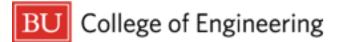
GPU Computing with CUDA Lecture 10 - Applications - N body problem

Christopher Cooper Boston University

August, 2011 UTFSM, Valparaíso, Chile



Outline of lecture

- What is an N body problem?
- What kind of problems can be solved with N body approach?
- Fast calculation algorithms
- ▶ N-body problem on GPU

Introduction

► N body problem calculates the interaction between N bodies

$$\mathbf{x}_{i}$$

$$\mathbf{x} = \mathbf{x}_{i} - \mathbf{x}_{j}$$

$$|\mathbf{x}|_{ij} = \sqrt{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2} + (z_{i} - z_{j})^{2}}$$

Classic example: Gravitational Potential

$$\phi_i = \sum_{j=0}^N \frac{m_j}{|\mathbf{x}|_{ij}} \qquad \nabla \phi = g$$

Introduction

- Useful for anything with Green's function!
- $\blacktriangleright \operatorname{Poisson} \nabla^2 \phi = f$
 - Astrophysics
 - Fluid mechanics
 - Electrostatics

• Helmholtz
$$\nabla^2 \phi + k^2 \phi = f$$

- Acoustics
- Electromagnetics
- ▶ Poisson- Boltzmann $\nabla(\epsilon \nabla \phi) + k^2 \phi = f$
 - Geophysics
 - Biophysics

 $\int_{\Omega} G\nabla^2 \phi d\Omega = \int_{\Omega} Gf d\Omega$

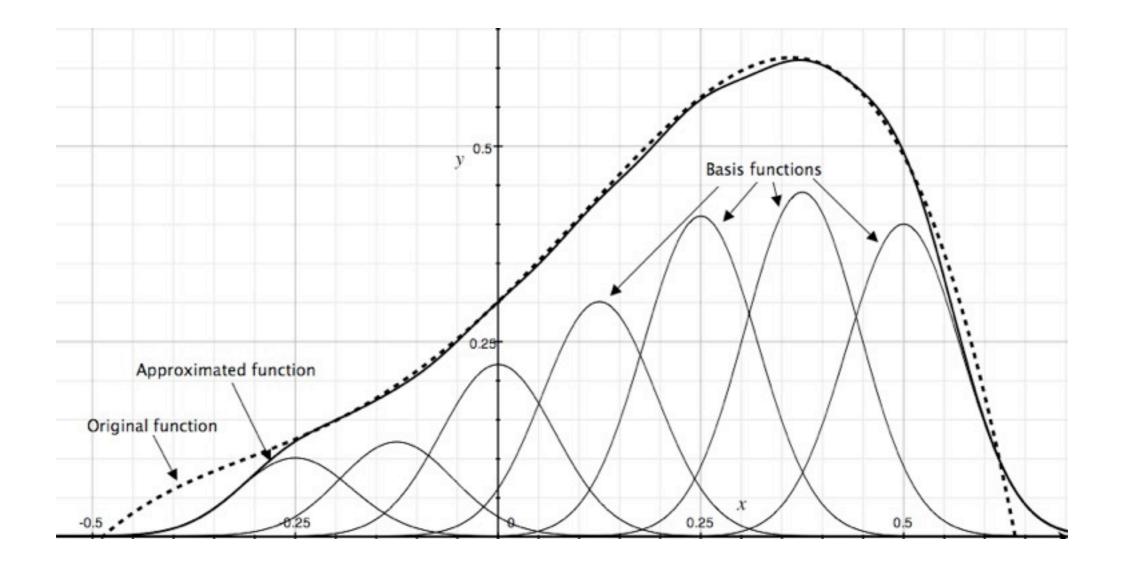
 $\int_{\Omega} \phi \nabla^2 G d\Omega + \int_{\Gamma} \mathbf{n} \cdot [G \nabla \phi - (\nabla G) \phi] d\Gamma = \int_{\Omega} G f d\Omega$

