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Why Magma Dynamics!?
Dynamlcs of Plate Boundarles 66

" subduction zone
-r?""zf]@'”? s
(O ergept boundany)..

—v‘ x‘\
=

=
—

e

4 AL £ . s , ‘
lithosphere ™ i, S, 'y continental crust

o \',: S ™SS -
chamber 4 RS \ e
| e s )

""'me'lltllng""’ asthenosphere images provided courtesy of the NEPTUNE Projec 'y melting

(www.neptune.washington.edu) and CEV

1
GO0 G
L] 2 23

@ Mantle convection = Convection with Plates

o Plates are defined by their weak boundaries.

@ Convergent and Divergent Boundaries are fundamentally
magmatic

® How does magmatism affect the dynamics and structure of
plate boundaries and global mantle convection?
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Why Magma Dynamics!?
Global Geochemical Evolution

Brandenburg et al, EPSL 2008, 2-D Cylindrical High Ra convection calculation
®Solid State Convection primarily stirs

®Chemical Fractionation, mixing and sampling of the mantle
requires a mobile liquid phase

® Can we use variation in composition of erupted lavas to
infer rate and efficiency of convecting stirring in Earth?
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Multi-Scale, Multi-Physics nature of
Mantle Convection

Secondary

plumes
Compositional stratification

around 660 km Mid-ocean

X / ridge

Primary
Deﬂ?c;ed 7 plume
sla A
Subduction zone
4
/?

Penetrating
slab

Enriched
piles

Continent

Slab
grave yards

. Paul Tackley, News and Views ~3000 km ==
gCOScICnce |VOL 1 | MARCH 2008 | www.nature.com/naturegeoscience

nature

® Large Scale Deformation of the Earth is in the solid-state

® Most melting occurs in small scale regions near plate
boundaries, but may affect global flow and plate tectonics

® How do we understand the basic physics and interactions
across scales and constrain it with chemical data?
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Multi-Scale, Multi-Physics nature of
Mantle Convection

Secondary
plumes
Compositional stratification
around 660 km Mid-ocean
€7‘ \ ridge
Primary

Deflected
slab

plume

Subduction zone

.

Penetrating
slab

Enriched
piles

J

\

\

Continent
Slab
grave yards

, Paul Tackley, News and Views ~3000 k.m >
geoscience | VOL 1 | MARCH 2008 | www.nature.com/naturegeoscience

nature

® Large Scale Deformation of the Earth is in the solid-state

® Most melting occurs in small scale regions near plate
boundaries, but may affect global flow and plate tectonics

® How do we understand the basic physics and interactions
across scales and constrain it with chemical data?
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Ingredients for a consistent theory of
magma dynamics

images provided courtesy of the NEPTUNE Project
(www.neptune.washington.edu) and CEV

“melting

04.12.00

. |
- Aat s -. S "

\ .
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Ingredients for a consistent theory of
magma dynamics

(www.neptune.washington.edu) and CEV = S R SRR s s -
" - : £ ) . R s TR YR

PR T e
SR TN o
- ~ o T8 5% J
_ Ca <5 -
- e o

o . : e " 0 -
lithosphere . S ",y continental crust

,': s I R . ~
04.12.00 "\ '. ) . ". ‘ S | -|. E|ting
SOV - asthenosphere \& .

\ .

@ At least two phases (solid & liquid)
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Ingredients for a consistent theory of

images provided courtesy of the NEPTUNE Project
(www.neptune.washington.edu) and CEV
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@ At least two phases (solid & liquid)

o Significant mass-transfer between phases (melting/crystallization)
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Ingredients for a consistent theory of

images provided courtesy of the NEPTUNE Project
(www.neptune.washington.edu) and CEV
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@ At least two phases (solid & liquid)
o Significant mass-transfer between phases (melting/crystallization)

® The solid must be permeable at some scale
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Ingredients for a consistent theory of
magma dynamlcs

images provided courtesy of the NEPTUNE Project
(www.neptune.washington.edu) and CEV

. : ', y ~
lithosphere ™., " continental crust

- .
~ .
< " ; > e
’ .~\ \7I "‘ O 2
Chamber / y E ' : \ ? .'
«'melting’-» <!} heltin
iti asthenosphere iy g

\ .

