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Overview of Lectures

• Lecture 1: The Context: Plate Tectonics and 
Computational Seismology

• Lecture II: Solid Mechanics - Mantle Convection/
Lithospheric Deformation/Earthquake Physics

• Lecture III: Magma Dynamics - coupled fluid-solid 
problems

• Lecture IV: Putting it all together, toward a consistent 
computational framework for complex multi-physics 
problems

Thursday, January 6, 2011



Lecture I
• Introduction to Solid Earth Geoscience:

• Plate Tectonics 101

• Overview of Computational Geodynamics

• Computational Seismology

• The Forward Problem

• Math, Methods, performance

• The Inverse Problem

• Available Software: the SPECFem family of HP 
codes
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Plate Tectonics 101

mid-ocean ridge
(divergent boundary)

subduction zone
(convergent boundary)

~100 km

images provided courtesy of the NEPTUNE Project 
(www.neptune.washington.edu) and CEV
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simplified structure of the earth

Plate Tectonics 101
Crust & 

Lithosphere
upper mantle

inner core
(solid Fe)

outer core
(liquid Fe)

Lower Mantle
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Plate Tectonics 101

http://earthquake.usgs.gov/earthquakes/world/seismicity/index.php
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What we would like to know
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What we would like to know

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Structure and Properties of Earth’s 
Interior
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What we would like to know

Computational Seismology

Weak Form
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Structure and Properties of Earth’s 
Interior
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Weak Form
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Dynamics of Plate Tectonics/Global 
Mantle Convection

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
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Ω
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Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0
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Dynamics of Plate Boundaries

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Physics/Predictability of Earthquakes 
and Volcanoes
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What we actually know

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Detailed surface plate motions to ~200 Ma

Computational Seismology
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∇w : σ + M : ∇w(xs)S(t)
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Geophysical Observations
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Ω
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Note: Free stress Boundary conditions ·n = 0 are
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functions w and u.

Earthquake locations, Seismograms, 
Topography, Gravity, Magnetics

Computational Seismology
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Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Geochemical Observations

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

composition of earth materials (periodic 
table plus half the table of isotopes)
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What we actually know
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composition of earth materials (periodic 
table plus half the table of isotopes)PR
OXY DATA
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The Role of Computational Science in Solid 
Earth Geodynamics
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The Role of Computational Science in Solid 
Earth Geodynamics

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Quantitative Models provide the link 
between what we want to know and what we 
can actually observe.

Thursday, January 6, 2011



The Role of Computational Science in Solid 
Earth Geodynamics

Computational Seismology

Weak Form
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can actually observe.
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∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Advanced computation has always been  
an important component of solid earth 
geoscience because the Earth is 

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

too big, too slow and can’t build the 
laboratory experiment (similar to 
astrophysics)
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Fig. 6. Adaptive, ultra-high resolution mantle flow simulation. Top, left: Decomposition of earth’s mantle into 24 octrees using the p4est
library. The viscosity field is shown; very narrow low-viscosity zones (red lines on the surface) indicate plate boundaries. Box 1 between the

Pacific (PAC) and the Australian (AU) plates indicates the region of the cross-section shown below. Bottom: Enlarged cross-section showing

the refinement that occurs both around plate boundaries and dynamically in response to the nonlinear viscosity and plastic failure in the region

around Fiji and Tonga (TO) in the SW Pacific. AMR, which is essential to resolve the plate boundaries, dynamically creates a mesh that

contains elements at 8 refinement levels, with finest resolution of about 1 km. A zoom into Box 2, where the Pacific plate subducts underneath

the Australian plate, is shown in the top right figure. Top, right: Viscosity and flow vectors for a zoom into the hinge zone of the Pacific

slab (indicated by Box 2). The narrow low viscosity zone (red) allows shearing of the flow and, thus, plate subduction to occur. The opposite

directions of the plates (the blue regions separated by the weak zone; arrows point in opposite directions) shows that our simulation predicts

trench rollback, as is known to occur in this region. Resolving these local phenomena is critical for global mantle flow models to fit observations;

this is the first time that a dynamic mantle flow model predicts these phenomena [9].

150–300 million finite elements. These meshes typically

contain 8 different refinement levels and about a billion

(velocity and pressure) unknowns. As the mesh adapts

and is repartitioned, all solution fields are interpolated

between meshes and redistributed according to the mesh

partition.

Figure 7 presents runtime percentages for the solution

of a typical global mantle convection problem using

Rhea as outlined above. The percentages are broken

down into AMR operations, solver time (which includes

nonlinear residual formation, Picard operator construc-

tion, and Krylov iteration matrix-vector products and

inner products), and AMG V-cycle time. As can be seen

from the table, the time spent in AMR components is

completely overwhelmed by the solver (solve + V-cycle)

time; in this case, the AMR components together require

no more than 0.12% of runtime. Thus, parallel AMR

has transformed a problem that would have required an

exascale computer to obtain 1 km uniform resolution,

to one that can fit on a petascale cluster by employing
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Convection code

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 150 million Elements

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 55,100 Cores (Jaguar)
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Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

3 Principal Problems in 
Computational Geodynamics

Computational Seismology

Solid Mechanics: Mantle Convection, Continental 
Deformation, Earthquake Physics

Coupled Fluid/Solid Mechanics: Magma dynamics, 
subsurface flow/oil,water,gas
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The Challenge

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Putting it all together:

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Develop Flexible, Interoperable, Open 
Source, high performance computational 
tools for exploring a wide range of multi-
scale/multi-physics geodynamic models.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Use any insight gained to understand both 
fundamental Earth Science and guide policy/
mitigate against natural hazards. 

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

This is the goal of the Computational 
Infrastructure for Geodynamics (CIG) 
(www.geodynamics.org)

Thursday, January 6, 2011

http://www.geodynamics.org
http://www.geodynamics.org


Computational Seismology

Simulation of 2011 January 2, Mw =7.1 Chile  Earthquake wavefield using SPECFem3D_Globe. 
Red: upward motion Blue: downward motion.  http://global.shakemovie.princeton.edu/

 Tromp et al, 2010, GJI 183, 381-389
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Data

3 component Broad Band Seismogram of 26 Feb 2010,
8.8 Mb Earthquake offshore Maule, Chile from USArray station 035Z

http://anf.ucsd.edu/spevents/2010/058/a/

E-W component

N-S component

Vertical component
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Figure 1. Map showing locations of 1838 seismographic stations supported by members of the FDSN (yellow dots). At each of these locations, the near
real-time system provides three-component normal-mode synthetics for the 1-D PREM (Dziewoński & Anderson 1981) and SEM synthetics for 3-D model
S362ANI (Kustowski et al. 2008) plus Crust2.0 (Bassin et al. 2000). The synthetics capture R1 and G1 at all epicentral distances for CMT events with
Mw < 7.5, and R2 and G2 for CMT events with Mw ≥ 7.5.