 $\phi = \int_{\Omega} Gfd\Omega$

Introduction

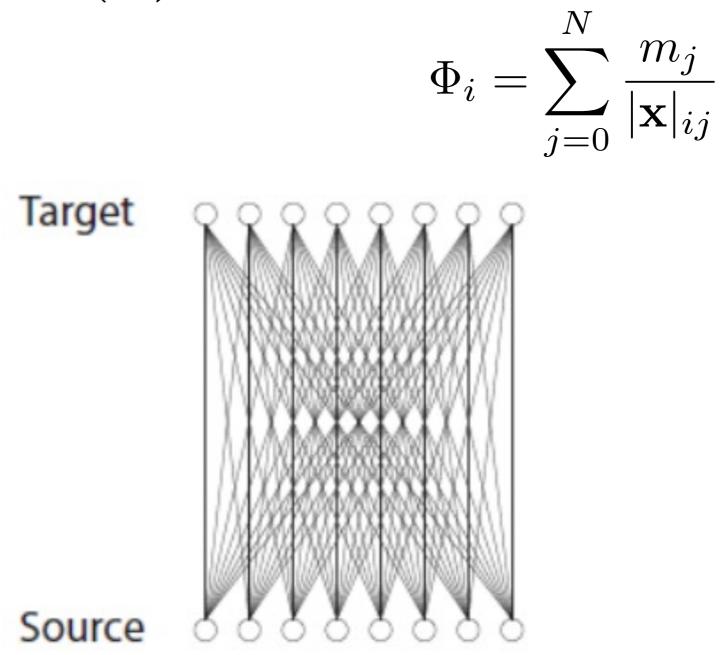
▶ Radial Basis Function interpolation

$$u(\mathbf{x}) = \sum_{i=0}^{N} \alpha_i \phi(|\mathbf{x} - \mathbf{x}_i|)$$

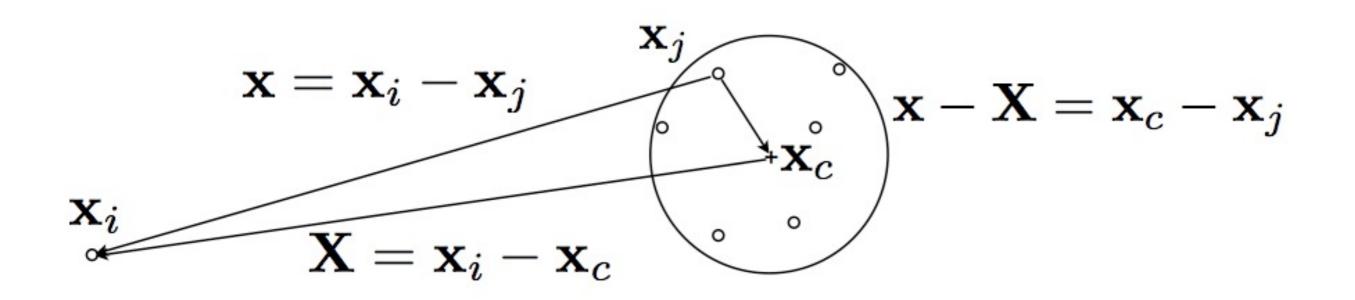


Order of N body problems

► Direct calculation is O(N²)