@ At least two phases (solid & liquid)
o Significant mass-transfer between phases (melting/crystallization)
® The solid must be permeable at some scale

@ |n the absence of solid flow should look like porous media flow.
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Ingredients for a consistent theory of
magma dynamlcs

images provided courtesy of the NEPTUNE Project
(www.neptune.washington.edu) and CEV

ocean

T e a7 > 4 s ALY ‘ \. e . - ,, g =
st ¥ lithosphere ™ i, S, *," continental crust

1 9

magma < e QO Lo S :
G chamber 4 SEERE \ e
«..melting’-» <:!! heltin
@\V/ oo ,9 asthenosphere gy g

\ .

@ At least two phases (solid & liquid)

o Significant mass-transfer between phases (melting/crystallization)
® The solid must be permeable at some scale

@ |n the absence of solid flow should look like porous media flow.

@ In the absence of liquids, the system must be consistent with
mantle convection (viscously deformable)
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984, 1986, | GR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid

8[:08(1 o ¢)]
ot

Conservation of Momentum for fluid: Darcy’s Law

+ V- ps(1=¢)V] =T

p(v—V) = TK VP — p;g]

Conservation of Momentum for Solid (viscous rheology)

2
VP:v.n(vv+va)+v(<—?”) V-V + g

Plus Constitutive Relations/Closures

(" Permeability K ~ ko(d,...)p" )
Viscosities n(o, T,d, P,...), (¢, T,d,P...),u(T, P, X)
_ Melting/Xstallization T'(T, P, X,...) )

Monday, January 10, 2011



Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid

Conservation of Momentum for fluid: Darcy’s Law
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid

Conservation of Momentum for fluid: Darcy’s Law

Conservation of Momentum for Solid (viscous rheology)
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid

Conservation of Momentum for fluid: Darcy’s Law

Conservation of Momentum for Solid (viscous rheology)

Plus Constitutive Relations/Closures

(" Permeability K ~ ko(d,...)p" A
Viscosities n(o, T,d, P,...), (¢, T,d,P...),u(T, P, X)
. Melting/Xstallization T'(7, P, X,...) )
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,
2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid

Conservation of Momentum for fluid: Darcy’s Law

Conservation of Momentum for Solid (viscous rheology)

Plus Constitutive Relations/Closures

Coupled through
pressure

(" Permeability K ~ ko(d,...)p" A
Viscosities n(o, T,d, P,...), (¢, T,d,P...),u(T, P, X)
. Melting/Xstallization T'(7, P, X,...) )
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Governing Equations

(McKenzie, 1984, |Pet; Scott & Stevenson, 1984,1986, JGR; Bercovici,Ricard et al.,

2001,2003; Simpson et al, 2010 JGR)

Conservation of Mass: Fluid

Conservation of Mass: Solid

Conservation of Momentum for fluid: Darcy’s Law

Conservation of Momentum for Solid (viscous rheology)

Plus Constitutive Relations/Closures
Pemeatity (K~ R )7 Coupled through
Viscosities n(o, T,d, P,...), (¢, T,d,P...),u(T, P, X) Relations
. Melting/Xstallization T'(7, P, X,...)

Coupled through
pressure
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A Better (!) Formulation

(McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

Conservation of Momentum for Solid (viscous rheology)

Monday, January 10, 2011
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A Better (?) Formulation

(McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

Conservation of Momentum for Solid (viscous rheology)

Buoyancy
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A Better (?) Formulation

(McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

Conservation of Momentum for Solid (viscous rheology)

Buoyancy

Volumetric
Strain
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A Better (!) Formulation

(McKenzie Tutorial Notes @ CIG, Katz et al, 2007 Pepi)

Conservation of Momentum for Solid (viscous rheology)

Shear
Strain

Buoyancy Volumetric

Strain
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A Better (?) Formulation

(McKenzie Tutorial Notes (ClIG/bSpace), Katz et al, 2007 Pepi)

Conservation of Momentum for Solid (viscous rheology)

Decompose the pressure into 3 terms

e Lithostatic Pressure, P, = p?gz

with

e “Compaction Pressure”, P = (( — 2n/3)V -V

e Dynamic Pressure, P*

Monday, January 10, 2011



A Better (?) Formulation

(McKenzie Tutorial Notes (CIG), Katz et al, 2007 Pepi)