Centroid Moment Tensor (CMT) solution (Dziewoński et al. 1981;
Dziewoński & Woodhouse 1983), which contains information about
timing, hypocentre, magnitude, duration and fault-plane orientation
of an event. The NEIC information is typically available within
minutes, and the CMT solution within a day. The CMT catalogue
contains tens of thousands of earthquakes with magnitudes greater
than ∼5.5, and is widely used by geophysicists throughout the world.

Seismologists also use data recorded by the FDSN to image
Earth’s structure. Initially, this involved determining spherically
symmetric, 1-D models of Earth. For example, the widely used
Preliminary Reference Earth Model (PREM) was determined by
Dziewoński & Anderson in 1981. Over the past 30 yr, seismolo-
gists have refined tomographic techniques to map 3-D variations
in Earth’s interior (e.g. Dziewoński et al. 1977; Woodhouse &
Dziewoński 1984; Grand et al. 1997; Montelli et al. 2004). Such
maps reflect thermal and compositional heterogeneity in Earth’s
mantle and inner core. At long wavelengths, tomographic images
determined by different research groups are in reasonably good
agreement (e.g. Dziewoński & Romanowicz 2007).

Inversions for source parameters or Earth structure generally in-
volve a comparison between observed and simulated seismograms,
for example, waveform differences or cross-correlation traveltime
anomalies. The purpose of the near real-time system discussed in
this paper is to provide the necessary 1-D and/or 3-D reference
synthetics. For purposes of education and outreach, the system also
produces an animation of each earthquake in the form of a movie
of the velocity wavefield on Earth’s surface.

2 S Y N T H E T I C S E I S M O G R A M S

The near real-time system computes two sets of synthetic seismo-
grams, which we briefly describe in the following two sections.
The record length is 100 min for earthquakes with magnitudes less
than 7.5, such that the first arriving Love and Rayleigh waves are
included in the seismograms at all epicentral distances. For earth-

quakes with magnitudes of 7.5 and greater, the record length is 200
min, thereby incorporating one complete surface wave orbit at all
epicentral distances. We currently calculate synthetic seismograms
at 1838 stations supported by members of the FDSN (Fig. 1).

2.1 Normal-mode seismograms

Semi-analytical techniques for the calculation of synthetic seismo-
grams for spherically symmetric earth models are widely available.
For example, broadband synthetic seismograms, containing infor-
mation about short-period body waves as well as long-period sur-
face waves, may be calculated based upon normal-mode summation
(see e.g. Gilbert 1971; Dahlen & Tromp 1998). This approach in-
volves summing the free oscillations of a spherically symmetric
earth model up to a certain period. For spherically symmetric earth
model PREM (Dziewoński & Anderson 1981), we calculate syn-
thetic seismograms based upon normal-mode summation. These
mode synthetic are accurate at periods of 8 s and longer.

2.2 Spectral-element seismograms

The simulation of broadband global seismic wave propagation in
3-D earth models has only recently become practical. The numer-
ical technique we have developed and implemented is based upon
a spectral-element method (SEM), which combines the flexibil-
ity of the finite-element method with the accuracy of the global
pseudospectral method (Komatitsch & Vilotte 1998; Komatitsch
& Tromp 1999, 2002a,b; Chaljub et al. 2003). Its main advantage
for parallel computing purposes is an exactly diagonal mass ma-
trix. Although the calculation of synthetic seismograms for 1-D
earth models is relatively straightforward and numerically fast and
cheap, the calculation of 3-D synthetics requires access to modest
to large parallel computers.

The near real-time system computes spectral-element synthetic
seismograms for 3-D mantle model S362ANI (Kustowski et al.
2008) in combination with crustal model Crust2.0 (Bassin et al.

C© 2010 The Authors, GJI, 183, 381–389
Journal compilation C© 2010 RAS
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Given heterogeneous distribution of sources (plate 
boundaries) and sparse set of receivers, can we

Computational Seismology
Fundamental Questions

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Accurately locate Earthquakes?

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Infer dynamics of earthquake rupture? 
(Eq. Seismology)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Develop high resolution image of 
earth’s interior? (Structural 
Seismology)

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

To do all of this requires modeling and 
extracting information from seismograms
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Computational Seismology
The Forward Problem

Computational Seismology

Strong Form: Elastic Wave propagation

ρutt = ∇· σ + f

σ · n = 0 on ∂Ω

u = 0, ut = 0 at t = 0

where

elastic displacement field: u(x, t)
stress tensor: σ = C : ε
strainrate tensor: ε = 1/2(∇u + ∇uT )
Earthquake Moment tensor Source: f = −Mδ(x− xs)

For isotropic Elastic media

ρutt = ∇· µ(∇u + ∇uT ) + ∇(k − 2µ/3)∇· u + f
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Computational Seismology
The Forward Problem

Computational Seismology

Weak Form

Choose test-functions w and trial functions u ∈ V s.t.

�

Ω
ρw · uttdV =

�

Ω
∇w : σdV + M : ∇w(xs)S(t)

u = 0, ut = 0 at t = 0

Note: Free stress Boundary conditions σ · n = 0 are

automatically included as natural boundary conditions.

Issue is simply choice of discrete function space V for test

functions w and u.

Once chosen, the problem assembles into simple discrete wave

equation

Md̈ + Kd = f

for displacements d.
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Spectral Element methods

4th order Spectral Lagrange element 
using Gauss-Legendre-Lobatto 

Quadrature

2-D hexahedral reference element: 
tensor product element

J. Tromp, D. Komatitsch and Q. Liu / Commun. Comput. Phys., 3 (2008), pp. 1-32 9
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Figure 4: Left: The five Lagrange interpolants of degree N=4 on the reference segment [−1,1]. The N+1=5
Gauss-Lobatto-Legendre (GLL) points, determined by eqn. (3.7), can be distinguished along the horizontal axis.
Note that the first and last GLL points are exactly -1 and 1. All Lagrange polynomials are, by definition, equal to
1 or 0 at each of the GLL points, in accordance with eqn. (3.3). In a FEM, shape functions Na, j=1,··· ,M, are
typically triple products of degree 1 or 2 Lagrange polynomials, and functions are interpolated on a hexahedral
element, such as the one shown in Fig. 3, in terms of these low-degree polynomials. In a SEM, the geometry of
elements is captured by the same low-degree shape functions, but functions are represented in terms of triple
products of high-degree Lagrange polynomials (typically of degree 4–10), one for each direction in the reference
cube. Right: When Lagrange polynomials of degree n are used to discretize functions on an element, each 3D
spectral element contains a grid of (n+1)3 GLL points, and each 2D face of an element contains a grid of
(n+1)2 GLL points, as illustrated here for the degree 4 polynomials shown on the left. Courtesy of [38].

and the three Lagrange polynomials of degree 2 with three control points ξ =−1, ξ = 0,
and ξ =1 are

h0(ξ)= 1
2 ξ(ξ−1), h1(ξ)=1−ξ2, h2(ξ)= 1

2 ξ(ξ+1).

