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Abstract—This paper, (i) quantifies the ability of Smart Build-
ings to provide electric power Regulation Service (RS) given the
characteristics of the building’s flexible loads and the expected
costs from occupant utility loss and imperfect tracking of System
Operator RS requests, and (ii) develops an optimization-based
decision support model to assist Smart Building Operators
(SBO) willing to offer RS reserves in the Hour Ahead Power
Market. The model incorporates minimal Regulation Service
tracking performance constraints required by current market
rule contractual requirements. To quantify these probabilistic
constraints, we develop a Normal Distribution Approximation
to the dynamic mean of the discrete time M/M/∞ queue
of active appliance loads conditional upon the SBO’s price
directed control aimed at activating appliance loads. Finally,
analytic estimates of performance statistics and properties of
the dynamic optimal control used in tracking real time System
Operator RS requests are developed and used in the decision
support model. Numerical results are provided for elaboration
purposes.

Index Terms—Regulation Service Provision, Hour Ahead
Market Regulation Offer, Electricity Markets, Real Time
Stochastic Control

I. INTRODUCTION

The integration of renewable energy into the power grid
is progressing at an increasing rate. For example, wind
generation in NY was 48 MW in 2005, 1,414 MW in 2012,
and is expected to reach 4,000 MW by 2018 [1], with growth
rates in Texas and the West coast being far more impressive.
The intermittency and volatility of renewable generation,
however, results in commensurate increase in the reserves that
Independent System Operators (ISOs) must secure. Amongst
several types of Capacity Reserves auctioned in the Day and
Hour Ahead Power Markets, bidirectional and energy neutral
Regulation Service (RS) capacity reserves are secured in
advance and then managed in real time through ISO requests
updated on a 4 to 8 second basis ([2]). Market participants
who offered them in the forward markets must respond to
these requests with the same time scale dynamics. NYISO1

secures 116 MW of RS reserves on average (225 MW during
the summer season) and expects the requirements to double
by 2018 ([3]).
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1NYISO is the Independent System Operator of the New York region and
serves nearly 7M electric utility customers [1].

RS reserves have been so far provided by flexible gener-
ators capable of modulating their output, with RS clearing
prices comparable to energy clearing prices ([4]). As a re-
sult, projected renewable generation growth will be impeded
unless the demand side (e.g. residential or commercial Smart
Buildings) is enabled to contribute to the supply of RS
reserves. This is the major motivation for the work presented
here.

Several approaches have been developed for implementing
real-time control of Smart Building demand ( [5], [6], [7],
[8]). This paper adopts optimal real time demand manage-
ment by Smart Building Operators (SBO) proposed in [5]
to reflect upon a related but longer time scale decision,
namely the optimal bid of RS capacity by SBOs in the Hour
Ahead Markets where Energy and RS capacity offers are
co-optimized. More specifically it develops an optimization-
based decision support model to assist Smart Building Oper-
ators (SBO) willing to offer RS reserves in the Hour Ahead
Power Market. The model incorporates (i) minimal Regula-
tion Service tracking probabilistic performance constraints
required by current market rule contractual requirements,
and (ii) estimates of performance cost statistics in tracking
real time Independent System Operator (ISO) RS requests.
We quantify the probabilistic constraints by developing a
Normal Distribution Approximation to the dynamic mean of
the discrete time M/M/∞ queue of active appliance loads
conditional upon the SBO’s price directed control aimed
at activating appliance loads. Furthermore, we investigate
properties of the dynamic optimal control that the SBO uses
in the real time tracking of ISO RS requests and use them to
develop analytic estimates of the tracking performance cost
statistics used in the decision support model.

Probabilistic constraints and performance cost statistics
are coupled and depend crucially on the smart building’s
capability to modulate its consumption to conform with a
larger or smaller RS reserve offer. Hence, the level of the RS
offer in the Hour Ahead Market must be commensurate to
these costs and capabilities. For example, if the SBO’s offer
in the Hour Ahead Market exceeds its capabilities, it will
end up not being able to track the RS signal with sufficient
fidelity, incur high tracking error costs and, at the same time,
impose high utility loss to its occupants who will be subjected
to exceedingly wide energy service oscillations. If on the
other hand the Hour Ahead Market promise is too small, the



SBO will waste the opportunity to offset part of its energy
cost by selling RS reserves that are within its capabilities. To
this end, we propose an objective function which captures the
trade-offs mentioned above.

