
GPU Computing with CUDA
Lecture 10 - Applications - N body problem

Christopher Cooper
Boston University

August, 2011
UTFSM, Valparaíso, Chile

1

Outline of lecture

‣What is an N body problem?

‣What kind of problems can be solved with N body approach?

‣ Fast calculation algorithms

‣N-body problem on GPU

2

Introduction

‣N body problem calculates the interaction between N bodies

‣Classic example: Gravitational Potential

3

xi

xj

x = xi − xj

φi =
N∑

j=0

mj

|x|ij

|x|ij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

∇φ = g

Introduction

‣Useful for anything with Green’s function!

‣ Poisson
- Astrophysics
- Fluid mechanics
- Electrostatics

‣Helmholtz
- Acoustics
- Electromagnetics

‣ Poisson- Boltzmann
- Geophysics
- Biophysics

4

∇2φ = f

∇2φ + k2φ = f

∇(ε∇φ) + k2φ = f

∫

Ω
G∇2φdΩ =

∫

Ω
GfdΩ

∫

Ω
φ∇2GdΩ +

∫

Γ
n · [G∇φ− (∇G)φ]dΓ =

∫

Ω
GfdΩ

φ =
∫

Ω
GfdΩ

Introduction

‣ Radial Basis Function interpolation

5

u(x) =
N∑

i=0

αiφ(|x− xi|)

Order of N body problems

‣Direct calculation is O(N2)

6

Φi =
N∑

j=0

mj

|x|ij

Fast algorithms

‣Multipole expansions

7

Fast algorithms

8

Independent of j

Independent of i

Fast algorithms

9

Fast algorithms

‣ Tree Code - Barnes and Hut

‣ Fast Multipole Methods (FMM) - Greengard and Rokhlin

10

Tree code FMM

Fast algorithms

‣ Flow of calculation

11

N body on GPU

‣ Tomorrow’s lab: implement O(N2) N body calculation on GPU

‣Nyland L., Harris M., Prins J. “Fast N-Body Simulation with CUDA”.
GPU Gems 3, Chapter 31.

‣ Lots of operations per load

‣Much faster, but still O(N2)!

12

N

‣ Look at the problem as a matrix vector product

‣ Each thread will compute one row (not one element)

13

N body on GPU

Φi =
N∑

j=0

mj

|x|ij

Φi =
N∑

j=0

mj

(|x|ij + ε2)

‣Data reuse: Tiling

- Load tiles to shared memory for data reuse

14

N body on GPU

‣ Kernel

15

Allocate shared
memory

Start loop on
blocks

Load to shared
memory

Start loop on
elements

Do sum

N body on GPU

‣ Loop unrolling

- Avoid unnecessary operation

‐#pragma unroll 32

‣ Separate last loop

- The number of elements might not be multiple of the block size

- Separate last loop to avoid unnecessary warps performing a
calculation

‣Vary block size

16

N body on GPU - Optimization

‣Compute bounded problem

- Performance in FLOPS/s

- Count number of floating point operations and divide by kernel
execution time

17

N body on GPU - Performance metric

