Part Ill: GPUs

* The problem of programming
is making a Parallel problem Serial!



Library and Tool Dependencies

QCD SciDAC API for Chroma/
CPS/MILC applications

Level 3: Highly Optimized Dirac
inverter, other critical kernels

Level 2: Data Parallel Interface &
1O library

Level 1: Single core linear
albebra, message passing,

and threading libraries.

Specialized code generators,
workflow et al

Application Layer

Chroma ( CPS

MDWF

Level 3: Optimization

Level 2: Data Parallel

Level 1: Basics

+ tools from collaborations with other SciDAC
projects e.g. PERI

Rich Brower SciDAC
Software co-ordinator. ALCF Early Science Program



QUDA: QCD cuda Software

» Collaborators and QUDA developers:

Ron Babich

Kipton Barros (Northwestern)
Rich Brower (BU)

Mike Clark (Harvard)

Steve Gottlieb (Indiana)
Balint Jo6 (JLab)

Claudio Rebbi (BU)

Guochun Shi (NCSA)

« SciDAC Lattice QCD Module

Ron Babich (BU) - STRONGnet 2010
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History: Architecture Revolution
Exascale Back to the Future!

Data Parallel
Classic Cray
Vector Fortran

Beowulf Cluster
(Intel Micros)
MPI)

Data Parallel
(GPU
Many-Core

“threads” )



Historical Perspective:
First “commercial” QCD machine
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http://www.mission-base.com/tamiko/cm/cm-tshirt.html




First University installation in 1989%

*(from left) Roscoe Giles, Glenn Bresnahan and Claudio Rebbi with CM-2




In late 1980's Thinking Machines Corporation the 64K | bit processer CM-2 with
performance in excess of 2500 MIPs, and floating point above 2.5Gflops




Killed by Beowult-clusters
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QCD Perfect scaling!

Teraflop/s
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0.0x108%

Wilson Inverter on the BlueGene/L

;¢ Benchmark Pointg
— 19% of Peak

0.5x10° 1.0x10%
Cores

1.5x10°

I LLNL BG/L weak scaling up to 131,072 cores: 2006 Gordon Bell award

by Vranas, Bhanot, Blumrich, Chen, Gara, Giampapa, Heidelberger, Salapura and Sexton




BUT THIS IS NOT SUFFICIENT

K. Wilson (1989 Capri)

“lattice gauge theory could also require a |08 increase in

computer power AND spectacular algorithmic advances
before useful interactions with experiment ..."

VS
* ab initio Chemistry e abintio QCD
. 1930+50 = 1980 . 1980 + 50 = 2030?*
2. 0.1 flops =» 10 Mflops 2. 10 Mflops =» 1000 Tflops
3. Gaussian Basis functions 3. Clever Collective Variable!?

*Hopefully sooner but need $1/Mflops = $1/Gflops!



Disruptive many-core Architectures

¢ |/4 CM-2 Nvidia FERMI chip

|6 Kbitserial PEE = 512 x32bit PE= [6Kbits



- Disruptive QCD Technology! Graphic Processor Units

Nvidia’s Fermi GPU:
512 cores x 32 bit FPU

!

*GPU/BU code sent to Jefferson Lab for 3 million $ ARRA Cluster
= b x performance @ 20% extra cost




GPUs on the Green 500

Green500 | MFLOPS/
Rank w
) QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz,
1 m Forschungszentrum Juelich (FZJ) 3D-Torus 57.54
L QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz,
1 m Universitaet Regensburg 3D-Torus 57.54
L QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz,
1 m Universitaet Wuppertal 3D-Torus 57.54
4 492.64 National Supercomputing Centre in Dawning Nebulae, TC3600 blade CB60-G2 cluster, 2580
. Shenzhen (NSCS) Intel Xeon 5650/ nVidia C2050, Infiniband
BladeCenter QS22/L.S21 Cluster, PowerXCell 8i
5 m polEh e L 3.2 Ghz / Opteron DC 1.8 GHz, Infiniband e
5 IBM Poughkeepsie Benchmarking BladeCenter QS22/LS21 Cluster, PowerXCell 8i 138
Center 3.2 Ghz / Opteron DC 1.8 GHz, Infiniband
BladeCenter QS22/LS21 Cluster, PowerXCell 8i
7 m polEh e L 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband 23455
8 431.88 Institute of Process Engineering, Mole-8.5 Cluster Xeon L5520 2.26 Ghz, nVidia 480
. Chinese Academy of Sciences Tesla, Infiniband
9 418.47 Mississippi State University iDataPlex, Xeon X56xx 6C 2.8 GHz, Infiniband 72
10 m Banking (M) iDataPlex, Xeon X56xx 6C 2.66 GHz, Infiniband 72