The RS reserve market rules are described next. RS reserve
market participants (whether generators or SBOs) must be
certified by passing a qualification test. The test requires each
provider to demonstrate that it is capable to track a standard
RS signal trajectory at a pre-specified accuracy level2. The
RS signal specifies the portion of the RS amount that the
resource needs to provide until the next signal update. For
example, if a SBO bids for an average consumption rate
of A kW and offers R kW of Regulation Service Reserve
capacity in the Hour Ahead Market, it needs to anticipate
that it will be able to modulate its consumption in real time
to achieve time varying consumption rates A + Ry(t) kW
tracking the dynamic signal y(t) ∈ [−1, 1]. The range of
the RS signal indicates that the resource must be able to
provide the regulation in both the up and down directions.
The RS signal dynamics are constrained by a maximal ramp
rate. For example, for a four second update frequency, i.e.,
∆t = 4 sec, |y(t + ∆t) − y(t)| ≤ ξ, where ξ is the level
that would allow the signal to traverse its [−1, 1] range in
2.5 or 5 minutes depending on whether a more valuable fast
or less valuable slow RS is offered. A test taker is assessed
a score proportional to its tracking error. Exact scoring rules
vary across ISOs and may be updated every few months. For
example, PJM includes a delay score, a correlation score and
a precision score in measuring the performance and requires
three consecutive successful tests with a minimum score of
75 % ([9]). Certified RS providers may offer RS levels in
the Regulation Market up to the maximal amount they have
been certified for. A Certified provider must submit certain
information to the ISO in the Hour Ahead Regulation Market,
such as, the amount of RS R it may be willing to offer by
type, the regulation midpoint or average consumption A, its
regulation price offer ($ /MWh).

This paper focuses on the optimal selection of the R offer
for a given A. We assume that the SBO can solve for the
optimal dynamic control policy presented in [5] for tentative
RS offers and obtain requisite cost performance statistics
estimates mentioned above and described in detail below. We
do not address the specific selection of RS price offer since
there are restrictive guidelines specified by ISOs bounding an
RS provider’s price offers ([10]) and we can safely assume
that the SBO can reasonably foresee the RS clearing price.
In the interest of information, we note that a RS price offer
consists of two parts that compensate (i) the additional cost
incurred by the provider by selecting to offer a RS reserve R
and having to make related adjustments in its average energy
consumption, and (ii) the cost associated with the anticipation
of having to modulate its consumption in real time over the

2PJM, the largest US ISO operating in 13 states has different RS signal
tests corresponding to qualification to offer different RS types, requiring
faster or slower response, etc. ([9]).

interval (A+R,A−R) quantified by the expected trajectory
length R

∑I
i=0 |y((i+ 1)∆t)− y(i∆t)|). Leaving this aspect

for future work, this paper neglects variations in the trajectory
length assuming for simplicity that it can be reasonably
estimated by its average value and incorporating it in a single
Market Clearing price denoted by π.

The rest of the paper is organized as follows: In Section
II, we review and summarize for the reader’s convenience
the SBO’s dynamic RS signal policy problem investigated
in [5]. In Section III, we develop a normal distribution
approximation to predict the number of electricity consuming
appliances at some future time and under a constant control
policy. We also analyze the rate of convergence in M/M/∞
queues. This describes the SBO’s certification requirements
to offer RS, or, equivalently, the performance of the optimal
control policy under RS levels associated with reasonably
fast building appliance response capabilities. Section IV for-
mulates probabilistic RS signal tracking constraints included
in the Hour Ahead optimization problem. The Hour Ahead
optimization problem is formulated explicitly in Section
V, numerical experience elaborating our propositions and
optimal hour ahead offer model are presented in Section VI
and we conclude in Section VII.

II. PROBLEM OF RS PROVISION

For the reader’s convenience we summarize, without
proofs and detailed propositions, the dynamic SBO policy
proposed in [5].

A. Consumption Dynamics and Utility

The Smart Building of interest includes N appliances,
n(t) of which are active at time t consuming power at a
rate r kW each. N − n(t) appliances are not active, i.e.,
are not consuming. An inactive appliance realizes utility
φ(t) if it becomes active at time t and stays active over an
exponentially distributed time period with mean 1/µ. φ(t)
represents the value of consuming an average of r/µ kWh
of energy starting at t.

Assumption 1. φ(t) is assumed to be a uniformly distributed
random variable over [0, UM ], with UM positive.