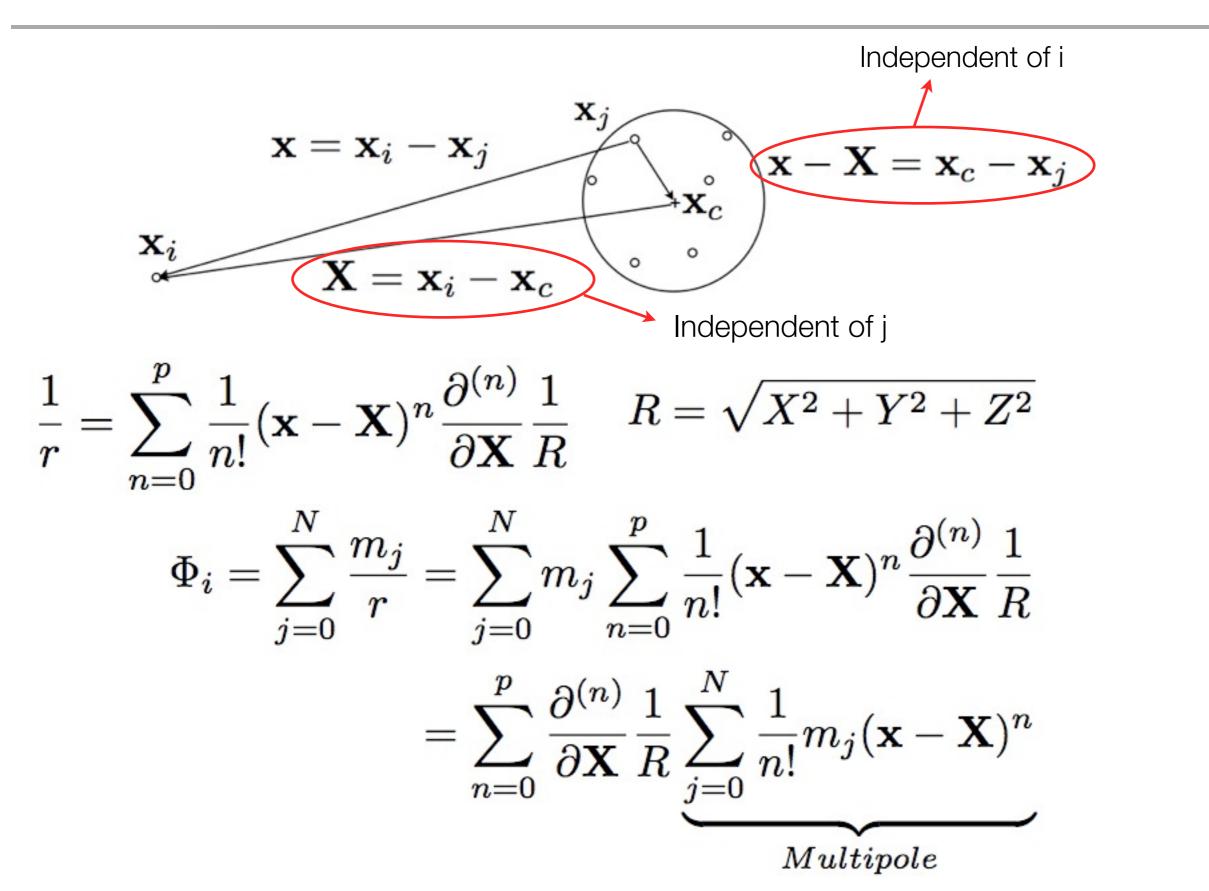
Multipole expansions

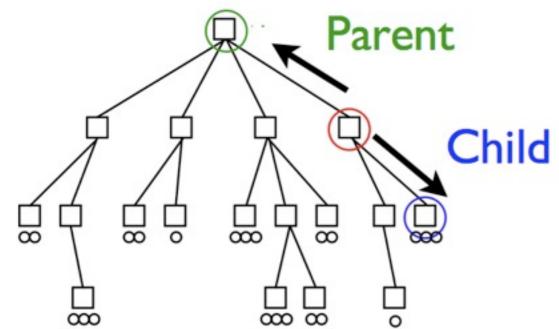


$$f(\mathbf{x}) = f(\mathbf{X}) + (\mathbf{x} - \mathbf{X}) \frac{f'(\mathbf{X})}{1!} + (\mathbf{x} - \mathbf{X})^2 \frac{f''(\mathbf{X})}{2!} + \dots$$

$$\frac{1}{r} = \sum_{n=0}^{p} \frac{1}{n!} (\mathbf{x} - \mathbf{X})^n \frac{\partial^{(n)}}{\partial \mathbf{X}} \frac{1}{R}$$
$$R = \sqrt{X^2 + Y^2 + Z^2}$$