The weak form (2.11) involves volume integrals over elements Ωe. Using the map-
ping (3.1), an element of volume d3x=dxdydz within a given element Ωe is related to an
element of volume d2ξ =dξdηdζ in the reference cube by

d3x=dxdydz= Jdξdηdζ = Jd3ξ, (3.4)

where the Jacobian J of the mapping (3.1) is given by

J =

∣

∣

∣

∣

∂(x,y,z)
∂(ξ,η,ζ)

∣

∣

∣

∣

. (3.5)

To calculate the Jacobian J, we need the partial derivative matrix ∂x/∂ξ, which is obtained
by differentiating (3.1):

∂x

∂ξ
=

M

∑
a=1

xa
∂Na

∂ξ
. (3.6)

From (3.6) we conclude that partial derivatives of the shape functions are determined
analytically in terms of Lagrange polynomials of degree 1 or 2 and their derivatives. The
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Spectral Element methods

on performance. We use below an efficient approach to the assembly process based on mesh coloring. Once assembled, the
global force vector is scaled by the inverse of the assembled mass matrix, which is diagonal and therefore stored as a vector
(see Section 3). This last step is straightforward and has negligible impact on performance.

4.4. Overlapping computation and communication

The elements that compose the mesh slices of Fig. 1 (right) are in contact through a common face, edge or point. To allow
for overlap of communication between cluster nodes with calculations on the GPUs, we create inside each slice a list of all
the elements that are in contact with any other mesh slice through a common face, edge or point. Members of this list are
called ‘outer’ elements; all other elements are called ‘inner’ elements (Fig. 3). We compute the outer elements first, as it is
done classically (cf. for instance Danielson and Namburu [78], Martin et al. [26], Micikevicius [41], Michéa and Komatitsch
[46]). Once the computation of the outer elements is complete, we can fill the MPI buffers and issue a non-blocking MPI call,
which initiates the communication and returns immediately. While the MPI messages are traveling across the network, we
compute the inner elements. Achieving effective overlap requires that the ratio of the number of inner to outer elements be
sufficiently large, which is the case for large enough mesh slices. Under these conditions, the MPI data transfer will statis-
tically likely complete before the completion of the computation of the inner elements. We note that to achieve effective

1
Ω Ω

Ω Ω

2

3 4

Fig. 2. (Left) In a SEM mesh in 2D, elements can share an edge or a corner. (Right) In 3D, elements can share points on a face, an edge or a corner. The GLL
interpolation and quadrature points inside each element are non-evenly spaced but have been drawn evenly-spaced for clarity.

Fig. 3. Outer (red) and inner (other colors) elements for part of the mesh of Fig. 1. Elements in red have at least one point in common with an element from
another slice and must therefore be computed first, before initiating the non-blocking MPI communications. The picture also shows that the mesh is
unstructured because we purposely increase the size of the elements with depth based on a ‘mesh doubling brick’. This is done because seismic velocities
and therefore seismic wavelengths increase with depth in the Earth. Therefore, larger elements are sufficient to sample them; they lead to a reduction in the
computational cost. Here for clarity only the cut planes that define the mesh slices have been drawn; but in reality the mesh is filled (see Fig. 1, left, and
Fig. 6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

D. Komatitsch et al. / Journal of Computational Physics 229 (2010) 7692–7714 7699

4, 3-D hexahedral reference elements 
showing 5^3 dofs/element (4th order)

A few nice Computational Features

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Diagonal Mass Matrix: Lagrange 
Polynomials are “orthogonal” 
under GLL quadrature rules

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 Assembly parallelizes/vectorizes 
very well
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Spectral Element methods

Global Hexahedral mesh
“cubed sphere”

384 J. Tromp et al.

Figure 3. Top: The Moho is honored in the spectral-element mesh as a first-order discontinuity if the crustal thickness is less than 15 km (blue areas) or
greater than 35 km (red areas). In the white transition regions, the Moho runs across the spectral elements; in this case model variations are captured by the
Gauss–Lobatto–Legendre (GLL) integration points (5 × 5 × 5 = 125 GLL points per element). Middle: cross section along profile AA’ (indicated in the top
map) showing the spectral-element mesh and lateral variations in shear wave speed. When the crust is more than 35 km thick, the Moho is honoured as a
first-order discontinuity in the mesh by two layers of spectral elements, and when the crust is less than 15 km thick, the crust is captured by a thin, single layer
of elements. Bottom: zoom in on the region indicated by the white box in the middle figure.

nearest surface neighbours).2 Fig. 5 illustrates how topography and
bathymetry in South America are captured by the mesh.

2 Note that the average GLL grid spacing is ∼14 km at Earth’s surface.

2.2.3 Improvements in performance

In order to increase performance and reduce simulation times, the
software has been further optimized in two main ways: reducing
processor cache misses and optimizing matrix–matrix multiplica-
tions.

C© 2010 The Authors, GJI, 183, 381–389
Journal compilation C© 2010 RAS

CHAPTER 3. RUNNING THE MESHER XMESHFEM3D 7

Figure 3.1: Each of the 6 chunks that constitutes the cubed sphere is subdivided in terms of n2
slices of elements,

where n ≥ 1 is a positive integer, for a total of 6 × n2
slices (and therefore processors). The figure on the left shows

a mesh that is divided in terms of 6 × 52 = 150 slices as indicated by the various colors. In this cartoon, each slice

contains 5× 5 = 25 spectral elements at the Earth’s surface. The figure on the right shows a mesh that is divided over

6 × 182 = 1944 processors as indicated by the various colors. Regional simulations can be accommodated by using

only 1, 2 or 3 chunks of the cubed sphere. One-chunk simulations may involve a mesh with lateral dimensions smaller

than 90◦, thereby accommodating smaller-scale simulations.

summarizes various suitable choices for NEX_XI and the related values of NPROC_XI. Based upon benchmarks

against semi-analytical normal-mode synthetic seismograms, Komatitsch and Tromp [2002a,b] determined that

a NEX_XI = 256 run is accurate to a shortest period of roughly 17 s. Therefore, since accuracy is determined

by the number of grid points per shortest wavelength, for any particular value of NEX_XI the simulation will be

accurate to a shortest period determined approximately by

shortest period (s) � (256/NEX_XI)× 17. (3.1)

The number of grid points in each orthogonal direction of the reference element, i.e., the number of Gauss-

Lobatto-Legendre points, is determined by NGLLX in the constants.h file. In the globe we use NGLLX = 5,

for a total of 53 = 125 points per elements. We suggest not to change this value.

NEX_ETA For global simulations NEX_ETA must be set to the same value as NEX_XI.

NPROC_XI The number of processors or slices along one chunk of the cubed sphere (see Figure 3.1); we must have

NEX_XI = 8× c× NPROC_XI, where c ≥ 1 is a positive integer. See Table 3 for various suitable choices.