To activate appliances, the SBO broadcasts a price u(t) ∈
[0, UM ] updated after each update of the RS signal y(t).
Each inactive appliance monitors the price u(t) at discrete
time intervals with length distributed exponentially with rate
λa. At monitoring instances, an inactive appliance becomes
active if its utility is greater than the price, i.e., φ(t) ≥ u(t). It
then stays active for an exponentially distributed period with
mean 1/µ before it returns to inactivity. If an appliance user’s
utility is smaller than the monitored price, the appliance
remains inactive. Appliance activations are therefore Poisson
distributed with rate λa (N − n(t))

(
1− u(t)/UM

)
.

Assumption 2. n(t) satisfies nm ≤ n(t) ≤ nM , t ≥ 0,
where nM − nm is small relative to N .



This assumption enables us to use the following approx-
imation: The monitoring rate is time invariant and equal to
a practically constant rate λM =

(
N − (nm + nM )/2

)
λa.

This results in appliance activation rate λM
(
1− u(t)/UM

)
when the SBO broadcasted price is u(t). An important
property that we will be referring to frequently is that n(t)
exhibits the characteristics of an M/M/∞ queue as we
have Poisson appliance activation rates, and deactivations are
equivalent to delay processes. Moreover, if a constant price
is broadcasted over a long enough period, say u(t) = u, then
the corresponding M/M/∞ queue will reach steady state
and after that n(t) will follow a Poisson distribution with
rate λM

(
1− u/UM

)
/µ.

The utility that is realized by an appliance becoming active
at time t is seen as a contribution to the building’s social
welfare. The objective is to maximize the average utility
while minimizing tracking error costs that is explained in
the next section. Given Assumption 1, the rate of utility
realization at time t is given by

λM
(
1− u(t)/UM

) (
u(t) + UM

)
/2. (1)

B. RS Signal Dynamics and Tracking Cost

The ISO broadcasts RS signal y(t) as described in the
introduction, followed in our model by an SBO price up-
date. The SBO modulates the price it broadcasts to reach
consumption level A+Ry(t) kW by time t+ ∆t. If it fails,
it is assessed a tracking cost. We first describe the dynamics
of the RS signal and then define the tracking cost.

The RS signal is in practice a continuous variable taking
values in [−1, 1]. In our model, the range space of y(t) is dis-
cretized to a 2m+1 set {−1,−1+∆ȳ, . . . , 0, . . . , 1−∆ȳ, 1},
where ∆ȳ = 1/m ≥ 0. When the RS signal is updated,
it takes the value y(t + ∆t) = y(t) + ∆y, where ∆y
is a random variable taking values in {−∆ȳ, 0,∆ȳ}. The
probability distribution of ∆y is a function of y(t) and d(t),
where d(t) ∈ {−1,+1} is the direction of the RS signal
with the following interpretation: When d(t) = +1, y(t) is
more likely to increase at the next RS signal update, with
the opposite holding when d(t) = −1. More formally, if
d(t) = +1, then Pr{∆y ≥ 0|d(t) = +1, y(t)} ≥ Pr{∆y =
−∆ȳ|d(t) = +1, y(t)}, and if d(t) = −1, then Pr{∆y ≤
0|d(t) = −1, y(t)} ≥ Pr{∆y = ∆ȳ|d(t) = −1, y(t)}.
Moreover, the direction changes according to the following
dynamics

d(t+ ∆t) =


+1, if y(t+ ∆t) = y(t) | d(t) = +1

or y(t+ ∆t) > y(t)

−1, if y(t+ ∆t) = y(t) | d(t) = −1

or y(t+ ∆t) < y(t).

(2)

Assumption 3. The RS signal satisfy Energy Neutrality over
an hour, i.e. E[y] = 0.

This assumption implies that the SBO is asked to consume
on average at A kW.

The SBO incurs the following tracking cost for over the
∆t seconds if its consumption rate at t + ∆t deviates from
its obligation of A+Ry(t):

κ [(n(t+ ∆t)) r − (A+Ry(t))]
2

∆t (3)

where κ ≥ 0 is the cost coefficient. The cost coefficient
is generally large so that tracking the RS signal is more
important than maximizing consumer utility outright. This
is because the SBO may lose its certification as RS provider
if its performance is persistently below a certain threshold (
[9]).