Compressible
Flow

“Incompressible”
Flow

with
e c=(C—20/3)=n(L—2) ~n/o

® Ap=ps—pyf

Monday, January 10, 2011
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Comparison to Thermal Convection
(McKenzie Tutorial Notes (ClIG/bSpace), Katz et al, 2007 Pepi)

Thermal
Convection
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Non-linear wave equations for porosity

(Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993, Simpson & Spiegelman, |]SC
2010)

Compressible
Flow

with
o &= (C—2m/3)=n (4~

e Ap=ps—py

wWInN

)%n/qb
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Intrinsic length Scale:

The compaction length
(McKenzie, |Pet, 1984, Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993)

The Compaction Length

. \/ K(#)¢(0)

1

Permeability K(¢) ox ¢"
Solid Bulk Viscosity  ((¢) < n/¢™
melt Shear Viscosity u
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Intrinsic length Scale:

The compaction length
(McKenzie, |Pet, 1984, Scott & Stevenson, Nature, 1984, Spiegelman, JFM 1993)

The Compaction Length

. \/ K(#)¢(0)

14

Permeability K(6) o " Length scale of pressure
Solid Bulk Viscosity  ((¢) o< n/¢™  variations due to a change in
melt Shear Viscosity flux.

"'Ué) (1)(8)— S T T —— - «— Porosity I

; 0.6 —

G 0.4 R

S 0.2- +

3 00 , c

1
6))

compaction lenaths
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

phi, =0.25 phi ,n=2, m=1 h/§=50
1 ; ; 1

00kt ........ 1 0@ _
A% S U B s Y N |
% 4 O ........ 1 07 b _
A8 S R B ot ) N |

(1 JL ) SEEE REEERRRRRRRRS , ........ - OB F oo -

distance
distance

04 ---eeee \ ........ - 04F e -

03F | ........ 4 - A 4
0.2 _ ........ i 0.2 _!.r ................. i

0.1 _, ........ - O1F e -

' 0
0 1 2 -0.02 0 0.02
Porosity (¢idy) Compaction Pressure

Monday, January 10, 2011



Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

phi1 =0.25 phio,n=2, m=1 hfﬁﬁo
1 ; ; 1
00 F | ........ J 00 F oo 4
08F | ................... ........ il 08 F _
0.7 _ ........ J 07 F oo 4
06 F | ................... ........ J OB b 4
1] . . (1]
o ' ' o
o 05 ........................................... o 0.5 I -
B : : B
o - e ——— ........ 1 @ ~ EENTNINERIRIII Reeenenmme——"—" _
03F | ........ J 0.3 o R J
0.2 _ ........ i 0.2 _l)f__ ........... i
: ]
0.1 _ ........ 4 01 b 4
0 i 0
0 1 2 -0.02 0 0.02
Porosity (¢dy) Compaction Pressure

*Variations in melt flux propagate as non-linear porosity waves
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2008)

phi1 =0.25 phio,n=2, m=1 hfﬁﬁo
1 ; ; 1
00 F | ........ J 00 F oo 4
08F | ................... ........ il 08 F _
07k | ........ J 07 F oo 4
06 F | ................... ........ J OB b 4
1] . . (1]
o ' ' o
o 05 ........................................... o 0.5 I -
B : : B
o - e ——— ........ 1 @ ~ EENTNINERIRIII Reeenenmme——"—" _
03F | ........ J 0.3 o R J
0.2 _ ........ i 0.2 _l!.f__ ........... i
: ]
0.1 _ ........ 4 01 b 4
0 i 0
0 1 2 -0.02 0 0.02
Porosity (¢dy) Compaction Pressure

*Variations in melt flux propagate as non-linear porosity waves
*Speed and structure of porosity waves depends on permeability

and solid rheology
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Porosity | | Pressure
3.5 0.035

b1

\ —
L

¥,

" Time: 0.000
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Porosity | - Pressure
35 0.035

0.02

" Time: 0.000

oCollision of 2, 2D-porosity waves. P2-P2 FEM with Semi-
Lagrangian 2nd-order time stepping. Hybrid FEniCS/PETSc codes.
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Porosity

7

Time: 0.000
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

Porosity

Time: 0.000

|nstability of ID- 3-D waves. 3-D mixed finite elements. Hybrid
FEniCS/PETSc codes. (CIG)
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

t=25 W=7.4 - t=30 W=8.6

t=50 W=9.7 _ t=75 W=9.7

Porosity
R |
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Non-linear porosity waves
(Scott & Stevenson, 1984 Nature, Spiegelman, JFM, 1993, Simpson et al 2009,2010)

t=25 W=7.4 . t=30 W=8.6

t=50 W=9.7 , t=75 W=9.7

Porosity
R |
4

|nstability of I D- 3-D waves. Spiegelman and Wiggins, 1994, GRL.
FV geometric multi-grid code.
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Non-linear porosity waves

®Wave behavior is the natural consequence of
non-linearity of flux with porosity and viscous
deformation of the solid.