NPROC_ETA For global simulations NPROC_ETA must be set to the same value as NPROC_XI.

MODEL Must be set to one of the following:

1D models with real structure:

1D_isotropic_prem Isotropic version of the spherically symmetric Preliminary Reference Earth Model

(PREM) [Dziewonski and Anderson, 1981].

1D_transversely_isotropic_prem Transversely isotropic version of PREM.

1D_iasp91 Spherically symmetric isotropic IASP91 model [Kennett and Engdahl, 1991].

Vertical structure showing
crustal model and doubling layers
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Computational Seismology
The Forward Problem

Computational Seismology

Discrete Form

Md̈ + Kd = f

where M is a diagonal mass matrix, K (C ) is the stiffness matrix, d
is discrete vector of displacements.

Explicit Time Marching Scheme (Newmark)

Define Acceleration: ak = d̈k = M−1[−Kdk + fk ]

Define Velocity: vk = ḋk

Initialize : d0 = v0 = 0, a0 = M−1f0
for n = 1, 2, . . . do {loop until t = T}

dn = dn−1 + ∆tvn−1 +
∆t2

2 an−1

vn = vn−1 +
∆t
2 [an−1 + an]

end for

CFL Stability Criteria: ∆t ≤ α(∆x/cp)min. (α ∼ 0.5)
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Full wavefield propagation

http://global.shakemovie.princeton.edu/
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Full wavefield propagation

7.1 Mw Jan 02, 2011 Chile Earthquake
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Computational Seismology
Synthetic SeismogramsNear real-time simulations of CMT earthquakes 387

Figure 7. Vertical component record section comparing data (black) and SEM synthetics (red) for the 2008 September 3, Mw = 6.3 Santiago del Estero,
Argentina earthquake, which occurred at a depth of 571 km. The records are aligned on the P wave, plotted as a function of epicentral distance, and bandpass
filtered between 17 and 60 s. Major seismological body wave arrivals are labelled. Epicentral distance is plotted to the left of each set of traces, and FDSN
station identification codes are plotted to the right.

Further performance improvements are obtained by using opti-
mized matrix–matrix multiplication schemes inside each spectral
element, since the most time consuming part of the SEM algorithm
involves multiplying small matrices that contain the local value of
a given field with local derivative matrices. These matrices have a
size of 5 × 5 GLL points and are therefore too small to efficiently
resort to optimized matrix multiplication libraries, such as BLAS3,
but Deville et al. (2002) developed an optimal implementation in
which small loops are unrolled, restructured and inlined in order to
minimize the number of memory accesses and significantly increase
the number of floating-point operations performed per memory ac-
cess. We note that graphics processing units (GPUs) may be used in
the near future to further increase performance in a spectral-element
code (Komatitsch et al. 2009, 2010).

3 A N I M AT I O N S A N D R E C O R D
S E C T I O N S

After each event, the near real-time system performs a low-
resolution 3-D spectral-element simulation to produce an animation
of the earthquake. The duration of the simulation scales linearly with

the size of the earthquake. The movies show the velocity wavefield
on Earth’s surface as a function of time, as illustrated by the snapshot
shown in Fig. 6 for the 2010 January 12, Haiti earthquake.

Fig. 7 shows a record section comparison between data and
SEM synthetics for the deep (depth of 571 km) 2003 September 3,
Mw = 6.3, Santiago del Estero, Argentina earthquake. The vertical
component seismograms are aligned on the P wave, plotted as a
function of epicentral distance, and bandpass filtered between 17
and 60 s. Fig. 8 shows a transverse component record section of
observed and simulated Love waves as a function of source az-
imuth for the shallow (depth of 21 km) 2007 August 17, Mw = 6.4,
Banda Sea earthquake. The records are bandpass filtered between
60 and 200 s. The remaining differences between SEM simulations
and corresponding data may be used to improve earthquake source
parameters and 3-D seismological models of Earth’s interior.

4 D I S C U S S I O N

Each time an earthquake of magnitude ∼5.5 or greater occurs any-
where in the world, we use a trigger from the Global CMT Project
to initiate calculations of 1-D and 3-D synthetic seismograms. For

C© 2010 The Authors, GJI, 183, 381–389
Journal compilation C© 2010 RAS
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Computational Seismology
Synthetic Seismograms
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Computational Seismology
Computational Cost/Performance

Computational Seismology

Basic Scaling

Resolution depends on highest frequency wave we want to

propagate accurately.

Let τ = 2π/ω be the period of a wave with frequency ω

Wavelength λ = τc depends on period and wavespeed

Resolution h ∝ λ ∝ τmin

Time step limited by cfl condition ∆t ∝ h ∝ τmin

Number of elements Nel ∝ V /h3 ∝ ω3

Number of time steps Nt = T/∆t ∝ ω

Total ops O(ω4)
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Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Routine Global Long period simulation (17 s)
 ~400 CPU cores in ~ 4 hours

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

2003 Gordon Bell Prize (Komatisch et. al, 2003)
 5 s minimum period (h~2.9 km)
 14.6 Billion dofs
1944 Vector processors on Earth Simulator
30% peak on 38% of the machine 5Tflop sustained

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

M8 (SCEC simulation 2010 GB Finalist)
2 hz maximum frequency (1/2 s period)
regional mesh with 435 Billion dofs
223K opteron cores of Jaguar
220 Pflops
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The Inverse Problem

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

The Forward Problem: Given an 
earth model calculate synthetic 
seismograms at n locations.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

The Inverse Problem: given 
mismatch between data and 
synthetic seismograms, refine 
the Earth model to minimize the 
misfit.

Computational Seismology

Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

The Inverse Problem can be cast 
as a “PDE Constrained 
Optimization” problem solvable 
by adjoint methods
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 (the short course)

Computational Seismology

PDE Constrained Optimization: the generic problem

minimize J[u] =
1
2

�
Ω(u − d)2dV

subject to L(p)u = f , + BC’s and IC’s (PDE constraint)

with

u: solution field

d : data

L(p): Linear operator with parameters p
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Define Lagrangian

L[λ, u, p] =
1

2

�

Ω
(u − d)

2dV +

�

Ω
λ [L(p)u − f ] dV

λ(x , t) is a Lagrange multiplier

Lagrangian provides weighted misfit between solution, data

and PDE constraint.
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Computational Seismology

Optimality conditions

Calculate the first variation and set to zero

δL = δLλ + δLu + δLp = 0

where

δLλ =

�

Ω
[L(p)u − f ] δλdV = 0

δLu =

�

Ω

�
(u − d) + L†

(p)λ
�
δudV = 0

δLp =

�

Ω
[λG (p)u] δpdV = 0

L† is the adjoint operator defined by
�
Ω λLudV =

�
Ω uL†λdV

Note: linear elastic wave propagation is self-adjoint s.t.