C. Optimal Dynamic Price Policy Optimality Conditions

The average cost infinite horizon Dynamic Programming
(DP) characterizing the optimal price policy developed in
[5] is summarized next. The system state is the number of
the active appliances, the RS signal value and the RS signal
direction, which are respectively denoted by n(t), y(t) and
d(t). Control decisions, namely the price u(t) updates, are
made at discrete time intervals of ∆t seconds. Based on the
current state and the control, the system evolves into a new
state according to realizations of the random variables ∆y
and ∆n. Here, ∆n is defined as the change n(t + ∆t) −
n(t) representing the difference of appliances that become
active minus the active appliances that disconnect during the
time interval [t, t+ ∆t]. The Bellman Equation representing
optimality conditions is

h(n, y, d) + J̄ =

min
u∈[0,UM ]

{
E

∆n,∆y|u,n,y,d

[
∆tκ ((n+ ∆n)r − (A+Ry))

2

−∆tλM
(
1− u/UM

) (
u+ UM

)
/2

+ h(n+ ∆n, y + ∆y, d′)

]}
(4)

where d′ is the new direction, whose dynamics are given in
Equation 2. In the Bellman equation, J̄ represents the cost
per ∆t time interval, and h(n, y, d) is the differential cost
function ([16]).

A fully discretized problem obtained by discretizing the
control space as {0, . . . , UM} admits a Linear Programming
solution of the Bellman equation ([16]) which is discussed
in [5].

D. Properties of the Dynamic Pricing Policy

Note that u(k) ∈ [0, UM ] represents some dynamic pricing
policy, where the price is updated at discrete times k∆t, k =
0, 1, . . . ,K and stays constant in between, i.e. u(t) = u(k),
t ∈ [k∆t, (k + 1)∆t]. In addition, we define π ∈ [0, UM ] as
a static price policy with the price being constant over the
problem horizon, i.e. u(t) = π, t ∈ [0, T ].



Proposition 1. The expected average consumption rate over
the period [0, T ] in the Smart Building is the same under a
dynamic pricing policy u(k) and a related static price policy
π = 1

T

∑K
k=0 u(k)∆t, T = (K + 1)∆t.

An SBO certified for market participation should be able to
consume at any point in the range [A−R,A+R]. Therefore,
if λM is too small to allow reaching a consumption rate of
A+R kW in reasonable time, then the SBO will not be able
to track RS signals appropriately. Hence, we can write the
feasibility condition on λM as

λMr/µ ≥ A+R

λM ≥ µ(A+R)/r (5)

which follows from the fact that the corresponding M/M/∞
queue has Poisson distributed queue length whose mean is
bounded from above by λM/µ.

Proposition 2. The expected utility realized over the period
[0, T ] is smaller under a dynamic pricing policy u(k) than
it would be under the related static price policy π =
1
T

∑K
k=0 u(k)∆t, T = (K + 1)∆t. Moreover, the loss in

utility is proportional to the variance of the dynamic price
u(k) and is given by

Utility Loss =
λMσ2

u

2UM
. (6)

Proofs of the above propositions are given in [5].

III. LOOK AHEAD PROBABILITY DISTRIBUTION OF
ACTIVE APPLIANCES, n(t)

In this section, we analyze the probability distribution
of n(t) as it is best known at time τ over the period
[τ, τ + ∆τ ]. During that period a constant price u ∈ [0, UM ]
is broadcasted resulting in a constant appliance activation
rate λ = λM

(
1− u/UM

)
. The propositions shown in this

section are used in Section IV to formulate the constraints
of the optimization problem that determines the desired level
of RS to be offered to the Hour Ahead Market.

A. Normal Distribution Approximation of p.d.f. of n(τ+∆τ)

Proposition 3. Let the random variable η represent the
number of active appliances in the system at time τ+∆τ , i.e.,
η = n(τ + ∆τ), given n(τ) = i and the appliance activation
rate over [τ, τ + ∆τ ] is λ. The probability distribution of η
can be approximated by a normal distribution with mean Mη

and variance σ2
η where

Mη =
λ

µ

(
1− e−µ∆τ

)
+ ie−µ∆τ (7)

and

σ2
η = ie−µ∆τ − (ie−µ∆τ − λ/µ(e−µ∆τ − 1))2

+i(i− 1)e−2µ∆τ + λ2(e−µ∆τ − 1)2/µ2

−λ(e−µ∆τ − 1)/µ− 2λi(e−µ∆τ − 1)e−µ∆τ/µ.