Ron Babich (BU) —
STRONGnet 2010
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Exaflops Power/Communication Wall

CUDA GPU Roadmap
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Hardware (e.g., NVIDIA)

GPU G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops / clock | 256 FMA ops /clock

Point Capability

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock

Point Capability ops/clock clock

Special Function Units 2 2 4

(SFUs) / SM

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or
48 KB

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

GPUs at BU Ron Babich



Interactive
visualization of
volumetric white
matter connectivity

Financial simulation
of LIBOR model with
swaptions

Thursday, March 12, 2009

lonic placement for
molecular dynamics
simulation on GPU

47X

GLAME@lab: an M-
script APl for GPU
linear algebra

Transcoding HD video

stream to H.264

Ultrasound medical

imaging for cancer
diagnostics

Fluid mechanics in
Matlab using .mex file
CUDA function

Highly optimized
object oriented
molecular dynamics

100X

Astrophysics N-body
simulation

30X

Cmatch exact string
matching to find
similar proteins and
gene sequences




HARVARD/BU Tesla 1070 Nvidia Gift
CUDA CENTER OF EXCELLENCE

NSF EAGER $300K grant for to build Experimental GPU Fermi cluster for QCD and CFD




NSF EAGER system at BU

« Measured on a cluster node at BU, similar to JLab nodes (but with Tesla
C1060 cards, rather than GeForce GTX 285).

R\ A
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QUDA: QCD CUDA @ BU

QUDA library (“QCD on CUDA”) available here:
o http://lattice.bu.edu/quda

Provides optimized CG and BiCGstab solvers for Wilson and
clover-improved Wilson, supporting mixed precision with
reliable updates.

Release 0.3 includes support for staggered fermions,
contributed by Steve Gottlieb, Guochun Shi, and collaborators.

Domain wall (contributed by Joel Giedt), twisted mass

(contributed by Alexei Strelchenko), and multi-GPU support will
be available soon.

Conveniently interfaced to existing packages  (Chroma/QDP+
+, QDP/C, CPS, etc.).



The Wilson Dirac operator

« The Wilson Dirac operator is given by

1 _
Dx’x/ = —5 Z(P P& Ug’g 5:c+,&,:c’ + ptr 0%y Ug’:fiﬂ 593_@,93/) + (4 + m)(Sx,x/
u=1

10 0 +i 1 0 0 71
‘ 0O 1 £+ 0 0 1 =+1 0
+1 __ 2 __
S P=1 0w 1 o777 041 1 o
= 0 0 1 1 0 0 1

1 0 +i 0 1 0 +1 0

Y i3 0 1 0 = iy 0 1 0 +1
IUx P = T 0 1 0 , P = +1 0 1 0
0O +: 0 1 0 +1 0 1

Cost to apply this matrix to a vector?

Bytes moved to/from memory?

<
o,
I I
>
b
o—O
>
°

Floating-point operations?
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Wilson matrix-vector: Flop count

4
1
xx’ :_52 P M®U55x+ﬂ,g;/ +P+M®UMT 5:1: pw)+(4+m)5:v,x’

pu=1
Spin-project (from 4 to 2 independent
spin components), once per direction:
x+v 8x 12 =96 flops
SU(3) multiply, once per direction: 8 x
IUZ 132 = 1056 flops

_u‘ Py Accumulate to the output spinor:
' YR 7 x 24 =168 flops

x—[ X
v |
‘ Altogether, this gives 1320 flops per

site.
u X—V
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Wilson matrix-vector: Data movement

o To carry out the Wilson matrix-vector product, per site, we
must:

o Read one spinor per direction, for a total of 8 x 24 = 192 floats

s Read one gauge matrix per
direction, for a total of
‘ 8 x 18 = 144 floats

Write one output spinor, consisting

— _u‘ of 24 floats
xX—[ X I Us x+p
v Altogether, we must transfer 360
‘ floats from memory, or 1440 bytes
M x—9 in single precision.
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Byte/flop ratios

In modern architectures, the main bottleneck is often
bandwidth to memory, rather than raw floating point
throughput.