L† = L
Thursday, January 6, 2011
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Implications

δLλ = 0 implies that u satisfies the original PDE with forcing
f

δLu = 0 implies that the Lagrange multiplier satisfies the
adjoint PDE

L†(p)λ = −(u − d)

with forcing driven by the mismatch between data and
synthetics

if u and λ satisfy their respective PDE’s, then the gradient δL
reduces to just model sensitivity which can be written in
terms of a sensitivity Kernel

δL =

�
K (u, λ, p)δpdV

where
K (u, λ, p) = λG (p)u
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Example: Waveform Tomography

Given model p (e.g. ρ,C or vp, vs), solve the forward problem

�

Ω
ρw · uttdV =

�

Ω
∇w : σ(u) + M : ∇w(xs)S(t)

with u(x, 0) = ut(x, 0) = 0

Solve the adjoint problem in reverse time (using the same
code)

�

Ω
ρw · ûttdV =

�

Ω
∇w : σ(û) +

�

r

� T

0
(ur − dr )dt

with λ(x, t) = û(x,T − t) and “IC’s” û(x, 0) = ût(x, 0) = 0

Calculate Sensitivity Kernels and optimize to minimize δL
(e.g. CG, Newton, etc).
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Figure 10: (a) Vertical component synthetic velocity seismograms recorded at an epicentral distance of 60 for
simulations accurate down to periods of 27 s (green), 18 s (red) and 9 s (blue), respectively. (b) Source-receiver
cross-section of the Kα kernel, defined by (4.27), for a 27 s P wave recorded at a station at an epicentral
distance of 60◦. The source and receiver locations are denoted with two small white circles. The unit of the
sensitivity kernels is 107 s/km3 throughout this paper. (c) Kα kernel for an 18 s P wave recorded at a station
at an epicentral distance of 60◦. (d) Kα kernel for a 9 s P wave recorded at a station at an epicentral distance
of 60◦. Courtesy of [40].

the largest deep events in modern recording history. As a source we use the event lo-
cation and the centroid-moment tensor (CMT) solution from the Harvard CMT catalog
(www.seismology.harvard.edu). Fig. 10(a) shows vertical component synthetic seismo-
grams recorded by a receiver at an epicentral distance of 60◦. To investigate the finite-
frequency characteristics of the kernels, the synthetic seismogram is low-pass filtered
three times, with corners at 27 s, 18 s and 9 s, respectively. Figs. 10(b), (c) and (d) show
source-receiver cross-sections of the corresponding kernels Kα defined by (4.27) calcu-
lated based upon the adjoint method. Notice that as the frequency content of the adjoint
signal is increased, the kernel becomes skinnier. In fact, in the high-frequency limit the
kernel will collapse on to the P wave geometrical raypath. Note also that the kernels
have a ‘hole’ along this raypath. The characteristic ‘banana’ shape of the kernel in the
source-receiver plane and the ‘donut’ shape of the kernel in a cross-section perpendicu-
lar to the source-receiver plane prompted [43] to refer to these kernels as ‘banana-donut
kernels’. As shown by [19], the size of the donut hole decreases with increasing resolu-
tion, in accordance with the scaling relation width∼

√
λL, where L denotes the length of

the raypath and λ the wavelength.

27 s wave

18 s wave 9 s wave
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Full problem:
16 Iterations

6800 wavefield simulations
800,000 total cpu hours (178 cores)
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based on spectral-element and adjoint methods
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S U M M A R Y
We iteratively improve a 3-D tomographic model of the southern California crust using
numerical simulations of seismic wave propagation based on a spectral-element method (SEM)
in combination with an adjoint method. The initial 3-D model is provided by the Southern
California Earthquake Center. The data set comprises three-component seismic waveforms (i.e.
both body and surface waves), filtered over the period range 2–30 s, from 143 local earthquakes
recorded by a network of 203 stations. Time windows for measurements are automatically
selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based
on frequency-dependent multitaper traveltime differences. The gradient of the misfit function
and related finite-frequency sensitivity kernels for each earthquake are computed using an
adjoint technique. The kernels are combined using a source subspace projection method to
compute a model update at each iteration of a gradient-based minimization algorithm. The
inversion involved 16 iterations, which required 6800 wavefield simulations. The new crustal
model, m16, is described in terms of independent shear (V S) and bulk-sound (V B) wave speed
variations. It exhibits strong heterogeneity, including local changes of ±30 per cent with
respect to the initial 3-D model. The model reveals several features that relate to geological
observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies
across faults. The quality of the new model is validated by quantifying waveform misfits of
full-length seismograms from 91 earthquakes that were not used in the tomographic inversion.
The new model provides more accurate synthetic seismograms that will benefit seismic hazard
assessment.

Key words: Inverse theory; Body waves; Surface waves and free oscillations; Seismic
tomography; Computational seismology; Crustal structure.

1 I N T RO D U C T I O N

Seismic tomography uses measurements between simulated (or
‘synthetic’) and observed seismic waveforms to obtain 3-D
images of Earth’s interior. A tomographic inversion is a minimiza-
tion problem that begins with the specification of a measure of
misfit between synthetic and observed seismograms. The accuracy
of a tomographic inversion is limited by the accuracy of the syn-
thetic seismograms. It is also limited by the accuracy of the sensi-
tivity kernels (i.e. Fréchet derivatives), which reveal the sensitivity
of each measurement to changes in the model. Highly accurate
numerical methods, such as the spectral-element method (SEM)
(e.g. Faccioli et al. 1997; Komatitsch & Tromp 1999), may now

∗Now at: Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA.

be used to compute synthetic seismograms in complex 3-D models
at regional (Komatitsch & Vilotte 1998; Komatitsch et al. 2004)
and global scales (Komatitsch & Tromp 2002a,b; Capdeville et al.
2003). Furthermore, the same numerical methods may be used to
compute sensitivity kernels corresponding to these 3-D models at
regional (Liu & Tromp 2006) and global scales (Liu & Tromp
2008). Equipped with these tools, Tape et al. (2009) demonstrated
the feasibility of iteratively improving a complex 3-D crustal model
of southern California. Their iterative inversion used traveltime
measurements of body and surface waves from 52 000 three-
component seismic records of 143 crustal earthquakes. This paper
extends the results and analysis of Tape et al. (2009).

