0 is the sensitivity
of T̂ to the change in the normalized RSR signal y(t), and ω

is a zero mean symmetrically distributed error. These findings
support our a priori expectation that y(t) is a reasonable
sufficient statistic of past state and control trajectories in
the information vector available at time t. This a priori
expectation is based on the fact that y(t) levels are in fact
integrators of recent price control trajectories.

Remark 1 The intuition behind the trapezoid distribution
is as follows: The magnitude of the elbow point (temper-
ature) T̂ is negatively correlated with the RSR signal y(t).
When a consumers temperature is below T̂ , they have no
incentive to have their cooling appliance leave the idle state.
This results in a flat distribution p(T ) for T < T̂ . For T > T̂ ,
on the other hand, consumers are increasingly likely to have
their cooling appliances leave the idle state. It is interesting to
note that our simulation data shows p(T ) to be a decreasing
linear function for T > T̂ . It remains to be seen whether
the idealization of the trapezoid characterization of consumer



utility remains valid as parameters such as cooling appliance
duty cycle are varied.

B. Period Cost

The period cost rate consists of two parts: a penalty for
inaccurate ISO RSR signal tracking and the utility realized
by connected appliances. The tracking penalty is defined as

g(i(t),y(t)) = K[
i(t)− n̄− y(t)R

R
]2, (4)

where K is the penalty per unit of inaccurate tracking.
Defining κ = K/R2 we can write the tracking penalty rate as

g(i(t),y(t)) = κ[i(t)− n̄− y(t)R]2, (5)

The expected utility rate realized by an idle cooling appliance
zone occupant who decides to resume cooling by paying π(t)
corresponding to threshold temperature u(t) is

Uu =

Tmax∫
u(t)

U(T )p(T )dT

Tmax∫
u(t)

p(T )dT
. (6)

Noting that the probability that an idle appliance will decide
to resume cooling is a(t), the expected realized utility is

a(t)Uu = (N− i(t))λ puUu,

= (N− i(t))λ
Tmax∫
u(t)

P(T )dt

Tmax∫
u(t)

U(T )p(T )dT

Tmax∫
u(t)

p(T )dT
,

= (N− i(t))λ
Tmax∫
u(t)

U(T )p(T )dT.

(7)

Equations (5) and (7) imply that the total period cost rate is

c(i(t),y(t),u(t)) = κ[i(t)− n̄− y(t)R]2−

(N− i(t))λ
Tmax∫
u(t)

U(T )p(T )dT. (8)

C. Bellman Equation

The state variables can be grouped according to their
dependence on u(t): i(t) depends explicitly on u(t). T̂ (t)
is also dependent on the past trajectory of controls, but, to
the extent that this trajectory is consistent with a reasonable
tracking the ISO RSR signal, it can be considered as a
function of y(t), which, as discussed earlier, is the sufficient
statistic of this trajectory. We can thus consider all state
variables, other than i(t), to have dynamics that do not
depends on u(t). For notation simplicity we let īu(t) =
{y(t),D(t) = 1, T̂ (t)} (īd(t) = {y(t),D(t) =−1, T̂ (t)}) to be
the state variables that make up the complement of i(t) when
the RSR signal is going up (down), so that {i(t), īu(d)(t)}
({i(t), īd(t)}) is the representation of the full state vector
when the RSR signal goes up (down). Given the cost function
and dynamics described above, we can formulate an infinite

horizon discounted cost problem with the following Bellman
equation for states including D(t) =−1.

J(i, īd) = min
u∈[Tmin,Tmax]

{
g(i, īd)−a(t)Uu

+α[a(t)J(i+1, īd)+d(t)J(i−1, īd)
+γ

d
1 J(i, īu +∆y)+ γ

d
2 J(i, īd−∆y)

+(1−a(t)−d(t)− γ
d
1 − γ

d
2 )J(i, ī

d)]}. (9)

J(i, īd) is the value function satisfying the Bellman equation,
with α denoting the discount factor. For notational simplicity
we denote by īu + ∆y the new state realized when the
regulation signal increases from y(t) to y(t +1) = y(t)+∆y
rendering D(t +1) = 1, while the rest of the state variables
remain unchanged. Similarly we denote by īd −∆y the new
state when the regulation signal decreases from y(t) to
y(t +1) = y(t)−∆y rendering D(t +1) =−1, while the rest
state variables remain unchanged. The superscripts u (d)
stand for upwards (downwards) RSR signals. J(i, īu) can be
written similarly with minor notational changes.