We've seen that applying the Wilson Dirac operator (in single
precision) requires that we move 1440 bytes for every 1320
flops.

Clover-improved Wilson (Sheikholeslami-Wohlert) is a bit
“better” (less memory-bound), at 1728 bytes and 1824
flops.

Asqtad and HISQ are a bit worse, at 1560 bytes and 1146
flops.

Other operations (beyond the matrix-vector product) are

often much worse. For example, adding two vectors of length
N involves reading/writing a total of 12N bytes but consists of

only N flops.



Machine balance: Looking back

o In modern architectures, the main bottleneck is often
bandwidth to memory, rather than raw floating point
throughput. laaating bandwidth == HUGE BOTTLENECK

I I I I LI I

o It wasn't always like this:

188 CPU Speed — I -
o : DRAM Speed —— / :
O J
(Cartoon by John McCalpin, author of 10 f 4
the STREAM benchmark) E
o

8.1 ] i ] ] ] ]
1975 1988 1985 1998 1995 260608 2885 2614
Year

There was a time when flops were much more precious,
relative to bandwidth.




Machine balance: Looking back

Early vector machines delivered high bandwidth
through a very wide memory bus.

Memory of the Cray X-MP/4 (ca. 1985) was
arranged in 32 (64-bit) banks, delivering 128 GB/s —
respectable even today!

The MPPs, SMPs, and commodity clusters that
followed relied increasingly on data caches (small
amount of fast memory close to the processor) to
contend with the balance issue.

Modern commodity processors have three levels of
cache, with L3 (and sometimes L2) shared among
multiple cores.
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Machine balance: Looking back

« In this respect, GPUs are a throwback to the past. The NVIDIA
GeForce GTX 285 has eight 64-bit banks, delivering 159 GB/s:
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(The more recent GTX 480 has a narrower 384-bit bus, but faster memory.)



A tale of two processors

R EEERE

“Gulftown”

* Intel Xeon X5680

6 cores (each with 4-wide SSE unit)

e 1.17 billion transistors
Shared L3 Cache: 12 MB
L1+L2: 6 x (320 KB) = 1920 KB

* 160 Gflops (SP)
32 GB/s memory bandwidth

/‘up to 288 GB (96 GB is realistic)

5:1

* NVIDIA GeForce GTX 480
* 480 cores
* 3.0 billion transistors
e Shared L2 Cache: 768 KB
 L1+SM+Reg: 15 x 192 KB = 2880 KB
* 1345 Gflops (SP)
177 GB/s memory bandwidth

/- 1.5 GB (up to 6 GB in Tesla variant)

7.5:1



5:1

Bandwidth constraints

« Recall that in single precision, the Wilson matrix-vector
product has a byte/flop ratio of just over 1 (slightly lower
for clover).

. We're entirely constrained by memory bandwidth. On the
GPU, flops are virtually free.

160 Gflops (SP) * 1345 Gflops (SP)
32 GB/s memory bandwidth 177 GB/s memory bandwidth

7.5:1



GPU memory hierarchy

Host System Graphics Card

PCI-Express bus

Device Memory
~ 6+6 GB/s

Host Memory

' ; '
: 177.4 GB/s '
i ' : :
' 20-30 GB/s : : L2 Cache
; : i |Multiprocessor 1 | |Multiprocessor 2 Multiprocessor n E
: ; ' Core | | Core C C C c '
' L3 Cache ; ; ] > (1)re Zfe c1)re ;re :
. 1 ' o .. !
i | L1/L2 Cache ce L1/L2 Cache || ' ' Core | Core ~ [core]|:
] ] : m m m :
: ' !
: : : Latency ~ '
' : ' a few cycles !
: Core 1 . Core k : ; Yy :
. . i | Registers and Registers and Registers and E
: . i | Shared Memory | | Shared Memory Shared Memory |