®Waves are generated by obstructions in the
flux.

o|mplies that magma dynamics is highly time
dependent

oSolitary waves provide an excellent non-
linear benchmark for space-time codes.
oSimpson and Spiegelman, |]SC, 2010 provides
sinc-codes for calculating spectrally accurate
wave profiles in |,2 and 3-D.
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Other Localization instabilities

Mechanical shear band formation, experiments

ISBAJOUI

—— SS3I]S IBOUS SU

and Holtzm
Ann Rev Geophys., 2009
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Mechanical shear band instability
(Katz et al, 2006 Nature)

a Olivine + chromite (4:1) + 4 vol. % MORB y=3.4

oFull equations with porosity
weakening shear viscosityn(¢, V)
®Neglect gravity (at lab scale)

. .:.~ = -\ w '. s
(molt-depletec) o ®PETSc codes with segregated

b Simulated porosity (volume fraction)

SNES

oSpontaneously develops
shear band instability

FFT bin =
amplitude -
o
(6}

JUNOD pueyg

0 10°  20° 30° 40° 50° 60° 70°  80° 0
Katz, Spiegelman & Holtzman, 2006 Nature Band angle, 6
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Mechanical shear band instability
(Katz et al, 2006 Nature)

a Olivine + chromite (4:1) + 4 vol. % MORB y=3.4

Lenses Network
(melt-depleted) (melt-rich)

0.010 0.055 0.100

d 1 o

<3 =

= 8

w & c

S =]
0 0

10°  20° 30° 40° 50° 60° 70°  80°
Katz, Spiegelman & Holtzman, 2006 Nature Band angle, 6
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Mechanical shear band instability
(Katz et al, 2006 Nature)

a Olivine + chromite (4:1) + 4 vol. % MORB y=3.4 d Cartoon
. -

Lenss Network «
(melt-depleted) (melt-rich)

0.010 0.055 0.100

d 1 o

<3 =

= 8

w & c

S =]
0 0

10°  20° 30° 40° 50° 60° 70°  80°
Katz, Spiegelman & Holtzman, 2006 Nature Band angle, 6
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Mechanical shear band instability
(Katz et al, 2006 Nature)

a Olivine + chromite (4:1) + 4 vol. % MORB y=3.4 a Cartoon

Lenses Network

(melt-depleted) (melt-rich)
b Simulated porosity (volume fraction) y=2.79
e,
G =
83
5 3
o _-
£ O . .
0.010 0.055 0.100 S g Linear AnaIyS|s
€ Simulated perturbation vorticity (%) y=2.79 (%

Normalized amplitude
of band porosity, es

d 1 -
€3 5
2205 o
TS :
TS c b
S = 0
0 10°  20° 30° 40° 50° 60° 70°  80° 0 15° 45° 75° 105°
Katz, Spiegelman & Holtzman, 2006 Nature Band angle, 6 Angle, 6

Monday, January 10, 2011



Other sources of melt channelization

Reactive infiltration instability
Chemistry

10 + 2
1t 1
. —OMB-45 | |
0.1 F —OMB-35 | A
O . s
= | Cpxin | o ouess |
o) Oman .
Fo1l i
&
qC) (IR TN . U e 3 B n e n
o b
C i T TV—p—y—p———— T
o | ‘
O |

~o-OMB-31
-m-OMB-30
--0MB-27 1
—A-OMB-23
Cpx in -0-OMB-22
-0-OMB-16
Oman ~0—-OMB-14B

K harzburgite | -a-oms-14a | |

Figure 5. Photomosaic of a mountainside in the Muscat Massif. As
at all scales, duite orientations meausred across the image area are
used to correct dunite widths as measured from the image mosaic.
The lighter rocks are dunite, the darker are harzburgites. The two
geologists in the center of the image are standing ~ 50 m apart.
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Reactive Infiltration Instability