Tromp et al. (2005) emphasized the generality of using
adjoint methods in seismic tomography, in terms of both the
choice of model parameters and the choice of misfit function. One
may choose model parameters that describe 3-D elastic structure
(e.g. elastic tensor c, density ρ), 3-D attenuation, topography of

C© 2009 The Authors 433
Journal compilation C© 2009 RAS
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Figure 1. Map showing topography & bathymetry (Amante & Eakins 2008) and active faults (Jennings 1994). Labels 1–6 denote the sedimentary basins of
(1) Los Angeles, (2) San Fernando, (3) Ventura–Santa Barbara, (4) Santa Maria, (5) southern San Joaquin and (6) the Salton trough, all of which have been
active during the Neogene. Dashed red lines outline blocks that have undergone substantial Neogene motion: the Salinian block (SB) within the Coast Ranges,
and the western Transverse Ranges block (WTRB). The black outline denotes the simulation region, which extends to 60 km depth. The oblique blue outline is
the tomography region of Lin et al. (2007b); the inner blue outline is the tomography region of Chen et al. (2007). Faults labelled for reference in subsequent
figures are drawn in bold black and labelled in the boxes: SA, San Andreas, KC, Kern Canyon, SN, Sierra Nevada, G, Garlock, CR, Camp Rock, SG, San
Gabriel, SY, Santa Ynez, MC, Malibu Coast, E, Elsinore. The Camp Rock fault, as labelled, includes a connection of faults from north to south: Gravel
Hills–Harper fault, Harper Lake fault, Camp Rock fault, and Emerson fault. The Malibu Coast fault is drawn in continuation to the west to mark the southern
boundary of the WTRB; the Santa Ynez fault is drawn in continuation to the west to mark the northern boundary of the WTRB (Luyendyk et al. 1980). Inset
map shows the plate boundary setting for western North America (Bird 2003).

We benefited from source characterizations from the following stud-
ies: Lin et al. (2007a), Lohman & McGuire (2007), Thurber et al.
(2006), McLaren et al. (2008), Tan (2006), Hardebeck & Shearer
(2003) and Clinton et al. (2006). We considered 234 events in total,
143 of which were used in the tomographic inversion. The remain-
ing 91 events were used for an independent assessment of any given
tomographic model (Tape et al. 2009). Both sets of earthquakes are
shown in Fig. 2 along with the station coverage.

A summary of all 234 events is presented in Fig. 3. All earth-
quakes occurred between 1998 and 2009, with magnitudes between
Mw 3.4 and Mw 5.4. The depths are between 1.5 and 21.0 km, with
most earthquakes occurring in the upper 10 km. The majority of
the earthquakes have half durations <0.4 s, which is small com-
pared to the target measurement of σ 0 = 1.0 s (eq. 4). Using larger
earthquakes, or a smaller value of σ 0, one would be wary of the
approximation of the earthquake as a point source.

2.3 Model variables, model parametrization
and model vector

The entries of the model vector m for the tomographic inversion
describe the two continuous scalar fields V S(x) and V B(x), where
x is a point in the volume. We parametrize these continuous fields
using the same basis functions used in the numerical simulations,
that is, Lagrange polynomials, similar to previous 2-D examples
(Tape et al. 2007, Section 5.3). The simulation region is 639 km ×
503 km at the surface and extends to 60 km depth (Fig. 1). The

mesh contains 405 216 elements with a total of 27.5 × 106 global
gridpoints and 50.6 × 106 local gridpoints. From the standpoint
of inversion, the distinction between global and local gridpoints is
only relevant if wave speed discontinuities exist in the model that
are honoured by the mesh. For southern California, the Moho and
parts of the basement surface are honoured (Komatitsch et al. 2004),
and we therefore choose to use local gridpoints to parametrize the
model.

Each local gridpoint in the numerical mesh, xi, has correspond-
ing values of V S and V B that appear as entries of the model
vector m. Therefore, the model vector m has 2G entries, with G
the number of local gridpoints in the mesh. We use a subscript to
denote model iterations, such that m00 is the initial model and m16

is the final model. In Appendix B, we include details pertaining to
the construction of both m and the covariance matrix, CM.

Based on the mesh described above, the average spacing between
gridpoints at the surface is 450 m. The simulations use a time
step of 0.011 s and are numerically accurate down to periods of
approximately 2 s.

3 M I S F I T F U N C T I O N

The formulation of the misfit function is a critical aspect of any
tomographic inversion, and many choices are available (e.g. Tromp
et al. 2005). We choose a traveltime misfit function that employs
frequency-dependent measurements between observed and syn-
thetic waveforms.

C© 2009 The Authors, GJI, 180, 433–462
Journal compilation C© 2009 RAS
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Weak Form

Choose w,u ∈ V s.t.
�

Ω
ρw · uttdV =

�

Ω
∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

Regional Models are critical for Earthquake 
hazard assessment (shaking)
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Figure 2. (a) Earthquakes (143) and stations (203) used in the tomographic inversion. The black boundary denotes the simulation region. (b) Extra earthquakes
(91) used in validating the final tomographic model, but not used in the tomographic inversion. An earthquake not used in the tomographic inversion—or any
future earthquake, for that matter—may be used to independently assess the misfit reduction from m00 to m16.

3.1 Collection of seismic waveforms

The computational cost of the tomographic technique scales
linearly with the number of earthquakes, but is independent of the
number of stations, components, or ‘picks’ (i.e. time windows for
measurement). We collected seismic waveforms from 210 broad-
band stations within the simulation region (Tables 1 and 2). We did
not use available strong-motion stations, because these stations tend
to be concentrated in populated regions where dense broad-band
station coverage already exists. For each earthquake in the data set,
the maximum number of recording stations is approximately 170.
For earthquakes in the tomographic inversion, the maximum and
minimum numbers of stations with measurements are 162 (event
141797361 ) and 13 (event 9700049), respectively.

Over the course of analyzing tens of thousands of waveform
comparisons for each model iteration, we discovered some sys-
tematic misfits that could not be attributed to source or structural

1 The event numbers listed in this paper are from the Southern California
Earthquake Data Center.

effects, but only to station errors. We identified seismograms for
seven station-epochs that produced what appeared to be a reversed
polarity on either the horizontal components or on all three compo-
nents: CRP.CI, HWB.AZ, BVDA2.AZ, PER.CI, BTP.CI, NSS2.CI
and 109C.TA (see Tape 2009, Appendix E). Although the ‘prob-
lematic’ time intervals constitute a very small portion of the entire
data set, the inclusion of such records would have a noticeable and
detrimental impact on the tomographic inversion. For example, for a
sinusoidal waveform, a polarity reversal corresponds to an apparent
time shift of a half cycle that inadvertently could be interpreted as
having arisen due to wave speed differences.

3.2 Selection of period ranges

The quality of fit between observed and synthetic seismograms
is strongly dependent on the frequency content of the seismic
waves, because the overall quality of the model generally diminishes
with shortening scalelength. We therefore examine multiple period
ranges: 6–30, 3–30 and 2–30 s. Our choice of period ranges empha-
sizes fitting seismic waveforms in the period range 6–30 s, which for

C© 2009 The Authors, GJI, 180, 433–462
Journal compilation C© 2009 RAS
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s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

143 Earthquakes (beach balls)
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Note: Free stress Boundary conditions ·n = 0 are
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Issue is simply choice of Discrete function space V for test
functions w and u.

203 stations (triangles) used in inversion
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∇w : σ + M : ∇w(xs)S(t)

s = 0, st = 0 at t = 0

Note: Free stress Boundary conditions ·n = 0 are
automatically included as natural boundary conditions.