(GeForce GTX 480)
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CUDA programming model

Blocks Run on Multiprocessors

[EEEES
HIIIHE

Device Memory

Serial on CPU and Data Parallel on GPU




Py |

NVIDIA

Libraries:FFT, BLAS,... Integrated CPU
Example Source Code and GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing CPU Host Code

CUDA Debugger _
Driver Profiler Standard C Compiler

CPU

© NVIDIA Corporation 2007

Thursday, March 12, 2009




CUDA PROGRAMMING

void saxpy_serial(int n, float a, float *x, float *y)

{
for (Aint 1 =0; i < n; ++1)
y[i] = a*x[1] + y[il;

}
// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, X, Y); Standard C Code

void saxpy_parallel(int n, float a, float *x, float *y)

int i1 = I X + X

if (G < n) y[il = a*x[i] + y[il;
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;

saxpy_parallel (n, 2.0, x, y); Parallel C Code




Tricks to reduce memory traffic

@ Reconstruct SU(3) matrices from 8 or 12 real numbers on the fly, e.g.,

a a; a2 as c=(axb)"
b | = by by b3

c ci Cy  c3 SU2):U =agopg+ad-o
ag +a-ad=1 = S3 sphere
Better still SU(3) has 8 parameters on S3 x S5

@ Choose a gamma basis with Y, diagonal.

~ /2 0 0 0
pra_ | 0200
1 0 %1 0 \0 00 0
4 0o 1 0 =1 00 00 similarity
e T
[0 0 00 transforms on
0 +1 0 1 00 0 0
P~ = D
00 20
~ \0 0 0 2
@ Fix to the temporal gauge (setting gauge inks in the t-
P

direction to the identity).



Performance results

Results are for the even/odd preconditioned clover-improved
Wilson matrix-vector product (“Dslash”).

M=(1-A"D.,,A,'D,.)
Runs were done on a GeForce GTX 480 (consumer-level
“Fermi” card).

For reference, a standard dual-socket node with recent
(Westmere) quad-core Xeons would sustain around 20 Gflops
in single precision for a well-optimized Wilson-clover Dslash.

We'll compare results for double, single, and half precision.
In this case, half is a 16-bit quasi-fixed-point implementation,
but GPUs support true FP16 as well.

The spatial volume is held fixed at 243.



Clover performance (single
precision)

300 I I I I I I |

Performance (Gflops)

. e—e No reconstruct (GF)

6—© No reconstruct
m—a 12 reconstruct (GF) ]

50+ E—8 |2 reconstruct —
i 4—o 8 reconstruct (GF)

—© 8 reconstruct

| | 1 | | | | | | | | | | | | | 1 | | | | | | I | | | | | 1 | | ]
OO 16 32 48 64 80 96 112 128

Temporal Extent




Dslash performance (half precision)

500 L I I I I I 1 | I I I 1 I I | I I I I I I 1 I I I |
450 [~ —
400 - -

2 350 F -
o _ ]
= - .
g 300 — E
8 [~ ]
2 250 -
g - ]
200 —
= :
& 150 = ®—e No reconstruct (GF) 3
- 6—o© No reconstruct .

100 & m—a 12 reconstruct (GF) 5

- E—& ]2 reconstruct :

50 o—o¢ 8 reconstruct (GF) 4

- 90— 8 reconstruct -

0 C oo ooy b oy by by by by 1T

0 16 32 48 64 80 96 112 128

Temporal Extent
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Dslash performance (double
precision)

100 L I I I I I | I I | I | I I I I | I I I |

90 |- —
80 M E

2 T0F =
o _ ]
= - W .
9 60 :— —:
8 [~ ]
2 50 -
g - ]
40 —

qg E W&-‘—H—O—H—O—O—O—O—O—O E
& 30 :_° e—e No reconstruct (GF) 3
- 6—o© No reconstruct .