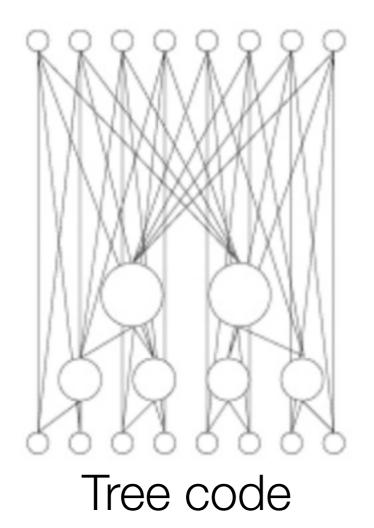
7

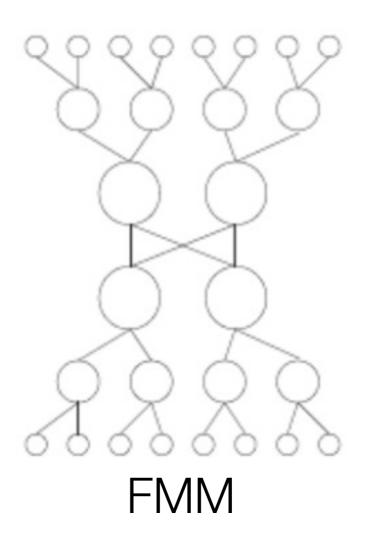




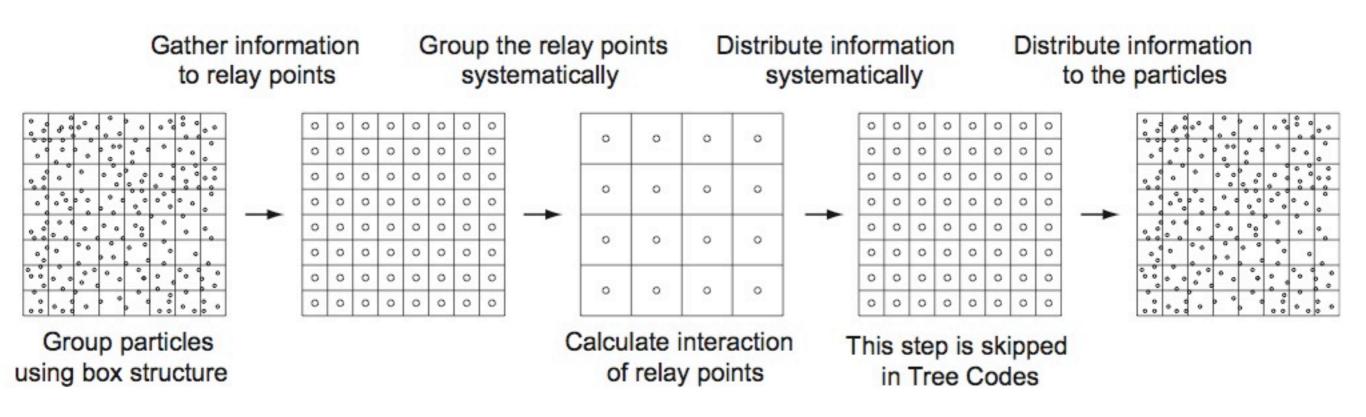
0			0				0		0
0	0		-	0		,	0	0	-
0	0		0		0		0	0	0
	0	0	0	0	0	0			0
0	0	0	0	0	0	0	0	0	
0	0				0	0	0	0	
	0		瀫		0	0			
~	0	7.			0	0	0	0	
v	0	0	0	0	0	0			
0	0		0		0		0	0	- 0

- Tree Code Barnes and Hut
- ▶ Fast Multipole Methods (FMM) Greengard and Rokhlin