III. CONSUMER UTILITY REALIZATION AND THE
OPTIMAL POLICY

A. Generalized Utility Probability Distribution Model

Without loss of generality, we select the following utility
function which represents a linear relationship between cool-
ing zone temperature rise and utility enjoyed by activating
an idle appliance and allowing it to start a cooling cycle

U(T ) = b(T −Tmin). (10)

The utility increases proportionately to the cooling zone
temperature T . If p(T ) were selected to be a static and
uniform probability distribution, as is the case with work
published so far, the expected period utility rate would be
a conveniently concave function of u. Indeed, using (7) we
would obtain

a(t)Uu = (N− i(t))λ
Tmax∫
u

U(T )p(T )dT,

= (N− i(t))λ
Tmax∫
u

b(T −Tmin)
1

Tmax−Tmin
dT,

= (N− i(t))λ b(Tmax−u)(Tmax+u−2Tmin)
2(Tmax−Tmin)

.
(11)

This concavity property, no longer holds true under the
more realistic modeling of p(T ) by a dynamic trapezoid
characterized additionally by the time varying quantity T̂ .
Indeed, the trapezoidal representation implies,

p(T ) =

{ 2
Tmax+T̂−2Tmin

, T ≤ T̂ ,
2(T−Tmax)

(T̂−Tmax)(Tmax+T̂−2Tmin)
, T ≥ T̂ .

which yields the following expected period utility rate

a(t)Uu

=


[N− i(t)]λ 2b(C1− 1

2 u2+Tminu)
Tmax+T̂−2Tmin

, u≤ T̂ ,

[N− i(t)]λ 2b(C2− 1
3 u3+

Tmin+Tmax
2 u2−TminTmaxu)

(T̂−Tmax)(Tmax+T̂−2Tmin)
, u≥ T̂ .

(12)



with some constants C1 and C2.
The introduction of a dynamic T̂ (t) dependent p(T ) re-

moves the concavity of the expected utility rate as the second
derivative of the expected utility is

d
du2 a(t)Uu ∝ Tmin +Tmax−2u, (13)

and therefore the expected utility function is concave
for u ∈ [Tmin,max(T̂ , Tmin+Tmax

2 )], and convex for u ∈
[max(T̂ , Tmin+Tmax

2 ),Tmax].
Under the static uniform probability distribution p(T ), the

optimal policy is easily shown to exist. However, we proceed
to show that a unique optimal policy exists as well in the case
of dynamic p(T ). We do this by showing first that a local
minimum exists, and then prove that only one local minimum
exists, and hence it is the global minimum as well.

B. Optimal Price Policy

We define the difference of the value function J(i, īd) w.r.t.
the active appliance state variable i as

∆(i+1, īd) = J(i+1, īd)− J(i, īd).

Using the Bellman equation, we express the optimal policy
u(i, īd) in terms of ∆(i+1, īd)

u(i, īd) = arg min
u∈[Tmin,Tmax]

g(i, īd)−λ (N− i)puUu +

α
{

iµJ(i−1, īd)+λ (N− i)puJ(i+1, īd)+

γ
d
1 J(i, īu +∆y)+ γ

d
2 J(i, īd−∆y)

+[1− (iµ +λ (N− i)pu + γ
d
1 + γ

d
2 )]J(i, ī

d)
}
,

= arg max
u∈[Tmin,Tmax]

puUu−α pu∆(i+1, īd), (14)

where the second equation is obtained by neglecting terms
that are independent of u. Letting the remaining terms in
(14) be

f (u,∆(i+1, īd)) = puUu−α pu∆(i+1, īd), (15)

we can write that the optimal policy must satisfy

max
u∈[Tmin,Tmax]

f (u,∆(i+1, īd)). (16)

Based on the equation derived in (11), we present the
following proposition when assuming a uniform static pref-
erences among large group of consumers.

Proposition 1 If the probability distribution of the utility
is uniform with T̂ = Tmax, then f (u,∆(i+1, īd)) is a concave
function of u for u ∈ [Tmin,Tmax]. A local maximum for
f (u,∆(i+1, īd)) is a global maximum that yields an optimal
policy.

Proposition 1 is straightforward because the first term in
f (u,∆(i, īd)) is quadratic and the second term is a linear
function of u for T̂ = Tmax. When T̂ < Tmax with p(T )
no longer uniform but trapezoidal, f (u,∆(i + 1, īd)) stops
possessing the concavity property which under Proposition
1 guarantees that a local maximum is the global maximum.
We therefore proceed to prove that a local maximum to
solve (16) is also global for u ∈ [Tmin,Tmax] in the following
proposition.

Proposition 2 For trapezoid p(T ) with T̂ < Tmax, the
optimal policy that solves (16) is given by

u(i, īd)=


Tmax, if α∆(i+1, īd)≥U(Tmax)
Tmin, if α∆(i+1, īd)≤ 0

Tmin +
α∆(i+1,īd)

b , otherwise
.

(17)
Proof. We sketch the proof of Proposition 2. We refer to

[15] for the complete proof.
For the case α∆(i+1, īd)≥U(Tmax) or α∆(i+1, īd)≤ 0,

the discounted differential value function is greater than the
maximum possible utility realization U(Tmax) or less than the
minimum possible realization 0. We can show that f (u,∆(i+
1, īd)) is a monotonically increasing function in the former
case, and is a monotonically decreasing function is the latter
case. This would result in choosing the optimal policy to be
either Tmax or Tmin.