20 m—a 12 reconstruct (GF) 5

- E—& ]2 reconstruct :

10E o—o¢ 8 reconstruct (GF) 4

- 90— 8 reconstruct -

O i R N TN A NN W U NN T WO TN N NN SN SN NN SO SO T NN SO SR TN NN SN SN NN N SN SN R M

0 16 32 48 64 80 96 112 128

Temporal Extent
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Dslash performance summary

o Summarized results are for a conservative case (12-reconstruct with no temporal
gauge-fixing).

500 L I I I I I I I I I I I I I I I I I I I I I I I _
450 -
400 E

2 350 -
o n 3
= - .
S 300 - E
8 u N
2 250 = ]
g C ]
200 __r./.__._,._._._.._.—H—-—I+H—I—I—I—I—I—I—I-H+I—I—H—'-I_-

S C ]
5 C ]
A 150 -
100 ;_ ®—e Half Precision _;

T 0000000000000 m—a Single Precision 1

S0 - 4—¢ Double Precision

O : 1 1 1 l 1 1 1 I 1 1 1 I 1 1 l | 1 l 1 I l 1 1 I 1 l 1 l l 1 1 I :

0 16 32 48 64 80 96 112 128

Temporal Extent

o Single and half performance are about 3.3x and 6.5x higher than double.



Mixed precision with reliable updates

o As discussed yesterday, in the usual method of iterative
refinement (or “defect correction”), the Krylov subspace is
thrown away at every restart:

o — b — ASEQ;
k= 0;
while ||r;|| > € do

Solve App41 = 71, to precision €

Tht1 = Tk + Pk+1:

Tht1 = b — Az ;

k=Fk+1;

end

An alternative is “reliable updates,” originally introduced to combat residual

drift caused by the erratic convergence of BiCGstab: c. L. . sleijpen, and H. A. van der
Vorst, “Reliable updated residuals in hybrid Bi-CG methods,” Computing 56, 141-164 (1996).



Mixed precision with reliable updates

o« New (?)idea is to apply this approach to mixed precision.
(Clark et al., arXiv:0911.3191)

”I“():b—ACEQ;
TA’():?”;
Z%OZO;
k = 0;

while ||7|| > € do

Low precision solver iteration: rp — Tgpi1, T — Thrt;
if ||7pe1|| < OM(7) then

Tjy1 = T + Thy1;

r+1 = b— AZUZ+1 ]

Tps1 = 0; 5 * Adenotes reduced precision.
Tht1 = T7; * s a parameter determining
[ =1+1; M(#) the frequency of updates.
end . denotes the maximum
k=Fk+1; iterated residual since the last
end update.

« Reliable updates seems to win handily at light quark masses (and is no worse than
iterative refinement at heavy masses).



Mixed precision with reliable updates

o With this approach, even half (16-bit) precision is worthwhile. Mixed
single/half or double/half results in only a 10-20% increase in iteration
count as compared to pure single or pure double, respectively.

300 T T T T ™/ 5
250 - 0\
—4
L @—@® Double
0 Bl Single 8 |
~ 200
a - —
B et S —13 o
s TN Tm=ee =
'S 150 3
L
8 o
2 77
'g 100 |~
(Time to solution on
a real lattice; 50l 1
updates are in
double precision) 0 | , , , | 0
0.42 -0.415 -0.41 -0.405 0.4



Analogy: Data compression

o In asense, these various tricks correspond to forms of “data
compression.” We take advantage of both

. “lossless compression”: Eliminate genuine redundancy (e.g.,
in gauge or spin degrees of freedom), sometimes at the cost of
extra computation (as in the SU(3) reconstruction).

. “lossy compression”: Throw away some information, but do it
strategically (e.g., reduced precision).
o So far, we've applied these ideas only to reduce memory
traffic within a node (on a single graphics card), but they're at
least as important when parallelizing across nodes/GPUs.



Multi-GPU QUDA

“Parallelizing the QUDA Library for Multi-GPU
Calculations in Lattice Quantum Chromodynamics”
(by Ronald Babich, Michael A. Clark, Balint JoO)

Proceedings of Supercomputing 2010
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GPUs are in serious use for “analysis”

Jlab Lattice Portal
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Can they also make a dent here?

