Dense Matrix-Vector Multiplication

- SGEMV / DGEMV in BLAS
- Memory-bound performance

Dense Matrix
Sparse Matrix-Vector Multiplication

- One multiply-add per nonzero entry
- Some reuse of vector data

Sparse Matrix
Performance

- Performance is *Memory-Bound*
 - 5-20 GFLOP/s is typical

- Low Arithmetic Intensity
 - 2 flops: 8+ bytes (*float*)
 - 2 flops: 16+ bytes (*double*)

- Primary objective
 - Use memory bandwidth efficiently
Performance

- **Tesla C2050 floating point performance**
 - Single 1,030 GFLOP/s (peak)
 - Double 515 GFLOP/s (peak)

- **Tesla C2050 memory bandwidth**
 - 144 GB/s (peak)

- **Intensity Threshold**
 - 7.14 FLOP : Byte (single)
 - 3.57 FLOP : Byte (double)
Performance

- **Tesla C2050 threshold**
 - 7.14 FLOP : Byte (single)
 - 3.57 FLOP : Byte (double)

- **Dense Matrix-Vector Multiplication Intensity**
 - 0.25 - 0.50 FLOP : Byte (single)
 - 0.12 - 0.25 FLOP : Byte (double)

- **Sparse Matrix-Vector Multiplication Intensity**
 - 0.12 - 0.50 FLOP : Byte (single)
 - 0.08 - 0.25 FLOP : Byte (double)
Performance Considerations

- Use memory bandwidth efficiently
 - Memory coalescing

- Expose lots of fine-grained parallelism
 - Need thousands of threads

- Find opportunities for reuse
 - Make use of caching
Memory Coalescing

Recall: *blocks* divided into physical *warps*
Memory Coalescing

- Fully Coalesced Memory Access
Memory Coalescing

Partially Coalesced Memory Access

gap
Memory Coalescing

- Misaligned memory access
Memory Coalescing

- Uncoalesced Memory Access
 - Separated by 32+ words
Memory Coalescing (SAXPY)

- Example: SAXPY with stride
 - Fully Coalesced when stride is 1

```c
for (int i = 0; i < N; i++)
    y[stride * i] += a * x[stride * i];
```
Memory Coalescing (SAXPY)
Memory Coalescing (SAXPY)

Example: SAXPY with offset
- Aligned when offset is 0

```c
for (int i = 0; i < N; i++)
    y[i + offset] += a * x[i + offset];
```
Memory Alignment (SAXPY)

Efficiency vs. Aligned Offset

- Tesla C2050
- GeForce GTX 280
- GeForce 8800 GTS
Types of Memory Access

- Reading matrix structure
 - Determined by matrix format
 - Most bandwidth consumption

- Reading source vector (x)
 - Determined by matrix structure
 - Little control over access pattern
 - Potential reuse

- Writing destination vector (y)
 - Little bandwidth consumption
Compressed Sparse Row (CSR)

- Rows laid out in sequence
- Inconvenient for fine-grained parallelism
void csr_spmv(int num_rows,
 int * row_offsets,
 int * column_indices,
 float * values,
 float * x,
 float * y)
{
 for (int row = 0; row < num_rows; row++)
 {
 int row_begin = row_offsets[row];
 int row_end = row_offsets[row + 1];

 float sum = 0;

 for (int offset = row_begin; offset < row_end; offset++)
 sum += values[offset] * x[column_indices[offset]];

 y[row] = sum;
 }
}
CSR (scalar) kernel

```c
__global__
void csr_spmv(int num_rows,
               int * row_offsets,
               int * column_indices,
               float * values,
               float * x,
               float * y)
{
    int row = blockDim.x * blockIdx.x + threadIdx.x;

    if (row < num_rows)
    {
        int row_begin = row_offsets[row];
        int row_end = row_offsets[row + 1];

        float sum = 0;

        for (int offset = row_begin; offset < row_end; offset++)
            sum += values[offset] * x[column_indices[offset]];

        y[row] = sum;
    }
}
```
CSR (scalar) kernel

- One thread per row
 - Poor memory coalescing
 - Unaligned memory access
CSR (vector) kernel

- One SIMD vector or *warp* per row
 - Partial memory coalescing
 - Unaligned memory access
CSR (vector) kernel

- Reduce partial sums in shared memory
 - Example: warp of 8 threads

Shared memory
ELL kernel

Full coalescing

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

column-major ordering
ELL kernel

Pad columns for alignment
DIA kernel

- Same as ELL

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

padding
COO kernel

- One thread per nonzero element
- Fully coalesced
COO kernel

- Store i and $A(i,j) \times x(j)$ in shared memory
- Compute row sums using \textit{segmented} reduction
Memory Coalescing Summary

- **Full Coalescing**
 - DIA, ELL, and COO

- **Partial Coalescing**
 - CSR (vector)
 - Efficiency depends on row length

- **Little Coalescing**
 - CSR (scalar)
Performance Considerations

- Use memory bandwidth efficiently
 - Memory coalescing

- Expose lots of fine-grained parallelism
 - Need thousands of threads

- Find opportunities for reuse
 - Make use of caching
Exposing Parallelism

- **DIA, ELL & CSR (scalar)**
 - One thread per row

- **CSR (vector)**
 - One warp per row

- **COO**
 - One thread per nonzero
Exposing Parallelism

All matrices have 4M nonzeros
Exposing Parallelism

GPU: GeForce GTX 285
Exposing Parallelism

- One thread per row
 - ELL, DIA, and CSR (scalar) kernel
 - Generally good enough (>20K rows is common)

- One warp per row
 - CSR (vector) kernel
 - Fewer rows is sufficient (>256)

- One thread per entry
 - COO kernel
 - Insensitive to matrix shape
Performance Considerations

- Use memory bandwidth efficiently
 - Memory coalescing

- Expose lots of fine-grained parallelism
 - Need thousands of threads

- Find opportunities for reuse
 - Make use of caching
Caching

Repeated accesses to source vector

- Used 3 times
- Used 1 time
- Used 2 times
Caching

Effectiveness depends on matrix structure

- Used 2 times
- Never used
- Used 1 time
Caching

- Fermi architecture has L1 cache
 - No effort needed

- Earlier architectures have texture cache
 - Often worth ~30% improvement

- Software-managed cache
 - Preload into shared memory

- Effectiveness depends on matrix structure
Other Techniques

- Block Formats
 - Reduce index overhead

- Multiple Vectors
 - Reuse matrix data
Performance Considerations

- Use memory bandwidth efficiently
 - Memory coalescing

- Expose lots of fine-grained parallelism
 - Need thousands of threads

- Find opportunities for reuse
 - Make use of caching
References

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors
Nathan Bell and Michael Garland
Proceedings of Supercomputing ’09

Efficient Sparse Matrix-Vector Multiplication on CUDA
Nathan Bell and Michael Garland

Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs
Jee Whan Choi, Amik Singh and Richard W. Vuduc
Proceedings of Principles and Practice of Parallel Programming (PPoPP) 2010