Issue is simply choice of Discrete function space V for test
functions w and u.

 91 Additional earthquakes used for validation. 
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Note: Free stress Boundary conditions ·n = 0 are
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Issue is simply choice of Discrete function space V for test
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Model improvement in waveform misfit

Source

444 C. Tape et al.

Figure 8. (a) Vertical cross-section of the V S tomographic models for a path from event 14383980 (!; Mw 5.4, depth 14.2 km), east of the Los Angeles basin,
to station STC.CI (∇; distance 137.1 km), within the Ventura basin. Upper right panel is the initial 3-D model, m00, lower right panel is the final 3-D model,
m16, and lower left panel is the difference between the two, ln(m16/m00). The vertical exaggeration in these cross-sections, and all cross-sections in the paper,
is 3.0. SY, Santa Ynez fault; MC, Malibu Coast fault. (b) Iterative three-component seismogram fits to data for models m00, m01, m04, and m16. Also shown
are synthetic seismograms computed for a standard 1-D model. Synthetic seismograms (red) and observed seismograms (black), bandpass filtered over the
period range 6–30 s. Left column, vertical component (Z); centre column, radial component (R); right column, transverse component (T). This earthquake was
not used in the tomographic inversion.

highlighted downward pulse at 33 s on the transverse component
m16 synthetic seismogram is not apparent in the corresponding m00

synthetic. The improved fits are partly due to structural perturbations
that lie out of the vertical source–station plane.

Seismograms for a path crossing the entire Mojave are shown
in Fig. 16. The m16 synthetic seismograms match the Love wave
at 68 s (T), the P wave at 30 s (Z and R), the Rayleigh wave at
75 s (Z and R), and some additional complexity, particularly on the
radial component. Some of this complexity is probably due to the
excitation of the Los Angeles basin west of the source. The cross-
section of ln(m16/m00) reveals vertical variations with scalelengths
of about 3 km in the vertical direction within the Mojave region.
This demonstrates the resolving capability of frequency-dependent
surface wave measurements.

5.3 Connections with geology and tectonics

A comprehensive interpretation of the new crustal model is
beyond the scope of this paper. Such an interpretation of crustal
wave speeds should take into account previous laboratory measure-
ments of V P and V S of various crustal rocks under different pressure

and temperature conditions (Christensen & Mooney 1995; Pellerin
& Christensen 1998), as well as a geological and tectonic overview
of the region (Burchfiel et al. 1992). In this section, we extend the
interpretations of Tape et al. (2009) and address some of the key
features of the crustal model.

5.3.1 Wave speed contrasts across faults

The middle panels of the horizontal cross-sections (Fig. 7) reveal
lateral variations in the new crustal model. Because several active
faults offset different lithologies at the surface, it is not surprising
that the contrasts are also observed in the tomographic model. The
magnitude and depth-extent of these contrasts are important for
interpreting the structure of faults at depth. Furthermore, such wave
speed contrasts are expected to influence the rupture of earthquakes
(e.g. Ben-Zion & Andrews 1998).

At 2 km depth (Fig. 7a), the fastest regions (>3.5 km s−1) occur
in the Peninsular Ranges west of the Elsinore fault, and in the Sierra
Nevada west of the Kern Canyon fault (Shapiro et al. 2005). The
eastern front of the Sierra Nevada is marked by an eastward step
in wave speed from about 3.5 to 2.8 km s−1 (Tape et al. 2009). At

C© 2009 The Authors, GJI, 180, 433–462
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Ω
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Note: Free stress Boundary conditions ·n = 0 are
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functions w and u.

Influence of local structure (sedimentary basins) 
on shaking

440 C. Tape et al.

Figure 5. The influence of sedimentary basins on the seismic wavefield. (a) Cross-section of the final V S crustal model m16, containing the path from event
14179736 (!; Mw 5.0, depth 4.9 km), beneath the Salton trough, to station LAF.CI (∇; distance 263.5 km), within the Los Angeles basin. (b, left column) Data
(black) and 1-D synthetics (red). (b, right column) Data (black) and 3-D synthetics for model m16 (red). The seismograms are bandpass filtered over the period
range 6–30 s. Z, vertical component, R, radial component, T, transverse component.

Many other choices of misfit measures are possible, as exempli-
fied in Tromp et al. (2005). For example, Luo & Schuster (1991)
used a cross-correlation traveltime difference, while Fichtner et al.
(2008, 2009) windowed and weighted waveforms both in the time
and frequency domains prior to measuring phase and amplitude dif-
ferences. Our choice to measure phase (or traveltime) differences
was motivated by the success of such measurements in seismic to-
mography (e.g. Humphreys & Clayton 1990; Grand et al. 1997;
Ritsema et al. 1999).

3.5 Misfit function

The misfit function for the tomographic inversion is based on the
individual traveltime misfit measure given in eq. (3). For a single
earthquake, the misfit function is defined by

FT
s (m) = 1

2
1
Ns

Ns∑

i=1

FT
i (m) , (6)

where Ns denotes the total number of measurement windows
associated with source s. The ith window is identified by a source,
a station, a component, a period range (e.g. 6–30 s), and a local
window index. The local window index ranges up to the maximum
number of windows for a particular filtered seismogram; for this
data set, there are typically 0–2 windows per filtered seismogram.

The overall misfit function FT is simply

FT(m) = 1
S

S∑

s=1

FT
s (m) , (7)

where S is the number of sources. We do not impose any manual
weighting, but such choices would impact the tomographic inversion
(e.g. Fichtner et al. 2009).

4 G R A D I E N T O F M I S F I T F U N C T I O N
A N D I T E R AT I V E I N V E R S I O N
P RO C E D U R E

The method we use to iterate from the initial model (m00) to the final
model (m16) is adapted from the approach illustrated in Tape et al.
(2007). The Tape et al. (2007) study involved a 2-D tomographic
problem using only synthetic seismograms, whereas the current
study is 3-D and uses real data. In the 3-D problem, the model vector
m contains two variables that describe the structure, V S and V B. Our
measure of misfit is a frequency-dependent multitaper traveltime
difference, made in three overlapping period ranges (6–30, 3–30,
2–30), as discussed in Section 3.2.