“Intrepid” - Argonne Leadership QPACE - NIC Juelich

Computing Facility

“Jaguar” - Oak Ridge Leadership Computing Facility



Multi-GPU Motivation

o« GPU memory: For throughput jobs (e.g., computing
propagators), it suffices to use the smallest number of GPUs
that will fit the job, but often one GPU isn't enough.

o Host memory: It's generally most cost-effective to put more

than one GPU in a node. These can be used in an
embarrassingly parallel fashion (by running multiple separate
jobs), but then host memory becomes a constraint.

o Capability: We'd like to broaden the range of problems to
which GPUs are applicable (e.g., gauge generation).



Challenges to scaling up

o« GPU-to-host
and inter-

node

bandwidth

o« GPU-to-host
and inter-

node latenc

QDR Infi

Ron Babich (BU) — QCDNA
VI, September 9, 2010
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~ 3+3 GB/s

138

Host System

Host Memory :
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L3 Cache |
L2 Cache | Lin2 Cache |
Core 1 . Core k H

Host System

Host Memory :
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Interconnect bandwidth

8000 L T 1 T 1 T — 1 T T
QDR InfiniBand (OpenMPI) ——
QDR InfiniBand (MVAPICH) —<—
7000 GigE (OpenMPI) ——— l
6000 .
& 5000 F -
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S 4000 -
2
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S 3000 |
m
2000 r
1000
O L K MK 1 L .
100 1000 10000 100000 1e+06 le+07 1e+08

Message Size (Bytes)

(MPI bandwidth as measured by NetPIPE v3.7.1)
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Bandwidth (log scale)
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Performance model

« For the Wilson matrix-vector product, we have:

(1320 flops/site) x(L*/2 flops) = 660L* flops
(24/2 x 4 bytes/boundary site) x(8L?/2 sites) = 192L? bytes

660L*  192L°

Perf  Bandwidth

0.29(Perf [Mflop/s])
L

MessageSize [Bytes| = 24L°

Bandwidth [MB/s] =

Inspired by Gottlieb (2000), http://physics.indiana.edu/~sg/pcnets/
via Homgren (2004), arXiv:hep-lat/0410049
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Performance model

o This model is pessimistic in the sense that it assumes we are
going to parallelize in all 4 dimensions. For small numbers of
nodes, this is never optimal.

o Itis optimistic in all other respects (assuming perfect
overlapping of communication and computation, for
example), telling us the best we can possibly do.

o For this exercise, we're interested in the strong scaling regime
(smallest possible sub-volumes). How small can we go before
the surface/volume ratio limits us?



Bandwidth (MB/s)

Required Bandwidth
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1gE (OpenMPI) —*—
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GPU-host transfer latency

For reference, end-to-end MPI latency for QDR Infiniband is around 1-2
microseconds.

QPACE inter-node latency is around 3 microseconds and (anecdotally)
necessitated the use of DD-HMC.

If accurate, the numbers below suggest > 20 microseconds to transfer a
byte from one GPU to another.

150 T ' T ; T ' T ' T
140 - : -
B O cudaMemcpy - device to host ]
130 )
2 120k x cudaMemcpy - host to device o
2 1ok 0 cudaMemcpyAsync - device to host |
St % cudaMemcpyAsync - host to device
% 100 - m
5 90F .
E 80 O ¥
g .
= 60 O * 7]
por e wom -
= - * -
E 30l B ¥ ¥ 5 |
20 @) X —
X
o @ @ © © © % -
1 I 1 I 1 I 1 I 1 I
0 IK 4K 16K 64K 256K

Message Size (Bytes)



Multi-GPU results

« All performance numbers are for the full inverter (BiCGstab, anisotropic
clover-improved Wilson with “symmetric” even/odd preconditioning).

o Tests were run on a 16-node cluster at Jefferson Laboratory, interconnected
by QDR Infiniband.