(8)

Proof: Let the random variable X represent the number
of active appliances at time τ + ∆τ that have actually
connected during [τ, τ + ∆τ ], and the random variable Y
represent the number of active appliances at time τ+∆τ that
actually connected before time τ , hence η = X+Y . Starting
at time τ , X corresponds to a birth-death process where the
system is initially empty. Therefore, X is Poisson distributed
with mean λ

(
1− e−µ∆τ

)
/µ ([13]). Y corresponds to a pure

death process as there are initially i appliances at time τ .
Noting that any of the i appliances will be still active after ∆τ
time with probability e−µ∆τ , we conclude that the probability
distribution of Y is binomial with parameters i and e−µ∆τ .
By virtue of the fact that both the Poisson and Binomial
distributions can be approximated well by a normal distribu-
tion, the same is true for both X and Y . Hence, η can also be
approximated by a normal distribution since η = X + Y , X
and Y are independent and the normal distribution reproduces
with addition. Therefore, the mean of η can be approximated
by Mη = E[X] + E[Y ] = λ

µ

(
1− e−µ∆τ

)
+ ie−µ∆τ . An

analytic derivation of this mean can be found in [13]. In order
to find σ2

η , rather than using σ2
X + σ2

Y , we will derive the
exact expression for the variance as follows: [13] provides
the generating function of an M/M/∞ system where the
initial queue size is i as

P (s, t) = e−λ(1−s)(1−e−µt)/µ (1− (1− s) e−µt
)i
. (9)

The expression for the variance is then easily obtainable as

σ2
η = P ′′(1,∆τ) + P ′(1,∆τ)− (P ′(1,∆τ))

2 (10)

where P ′ and P ′′ represents the first and second order
derivatives with respect to s, evaluated at s = 1.

Section VI presents numerical results that verify this
proposition.

B. Speed of Convergence to Stationarity
Proposition 4. Given that n(τ) = i, η = n(τ + ∆τ) and
the appliance activation rate over [τ, τ + ∆τ ] is constant and
equal to λ, E[η] approaches λ/µ at a rate that is proportional
to α = µ2/(λ− iµ). Negative values of α indicate that E[η]
approaches λ/µ from above while positive values indicate
the opposite.

Proof: This result is an extension of the discussion
in [14] and [15] on the convergence rate of a birth death
process for the case where the system is initially nonempty.
In [14], the relaxation time (which is the reciprocal of
the speed of convergence) for M/M/c queues is given as∫∞

0
[E[n∞]− E[n(t)]] dt where c is the number of servers

and n∞ := limt→∞ n(t). The result follows by substituting
n(t) by the expression given in Equation (7).

Corollary 1. As µ → ∞, η becomes a Poisson distributed
random variable with parameter λ/µ.

Proof: Since the speed of convergence to stationarity
is dominated by the parameter µ, the system reaches steady
state instantaneously as µ→∞.



This result is quite intuitive: the larger the value of µ
the faster the term e−µ∆τ diminishes in Equation (7) and
Equation (8). We thus obtain E[η] ≈ σ2

η ≈ λ/µ, which
verifies Corollary 1. In Section III-C we discuss how the
speed of convergence affects the optimal dynamic price
policy.

C. Properties of Optimal Price Policy Under Fast Conver-
gence Conditions

As Proposition 4 suggests, the time until convergence
under a static price can be shortened in two ways: (i) by
initializing the system close to the steady state level, since
α → ∞ as i → λ/µ, and (ii) by increasing µ, which is
what Corollary 1 shows. The intuition of the former is trivial.
However, it formally explains the numerical results on a
property of the optimal price policies that we demonstrated
in [5]. The numerical experience in [5] showed that when
n(t)r − (A+Ry(t)) ≈ 0, i.e., when the SBO is already
tracking the RS signal well, the optimal prices are close to
the value that will lead the system to the consumption rate
of (A+Ry(t)) as t → ∞. This is because (A+Ry(t)) /r
corresponds to the desired steady state value of n. Thus, when
the tracking error is close to zero, the convergence rate, α,
is large.

Rather than aiming for instantaneous convergence, it is
more interesting to find the value of µ that pushes the number
of active appliances n(t + ∆t to within an ε neighborhood
of the obligation after, regardless of the value of n(t) at t.
In view of Assumption 2, we define the maximum possible
difference between the obligation and n, as D = max{nM−
(A−R) /r, (A+R) /r − nm}.