(Spiegelman et al. 2001)

melt outflow

W
T

Height (z/0)

N
T

periodic (wrap around)

Unreactive Zpne

o=1 w=1 W=0
melt inflow

0.00 0.05 0.10
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Reactive Infilitration Instability

(Spiegelman, Kelemen and Aharonov, JGR 2001)
t=44 t=68 t=92 t=116

5
4 -
3
2
1
0
0 1 2 3 4
4 ; \ ‘ \ ‘ \ ‘
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Reactive Infiltration Instability

Porosity Solid Concentration




Chemical Consequences of Melt Channeling
(Spiegelman & Kelemen, 2003, G3)
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Chemical Consequences of Melt Channeling
(Spiegelman & Kelemen, 2003, G3)
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Summary

® Basic Magma Dynamics is Stokes coupled to a
dispersive non-linear wave equation
® Coupling non-linear permeability with a
deformable matrix introduce a wide range of
behavior and leads to development of small-scale
structures

® Non-linear Waves

® Physical Shear Bands

® Reactive channels

® Reactive Waves (M. Hesse, JFM submitted)
° length scale of features controlled by the
compaction length (0-10km)
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Open Questions

® What are interactions between different
localizations mechanisms

® How do they work at larger scales, in
presence of melting, and in a more geoloical
setting (i.e. mid-ocean ridges)

® What are the observable consequences of
these mechanisms.

® How/do small scale physics influence large
scale mantle dynamics!?
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Global Convection
code with parallel
adaptive mesh
refinement

@ minimum mesh
spacing ~lkm
resolves weak
boundaries

® Adaptive
refinement in weak/
plastic regions
oFull refinement at
h=1km ~ 10!2
elements (exa-
scale?)

oCan accomplish,
goal oriented
adaptation to

convergence with

150-300 million
elements (103-10%)
savings
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Geo problems: mid-ocean ridge models
(Courtesy Richard Katz)

Melt and solid flow
field for a
heterogeneous melting
mantle beneath a mid-
ocean ridge

Full solution of magma
dynamics using the

“enthalpy method”
Katz, J. Pet, 2008

PETSc parallel,
structured FV code on
staggered mesh.
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Location of Volcanoes in Subduction Zones
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Geo problems: Subduction Zone models
(Spiegelman, van Keken, Hacker, 2009)

Porosity Y
Q.2

w0 = 100 cm/yr
etal=1.e21
phi_0 = 0.005
L= 15km

[ . w0/U0=13.9
00 N g delta=56.3 km
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Nicaragua Model

(Syracuse et al, 2009)
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Slab H>0 Model

(B Hacker, Perple_X)
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Slab H>0 Model
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Permeable Flow model on subdomain
Spiegelman (MADDs-FP -- CIG)
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Fluid Flow Trajectories given dehydration rates
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Comparison to TUCAN Data

low permeability
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Summary

Magma Dynamics is a natural extension
of Mantle Dynamics (Stokes + Darcy)

addition of a melt phase introduces new
dynamics and new length & time scales

Many different mechanisms suggest some
form of mesoscale organization into melt
channels in the mantle which may have
significant observational consequences.

Small changes in couplings can
significantly change the physics and
computational requirements of these
problems
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Open Questions

® What are the interactions/dominant

mechanism for localization at the meso-
scale!?

@ What are the interaction between meso-

scale and plate-boundary scale flow?
Plate boundary dynamics and global
mantle convection?

® What are the observational

consequences of these processes and
can important inferences be made from
existing data on the structure and
processes of partially molten regions?
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Computational & Software issues

Q

Magma Dynamics is fundamentally a coupled multi-
scale, multi-physics problem.

How do we develop flexible, high-performance tools
for more readily exploring the space of models and
behavior?

This is a completely different issue than finding/tuning
a well understood problem (eg. Navier-Stokes, Seismic
Wave tomography).

Much of the essential software already exists (e.g.
PETSc, FEniCS). Next time will detail how we can use
it to develop some flexible and general approach to
solving multi-physics models.
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Philosophy of multi-physics PDE
based models

@ Qverall Structure and Choices

o Software design for managing choices
(PETSc, FEniCS)

@ General abstractions of Non-linear
multi-physics problem

o Examples in Hybrid FEniCS/PETSc codes.
o HPC issues...