Flow of calculation



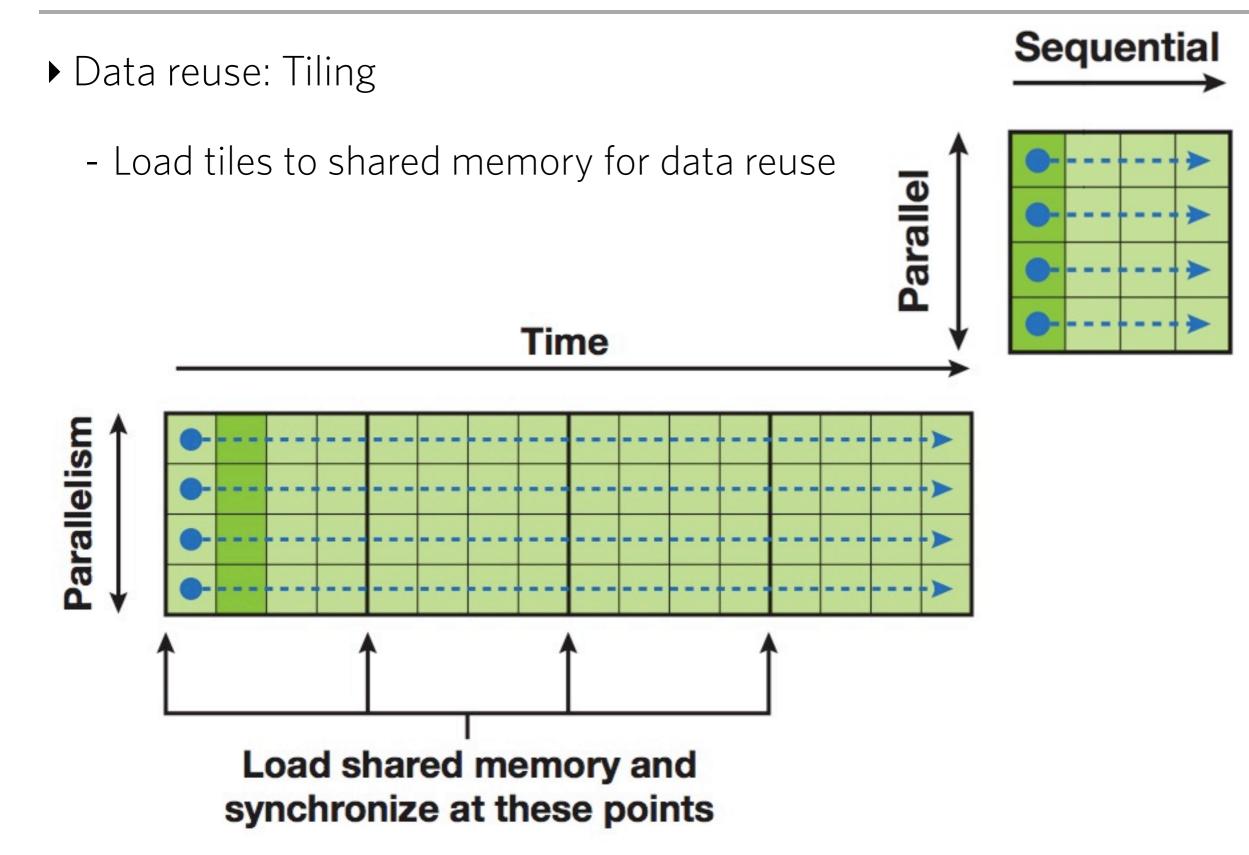
- ▶ Tomorrow's lab: implement O(N²) N body calculation on GPU
- Nyland L., Harris M., Prins J. "Fast N-Body Simulation with CUDA". GPU Gems 3, Chapter 31.
- Lots of operations per load
- ► Much faster, but still O(N²)!

• Look at the problem as a matrix vector product

$$\Phi_i = \sum_{j=0}^N \frac{m_j}{|\mathbf{x}|_{ij}}$$

$$\Phi_i = \sum_{j=0}^N \frac{m_j}{(|\mathbf{x}|_{ij} + \epsilon^2)}$$

• Each thread will compute one row (not one element)



▶ Kernel



N body on GPU - Optimization

- Loop unrolling
 - Avoid unnecessary operation
 - -#pragma unroll 32
- Separate last loop
 - The number of elements might not be multiple of the block size
 - Separate last loop to avoid unnecessary warps performing a calculation
- ► Vary block size

N body on GPU - Performance metric

- Compute bounded problem
 - Performance in FLOPS/s
 - Count number of floating point operations and divide by kernel execution time