Proposition 5. Suppose that κ and λM are sufficiently large
and Assumption 2 holds. Then, if µ satisfies

µ ≥ − 1

∆t
log

ε

D
(11)

and if the price u is constant over [t, t+ ∆t] and it satisfies

λM

µ

(
1− u

UM

)
r = A+Ry(t) (12)

then

E[n(t+ ∆t)] ∈ [n∗ − ε, n∗ + ε] (13)

where

n∗ := (A+Ry(t)) /r. (14)

Proof: For large enough κ we ensure that minimizing
the tracking error dominates utility minimization in (4).
Moreover, λM satisfies Inequality (5). Rewriting the ex-
pression in Equation (7) as λ/µ − e−µ∆t (λ/µ− i), where
λ = λM

(
1− u/UM

)
and i = n(t), we can conclude that

if µ satisfies (11), the exponent term in (7) becomes less
than ε for any value of i ∈ [nm, nM ]. Hence, we have
E[n(t + ∆t)] ∈ [n∗ − ε, n∗ + ε], where n∗ represent the

number of active appliances that minimizes the tracking cost
in Equation (3).

This proposition implies that under conditions of high rate
of convergence, the optimal price policy can be approximated
by (12). Although µ is unlikely to satisfy the lower bound
in (11) in practice, Proposition 5 helps to understand the
relationship between the utility loss and RS provision in
Section V-A.

IV. SBO’S CAPABILITY OF PROVIDING RS RESERVE

In this section, we derive the necessary conditions that
ensures the SBO’s capability of providing R kW Regulation
Service reserve. These conditions will be used as constraints
of the Hour Ahead optimization problem that we define in
Section V.

A. Condition on Maximum SBO Consumption Capacity

As stated in (5), the SBO should be able to consume
at a rate of A + R kW in average when the ISO requires
full utilization of the reserve in the positive direction by
broadcasting RS signal y = 1. However, this constraint will
become redundant in the presence of the constraint in (15)
that will be given in Section IV-B.

B. SBO Capability of Tracking Maximal RS Ramps

As mentioned in the Introduction, the SBO should be
capable of modulating its consumption rate by 2R kW in τ
minutes so that it traverses the RS provision range, namely
from A − R kW to A + R kW and from A + R kW to
A−R kW, where τ depends on the reserve type that is being
provided. In order to ensure the former, we constraint the RS
offer optimization problem by the following inequality.

λM

µ

(
1− e−µτ

)
+
A−R
r

e−µτ ≥

A+R

r
+ ςσ

(
λM ,

A−R
r

, τ

)
(15)

where ς is a positive parameter, and σ(λM , (A − R)/r, τ)
represents the standard deviation that can be obtained by
setting λ = λM , i = (A − R)/r, ∆τ = τ in Equation
(8) and calculating the square-root. Inequality (15) implies
the following: When the SBO is consuming at a rate of
A − R kW that corresponds to i = (A − R)/r number of
active appliances, if the price is set to 0 so that the appliance
activation rate is maximized to λM , the consumption rate
after τ minutes is expected to be at least A + R kW
with certain confidence. In order to construct the confidence
interval, we use the normal distribution approximation that
is introduced in Proposition 3 and aim to reach at least
(A+R)/(r)+ςσ(λM , (A−R)/r, τ) kW of consumption after
τ minutes. ς = 1, for example, implies that the consumption
rate will exceed A+R kW after τ minutes with a confidence
level greater than 68 %.



We use a similar approach to write the constraint to ensure
that SBO is capable of reducing the consumption rate from
A + R kW to A − R kW in τ minutes. The RS provision
offer in the Hour Ahead Market must satisfy the following
inequality.

A+R

r
e−µτ ≤ A−R

r
− ςσ

(
0,
A+R

r
, τ

)
(16)

where we assume that there are initially i = (A+R)/r active
appliances in the system and the price is set to UM resulting
in λ = 0.

V. OPTIMIZATION OF THE RS OFFER IN THE HOUR
AHEAD MARKET

In preparation for the formulation of the optimization
problem for offering RS reserve in the Hour Ahead Market,
we provide analytic estimates for the tracking cost and utility
loss as a function of R. These estimates are then used in the
objective function of the optimization problem.

A. Analytic Estimate of Utility Lost During Dynamic RS
Reserve Management

Proposition 2 states that modulating the price causes a
utility loss that is proportional to the price variance. This
implies that RS provision comes with a utility loss to the
SBO as the price needs to be modulated to track RS signals.
Moreover, in [5], it is observed that the utility loss increases
as the amount of RS provision, R, increases. Now, we
propose a model that explains this relationship.

