
GPU Compu*ng Training
8 Aug.–2 Sep., 2011
Instructor: Christopher Cooper, PhD candidate at Boston University
Organizers: Prof Luis Salinas (UTFSM), Prof Lorena Barba (Boston University)

Week 1 
Class 1:

- Understand the need for multi-core in applications
- Manycore architecture:

- GPU vs CPU chip design
- Data parallelism
- Concepts behind a CUDA-friendly algorithm

- Basic CUDA:
- C-like language
- Threads
- Launching a CUDA kernel

Lab 1:
- Device query
- Familiarize yourself with CUDA
- Launch a simple vector add
- Implement an axpy
- Implement a matrix matrix multiplication

References:
- Kirk, D. and Hwu, W. Programming Massively Parallel Processors. Ch. 1-4
- CUDA C Programming Guide. Version 4. Ch. 1-2

Class 2:
- Fundamentals of the finite difference method
- Programming model: mapping the discretized model to the GPU threads
- Multilevel memory hierarchy

- Shared, global, registers, textures, constant, texture memories
- Sizes and latency
- Blocks

- Finite difference implementations using CUDA:
- Global memory
- Texture
- Shared and global
- Only shared

Lab 2:
- Implementation of 2D explicit heat transfer with global memory
- Implementation of 2D explicit heat transfer with texture memory
- Comparison of each: timings vs. programming effort

References:
- Kirk, D. and Hwu, W. Programming Massively Parallel Processors. Ch. 5
- Micikevicious P. 3D Finite Difference Computations on GPUs using CUDA

- Sanders, J. And Kandrot E. CUDA by Example. Ch. 7
Class 3:

- Efficient memory usage:
- Warp and SIMD
- Warp divergence: if statement
- Kernel memory access
- Coalescing
- Memory bandwidth: measuring effective performance

- Reducing global memory access:
- Effective use of shared memory and registers
- Tiling: shared memory as cache
- Using FD examples to explain
- Discussion on implementations in 1D, 2D and 3D

References:
- Kirk, D. and Hwu, W. Programming Massively Parallel Processors. Ch. 5
- Micikevicious P. 3D Finite Difference Computations on GPUs using CUDA

Week 2
Class 1:

- Holiday

Lab 1:
- Using shared memory as cache:

- Implement 2D explicit heat transfer using shared memory
- Comparison of each: timings vs. programming effort

References:
- Kirk, D. and Hwu, W. Programming Massively Parallel Processors. Ch. 5
- NVIDIA Advanced CUDA Webminar. Memory Optimizations (http://

developer.nvidia.com/gpu-computing-webinars)
- CUDA C Best Practices Guide. Ch. 2-6.

Class 2:
- Efficient use of shared memory:

- Bank conflicts
- Occupancy
- Further recommendations:

- Blocks per thread heuristics
- Latency hiding

- Discussion on memory as limiting factor to parallelism
- Instruction optimization

Lab 2:
- Matrix transpose example

References:
- Kirk, D. and Hwu, W. Programming Massively Parallel Processors. Ch. 5

http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars

- NVIDIA Advanced CUDA Webminar. Memory Optimizations (http://
developer.nvidia.com/gpu-computing-webinars)

- CUDA C Best Practices Guide. Ch. 2-6.

Class 3:
- Further optimization techniques:

- Streaming multiprocessor partitioning
- Data prefetching
- Instruction mix
- Thread granularity
- Loop unrolling

- Parallel algorithms: scan, reduce

References:
- Kirk, D. and Hwu, W. Programming Massively Parallel Processors. Ch. 5

Week 3
Class 1:

- Thrust library: STL for CUDA
- Overview of features:

- Transformations
- Reduction
- Prefix sums
- Reordering
- Sorting
- Iterators

- Using Thrust in your CUDA kernels: raw pointer cast
Lab 1:

- Do examples using thrust:
- Sum, sort, fill, sequence, axpy, etc.

- Change a code done in week 1 to use Thrust
- A useful profiling tool: Valgrind

References:
- http://code.google.com/p/thrust/
- http://valgrind.org/

Class 2:
 - Cusp library: Sparse matrix algebra in CUDA

- Overview of sparse matrices
- Matrices in Cusp: types and formats
- Solvers: CG, BiCG, GMRES, etc.
- Preconditioners

Lab 2:
- Implement a 2D Poisson solver with Cusp
- Generating a Cusp matrix - show example
- Compare timings with different:

- Solvers
- Preconditioners
- Matrix formats
- Memory space use (CPU vs GPU)

- Implement a sparse matvec
References:

http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://code.google.com/p/thrust/
http://code.google.com/p/thrust/
http://valgrind.org
http://valgrind.org

- http://code.google.com/p/cusp-library/
Class 3:

- Good practices within Thrust and Cusp
- Using Cusp and Thrust for “cleaner” codes -> raw pointer cast

Week 4
Class 1:

- The role of sparse matrices in CFD:
- Importance of implicit schemes

- Challenges of GPU implementations in CFD codes
- New CUDA codes need to replace old finely tuned CPU implementations

- Example using implicit FD: from the mesh to a matrix in a Poisson problem
- Explanation of the 2D implicit heat transfer using Crank Nicolson in CUDA

Lab 1:
- 2D implicit heat transfer (Crank Nicolson)
- Use 2D stencil codes and Cusp

References:
- IBM on GPU paper
- Cohen. A Fast Double Precision CFD Code using CUDA. Parallel CFD, 2009.

Class 2:
- N-body simulation with GPU
- Revisit mat-vec on GPU and relate it to the physical problem
- Example of applications:

- Astrophysics
- Surface reconstruction with RBF
- Others (MD)

- Revisit optimizations:
- Shared memory use and tiling
- Loop unrolling and other optimization techniques

Lab 2:
- Implementation of a fast N-body simulation

References:
- Nyland, Harris, Prins. “Fast N-body Simulation with CUDA”. GPU Gems 3, Chapter 31.

http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/