When α∆(i+1, īd)∈ (0,U(Tmax)), we show that the policy
given in (17) is a critical point by solving the first order
condition, and further a local maximum by the second
order condition. Moreover, we show that f (u,∆(i+ 1, īd))
is continuous differentiable and has only one critical point
inside the allowable control set, then the local maximum is
the global maximum. �

Remark 2 The optimal policy is determined by balancing
(1) the utility rewards from connected consumers and (2)
the differential optimal cost viewed as an estimate of the
value function difference across two adjacent states. Con-
sumers utility sensitivity b plays the following role: When
b increases, then the optimal policy will decrease for the
same value of ∆(i+1, īd). In the extreme case when b→∞,
we have u = Tmin namely the lowest price is broadcast to
guarantee the largest possible utility reward; when b→ 0,
the optimal controller is bang-bang depending on the sign of
∆(i+1, īd) indicating that consumers are extremely elastic.

Remark 3 The three cases in Proposition 2 correspond
to different geometry of f (u,∆(i+ 1, īd)); see Fig. 3. With
different combinations of b and ∆(i+1, īd), f (u,∆(i+1, īd))
can be a monotonically increasing function of u that leads
to the optimal control u(i, īd) = Tmax, or it can be a mono-
tonically decreasing function to render u(i, īd) = Tmin, or can
be a non-concave and non-monotonic function whose local
maximum is the global maximum on (Tmin,Tmax).

IV. NUMERICAL SOLUTION ALGORITHMS

We implement two numerical DP solution algorithms, the
first for benchmarking and comparison purposes using the
conventional value iteration (CVI) approach [16], and the
second by leveraging the optimal policy structure proven
in Proposition 2 of Sec. III which we call assisted value
iteration (AVI) algorithm. The AVI algorithm replaces the
computationally inefficient discretization of the allowable
policy space and exhaustive search over it at each iteration.
We instead use the policy in (17) at each iteration because it
is optimal for a given value function at the current iteration
resembling policy iteration algorithms. Numerical results
from the CVI and AVI algorithms are shown in Fig. 4. We



Fig. 3. Geometric features of f (u,∆(i, īd)). (1) f (u,∆(i, īd)) is monotoni-
cally decreasing when α∆(i+1, īd)≤ 0. The optimal policy is u = Tmin. (2)
f (u,∆(i, īd)) has unique global maximum when α∆(i+1, īd) ∈ (0,b(Tmax−
Tmin)). The function may not be concave for T̂ 6= Tmax. (3) f (u,∆(i, īd)) is
monotonically increasing when α∆(i+1, īd)≥ b(Tmax−Tmin). In this case
the optimal policy is u = Tmax.

find that the CVI algorithm yields policies selected from
the discretized allowable policy set and the AVI algorithm
provides a smooth and continuous policy. In addition, we
observe two monotonicity properties: (i) for a given RSR
signal y(t), the optimal policy monotonically increases as
the aggregated consumption increases, and (ii) for a given
aggregated consumption, the optimal policy monotonically
increases as y(t) decreases. This policy structure is consistent
with the smart building operator’s objective in reducing the
deviation between y(t) and i(t).

Fig. 4. For fixed value of y =−0.8, . . . ,0.8, the monotonic optimal value
of u are displayed as functions of i as indicated by Theorem 1. C (A) stands
for CVI (AVI) algorithm. In CVI, the policy space is discretized into 11
possible value from 0 to 10. In AVI, the policy space is continuous.

We compare the computational performance of the CVI
and AVI for different state space size problems in Table
I. The ADP algorithm assisted by Proposition 2 directly
gets the optimal policy at each iteration compared with
the optimal policy search in CVI. It is not surprising that
computational time is reduced by over 60%.

TABLE I
COMPARISON OF THE COMPUTATIONAL PERFORMANCES

Problem Size (|N| ∗ |y| ∗ |D|) 100*20*2 500*40*2 2000*40*2
CVI Computation Time (sec) 168.7 1586.2 6659.7
AVI Computation Time (sec) 14.9 418.2 1319.1

V. CONCLUSION

This paper relaxes the assumption that the utility of market
participants is a static (uniform) distribution that is indepen-
dent of control history. We show that a dynamically changing
trapezoid pdf captures the dynamics of market participant
preferences in the cooling appliance duty cycle paradigm
considered here, proceed to model dynamic preferences, and
succeed to overcome the complexity that it introduces. We
derive an analytic expressions characterizing the optimal
policy which is used to design and implement efficient and
scalable numerical solution algorithms. Future work will
investigate the structure of the optimal policy and the value
function in order to design low cost algorithms.
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