For the cases where the system converges to steady state
very fast, i.e., Inequality (11) is satisfied for small ε and the
optimal prices satisfy Equation 12, the optimal price policy
takes the form

u(t) = UM
(

1− µ

λMr
(A+Ry(t))

)
(17)

which leads to

σ2
u =

(
µUMR

λMr

)2

σ2
y. (18)

If we replace this expression for σ2
u in the utility loss equation

(6), we obtain

Utility Loss Under
Fast Convergence =

µ2σ2
yU

M

2λMr2
R2 (19)

which suggests that the utility loss increases quadratically as
R increases. In our numerical experience, we observe that
utility loss increases with R2 even if we do not assume fast
convergence, and the utility loss is given by

Utility Loss = χ+ γR2 (20)

where χ is a constant and γ is some coefficient. These
parameters are complicated functions of the problem pa-
rameters such as λM , µ, σ2

y,K etc. However, once χ and γ
are estimated, they can be used in the Hour Ahead Market

to decide optimal value of R as far as the consumption
characteristics of the Smart Building stay the same.

Equation 20 also implies another important result. There
is a fixed amount of utility loss that occurs at the moment
that the SBO decides to provide RS, regardless of the amount
of the provision. Because, even if R is very small and A +
Ry(t) ≈ A, t ≥ 0, the SBO has to modulate the price in order
to keep consuming constantly at a rate of A kW, whereas
there is not such an obligation when the SBO is not providing
RS reserve. Section VI-B verifies this conclusion numerically.

B. Analytic Estimate of Tracking Cost Incurred During
Dynamic RS Reserve Management

SBOs receives a reward for providing RS that is propor-
tional to R. However, this reward is decreased when the
tracking is not carried out perfectly. Numerical experiments
show that the cost of imperfect tracking also increases with
R. The SBO should calculate its net income by considering
this tracking cost while deciding the amount of RS to offer
in the Hour Ahead Market. However, the exact value of the
tracking cost can only be obtained by solving the Bellman
equation in (4), a task that is computationally expansive. We
provide instead an approximation of the tracking cost as a
function of R to use it in the objective function of the Hour
Ahead optimization problem.

When we solve the Bellman equation in (4) for the
optimal price policy, the distribution of the tracking error
exhibits a bell shape centered around zero. In other words,
the optimal price policy helps to track RS signals with a
minimum tracking error most of the time. However due to
the stochasticity in the system, positive or negative values
for the tracking error are also possible, but less likely. Let us
denote the tracking error by eT . Then, we approximate the
distribution of the tracking error by a normal distribution,
i.e., eT ∼ N(Me, σ

2
e) where Me ≈ 0. Then the approximate

average tracking cost can be find as follows.

Ω ≈ κE[(eT )2]

= κ(σ2
e +M2

e ) (21)

In addition, we observe that the standard deviation of the
normal distribution increases linearly with RS provision R
and has the following form

σe = $ + νR (22)

where $, ν ≥ 0 are some constants. The SBO can estimate
Me, $ and ν by solving the Bellman equation in (4) for some
sample cases. Then, these constants can be used to estimate
the tracking cost in the Hour Ahead optimization problem
as far as the consumption characteristics of the building stay
the same. As a last note about this approximation, we have
observed that the constant ν is inversely proportional to λM .
This means that an increase in the consumption capacity of
the Smart Building, while keeping the average consumption
A fixed, will make the tracking cost less sensitive to RS
provision R.



C. Optimization of the RS Offer in the Hour Ahead Market

Using analysis and propositions introduced in Section III,
we derived the limits of a Smart Building on the amount
of RS reserve that it can provide, given the consumption
characteristics of the building and the rules of the reserve
market in Section IV. Then, in Section V-A and V-B, we
estimated the loss of utility and the tracking cost of the SBO
as a function of the RS provision, so that the SBO does
not need to solve repeatedly the Bellman equation in (4) to
decide the optimal R to offer in the Hour Ahead Market.
The optimization problem that determines the level of Hour
Ahead Regulation Service offer is formulated below using
the aforementioned analytic cost estimates.

Max
R,<

πR− (χ+ κM2
e + κ$2)<

−(γ + κν2)R2 − 2κ$R (23)

subject to (15), (16), R ≤ A, R ≤ M<, R ≥ 0 and < ∈
{0, 1}.