« Each node has 2 GeForce GTX
285 cards (previous generation; K —
240 cores/GPU). s |
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Weak scaling (243 x 32 local)

« Local volume (per GPU) is held fixed: 243 x 32

4000 G-© Single precision

&% Double precision

31 Single-Half precision
=¥ Double-Half precision

[09)

-

-

O
I

2000

Sustained Gflops

"| 245 x 128 )
1000 e .

S Y |
0 4 8 12 16 20 24 28 32
Number of GPUs



Weak scaling (324 local)

« Local volume (per GPU) is held fixed: 324

5000 — T T T T T T T T T T T T T T ]
G-© Single Precision
4000 - 31 Mixed Single-Half precision
3
= 3000
O
=
Q
A=
£ 2000
o]
n

1000~

| I | I | I L I L | L
0 4 8 12 16 20 24 28 32
Number of GPUs




Strong scaling (323 x 256)

o Total volume is held fixed: 324 x 256

S0 0 ———————————————7— I e —
1 G-© Single precision, not overlapped R
4500 IIEx3 Single-Half precision, not overlapped Pid 7
4000H &< Single precision, overlapped 7 g _
H ¥k Single-Half precision, overlapped _ ” .
2 350011 ¥ Bad NUMA placement g -
= 3000 2
O . _
B 25001 —
£ - -
£ 2000 .
3 . i
1500 —
1000 - _
500 —
) PSS Y N EEF R S T R B
0 4 8 12 16 20 24 28 32

Number of GPUs
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First multi-GPU results on Fermi

1 node (Dual-socket/dual-
chipset)

4 NVIDIA GeForce GTX 480
cards

Code has not been particularly
optimized.

Sustained performance in the
inverter (BiCGstab, clover-

improved Wilson, mixed single/
half):

1020 Gflops
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Retrospective

e _2004: First 1 Tflops sustained
/for QCD (P. Vranas)
o 1rack Blue Gene/L
« ~$1Min 2005 or 2006

2010: 1 Tflops sustained, under
your desk

o Dual-socket node with 4 GPUs

o ~ S5k (200x improvement in
price/performance)

... for problems that fit.

Each use should be accompanied by the credit line and notice,
"Courtesy of International Business Machines Corporation.

distribution or commercial use is prohibited without the express

"""""""""""""""" . (1 rack BG/L has 512 GB RAM vs. 6 GB for
four GTX 480s)
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New Project: MG on GPU

* Costin Ss reduced by a factor of at least

= 100+ @

GPU O(10+) MG O(10+)

New apps:

1.
. Beyond the Standard Model results...

2
3.
4. GPU-MG for graphene and solid modeling

Higgs-Nucleon coupling for Dark Matter detection

Nuclear excitations and interactions etc....



CUDA for Real-Time Multigrid
Finite Element Simulation of
Soft Tissue Deformations

Christian Dick

Computer Graphics and Visualization Group
Technische Universitat Minchen, Germany

Our Approach

Hexahedral (tri-linear) finite elements
on a uniform Cartesian grid

Linear elasticity, co-rotated strain
Geometric multigrid solver

CUDA API to flexibly access
all resources on the graphics card

Advantages:
— Numerical stencil of regular shape enables
efficient GPU implementation
— FE model and multigrid hierarchy
generation is easy and fast

— Only one pre-computed element stiffness matrix

(greatly reduces memory requirements)
GTC 2010 Christian Dick, dick@tum.de




Conclusions

o Status:

GPUs clearly win for many analysis jobs (5-10x
improvement in price/performance)

... but multigrid on traditional clusters is competitive
(up to 20x over standard solvers at light masses).

Next step: MG?: Multi-GPU multigrid (up to 100x?).
Large-scale gauge generation is a hard problem.

o« Lessons:

The future is full of hard problems.

The trend is toward huge floating point

performance, but relatively anemic memory
bandwidth.

Inter-node communication is an even greater
challenge.



Broader impact

Initial target applications in Lattice Field Theory and
Computational Fluid Dynamics.

But also to be a catalyst for local researchers in many fields to
explore GPU architectures and share experience and methods.

Access 1o faculty, post docs, graduate and undergraduate
students in nano technology, chemistry, biological modeling,
medical imaging, etc.

Educational context and impact is crucial advantage of university
based experimental GPGPU cluster!