In this formulation, we assume that the SBO relies on an
estimate of the expected reserve clearing price, π, based on
historical information. At the moment that the SBO decides
to provide RS, there two type of costs that must be mini-
mized: (i) The tracking cost the ISO charges due to imperfect
tracking of the RS signals, and (ii) the loss in consumer
utility due to frequent modulation of the consumption in the
building. Since the exact values of these losses can only be
observed after the SBO actually provides the RS, we use the
estimates of their expected value in Equations (20) and (21).
These costs are calculated using parameters χ,M2

e , $, γ, ν,
whose value the SBO can obtain once and use for as long
as the consumption characteristics of the building remain the
same. In order to handle the fixed part in the costs, we use
the binary variable < and a very large number M .

VI. NUMERICAL EXPERIENCE

The following input was used in this numerical example:
A = 50 kW, ∆ȳ = 1/30, κ = $ 100 /(kW)2 min, λM = 150
/min, µ = 1 /min, UM = $ 50 , r = 1 kW and τ = 5 min.

A. Validation of Normal Distribution Approximation of the
p.d.f. of n(t)

We provide here numerical results that illustrate the accu-
racy of the normal distribution approximation to the p.d.f. of
n(t) for a system with n(0) = i as described in Proposition
3. In Figure 1, the horizontal axis represents the possible
number of active appliances in the system after t minutes
and the vertical axis shows the corresponding probabilities.
The blue continuous curve represents the exact values of the
probabilities that are calculated according to

P (t) = eQtI(0) (24)

where the vector I(0) is the initial probability distribution of
the system whose ith entry is equal to 1 and the rest of the

entries are equal to zero, the matrix Q is the generator of
the corresponding Markov process and P is the vector for
the probability distribution of the number of appliances after
t minutes. The red dashed curve is the normal distribution
approximation with the mean and variance as given in Equa-
tions 7 and 8. In this example u = 1/3 and hence λ = 100.
n(0) = i = 20. The graph verifies the accuracy of the normal
distribution approximation that is given in Proposition 3.

Fig. 1: Normal Distribution Approximation to n(t) for
given n(0)

B. Average Utility Loss versus RS provision, R

The model suggested in Section V-A, which explains the
relationship between the Utility Loss and RS provision R,
is numerically verified in Figure 2. At the moment when
R = ε > 0, there is a χ amount of loss in utility compared
to the case where the price ū is applied constantly, i.e., ū =
1
T

∫ T
0
u(t)dt. The Utility Loss is quadratic in R with γ that

is a function of the problem parameters. The accuracy of the
average utility loss estimate as a function of R allows the
Hour Ahead optimization problem to solve efficiently for the
optimal amount of RS provision.

Fig. 2: Utility Loss - RS Provision Relationship, χ = 160.9,
γ = 0.0437



C. Normal Distribution Approximation to Tracking Error
p.d.f.

Figure 3 shows that the normal distribution approximation
to the tracking error p.d.f. proposed in Section V-B holds
with a reasonable accuracy, supporting the veracity of our
Hour Ahead optimization problem formulation. Although not
shown in the figure, the standard deviation of the normal
distribution approximation increases linearly in R. Namely,
we have σe = 4.008 for R = 15 kW, σe = 4.067 for R = 20
kW and σe = 4.113 for R = 25 kW.

Fig. 3: The Normal Distribution Approximation to Tracking
Error for R = 15 kW

D. Optimization of the RS Offer

Using the approximation parameters obtained in Sections
VI-B and VI-C, namely χ = 160.9, γ = 0.0437, $ = 3.843
and ν = 0.011, we now solve the optimization problem to
determine the optimal amount RS offer, R, to the Hour Ahead
Market. The results show that there is a threshold value of π,
beyond which it is profitable for the SBO to offer RS reserve.
On the other hand, in this problem setting, the amount of
RS offer is limited by the SBO’s tracking capability of a
downward RS signal ramp as imposed by Inequality (16).
Moreover, the optimal RS management price policy exhibits
a bang-bang type of structure as shown in Figure 4. This
behavior is parameter choice specific and does not occur
for different parameter selections. Due to space limitations
additional numerical experience is deferred to future work.

VII. CONCLUSION

We have investigated the ability of Smart Buildings to
provide Regulation Service for broad consumption charac-
teristics of flexible appliance loads, and used it to propose
an optimization model assisting SBOs to determine optimal
RS offers to the Hour Ahead Market. Probabilistic constraints
were developed by studying the look ahead probability dis-
tribution of active appliances under a fixed price control and
its implications on the speed with which it converges to a
steady state. Broad building characteristics were summarized
as the determinants of the convergence speed.

Fig. 4: Optimal RS Provision Policy (κ = 1)
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