A distinguishing feature of adjoint tomography is that the gradient
of FT

s (eq. 6), or the ‘event kernel,’ is computed from the interaction
between two wavefields: the ‘regular’ forward simulation emanating
from the source, and the ‘adjoint’ simulation emanating from the
stations (Tarantola 1984; Tromp et al. 2005; Tape et al. 2007). For
each iteration, there is a new set of event kernels, which are summed
in some manner to produce the next model update. In Tape et al.
(2007) we combined the event kernels by summing them, and then
used a conjugate-gradient algorithm to obtain a model update. In this
study we use a subspace projection technique to compute the model
update. Instead of using a subspace of model parameter classes
(Kennett et al. 1988; Sambridge et al. 1991), we use a subspace of
sources, where we determine a linear combination of event kernels
that exploits the features they have in common (Tape et al. 2010).
This procedure provides a pre-conditioner for the gradient algorithm
that increases convergence of the minimization problem. Not all 143
earthquakes were used in each iteration (Tape et al. 2009, table S3),
because a satisfactory model update could generally be achieved
with a well-chosen subset of event kernels.
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Computational Seismology
 GPU implementations

June 2010: a multi-GPU port of SPECFEM3D wins the BULL Joseph Fourier supercomputing award:

Dmitri Komatisch (U. Pau):
Dimitri Komatitsch, Fluid-solid coupling on a cluster of GPU graphics cards for seismic wave propagation, Comptes Rendus de l'Académie des Sciences 
– Mécanique, doi: 10.1016/j.crme.2010.11.007, in press (2011). PDF reprint BibTeX

Dimitri Komatitsch, Gordon Erlebacher, Dominik Göddeke and David Michéa, High-order finite-element seismic wave propagation modeling with MPI on a 
large GPU cluster, Journal of Computational Physics, vol. 229(20), p. 7692-7714, doi: 10.1016/j.jcp.2010.06.024 (2010). PDF reprint BibTeX

David Michéa and Dimitri Komatitsch, Accelerating a 3D finite-difference wave propagation code using GPU graphics cards, Geophysical Journal International, vol. 
182(1), p. 389-402, doi: 10.1111/j.1365-246X.2010.04616.x (2010). PDF reprint BibTeX
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Computational Seismology
GPU Cluster Configuration

We chose Intel icc over GNU gcc because it turns out that the former leads to significantly faster code for our application;
note that this implies that measured GPU speedup would be significantly higher if using GNU gcc, which again shows how
sensitive speedup values are to several factors, and thus how cautiously they should be interpreted. Floating point trapping is
turned off (using -ftz) because underflow trapping occurs very often in the initial time steps of many seismic propagation
algorithms, which can lead to severe slowdown.

In the case presented in this article, the CPU reference code to compute speedup is already heavily optimized [13,38]
using the ParaVer performance analysis tool [86], in particular to minimize cache misses. The current code is based on a par-
allel version that won the Gordon Bell supercomputing award on the Japanese Earth Simulator—a NEC SX machine—at the
SuperComputing’2003 conference [13] and that was among the six finalists again at the SuperComputing’2008 conference
for a calculation first on 62,000 processor cores and later on close to 150,000 processor cores with a sustained performance
level of 0.20 petaflops [25].

Our original seismic wave propagation application being written in Fortran95 + MPI, we rewrote the computation kernel
of the original code in C + MPI to facilitate interfacing with CUDA, which is currently easier from C. In a previous study [71]
we found that this only has a small impact on performance, slowing down the application by about 12%.

Each mesh slice contains 446,080 spectral elements; each spectral element contains 125 grid points, many of which are
shared with neighbors as explained in previous sections and in Fig. 2. Each of the 192 mesh slices contains 29,606,949 unique
grid points (i.e., 88,820,847 degrees of freedom since we solve for the three components of the acceleration vector). The total
number of spectral elements in the mesh is 85.6 million, the total number of unique grid points is 5.684 billion, and at each
time step we thus compute a total of 17 billion degrees of freedom.

Out of the 446,080 spectral elements of each mesh slice, 122,068 are ‘outer’ elements, i.e., elements in contact with MPI
cut planes through at least one mesh point (see Fig. 3) and 446,080–122,068 = 324,012 elements are ‘inner’ elements. Thus
the inner and outer elements represent 27.4% and 72.6% of the total number of elements, respectively. Because we exchange
2D cut planes, composed of only one face, one edge or one point of each element of the cut plane, the amount of data sent to
other GPUs via MPI is relatively small compared to the 3D volume of each mesh slice. In practice we need to exchange values
for 3,788,532 cut plane points out of the 29,606,949 grid points of each mesh slice, i.e., 12.8%, which corresponds to 43 MB
because for each of these points we need to transfer the three components of the acceleration vector, i.e., three floats. Thus,
the transfer to the CPU and from there to other GPUs can be effectively overlapped with the computation of the 3D volume of
the inner elements.

6.1. Performance of the CUDA + MPI code

Let us first analyze weak scaling, i.e., how performance varies when the number of calculations to perform on each node is
kept constant and the number of nodes is increased. For wave propagation applications it is often not very interesting to
study strong scaling, i.e., how performance varies when the number of calculations to perform on each node is decreased
linearly, because people running such large-scale HPC calculations are very often interested in using the full capacity of each
node of the machine, i.e., typically around 90% of its memory capacity. We therefore designed a mesh that consumes 3.6 GB
out of a maximum of 4 GB available on each GPU. The 192 mesh slices thus require a total of 700 GB of GPU memory.

All the measurements correspond to the duration (i.e., elapsed time) of 1000 time steps, keeping in mind that at each iter-
ation the spectral-element algorithm consists of the exact same numerical operations. To get accurate measurements, not

Fig. 9. Description of the cluster of 48 Teslas S1070 used in this study. Each Tesla S1070 has four GT200 GPUs and two PCI Express-2 buses (i.e., two GPUs
share a PCI Express-2 bus). The GT200 cards have 4 GB of memory, and the memory bandwidth is 102 GB/s with a memory bus width of 512 bit. The Teslas
are connected to BULL Novascale R422 E1 nodes with two quad-core Intel Xeon X5570 Nehalem processors operating at 2.93 GHz. Each node has 24 GB of
RAM. The network is a non-blocking, symmetric, full duplex Voltaire InfiniBand double data rate (DDR) organized as a fat tree.
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Computational Seismology
CPU vs. GPU Performance 

Dimitri Komatitsch, Gordon Erlebacher, Dominik Göddeke and David Michéa, High-order finite-element seismic wave propagation modeling with MPI on a 
large GPU cluster, Journal of Computational Physics, vol. 229(20), p. 7692-7714, doi: 10.1016/j.jcp.2010.06.024 (2010). PDF reprint BibTeX

Fig. 16 shows some reference CPU weak scaling results, using four cores per node out of the eight cores that are available,
for the same mesh as for the GPU tests, i.e., with 3.6 GB on each core, or 14.4 GB per node, out of a maximum of 24 GB per
node. To use the resources in a balanced way, we assign two MPI processes to each of the two quad-core Nehalem processors
on each node. We pin processes to cores using process binding to avoid process migration by the Linux kernel during the
runs. Again, each run is repeated three times. We overlay reference CPU weak scaling results using all eight cores per node.
To do this, we cut each mesh slice in two but use twice as many MPI processes, thus using 1.8 GB of memory per core instead
of 3.6 GB but keeping the same total mesh size. On average the weak scaling is excellent because communications are almost
completely overlapped by calculations and thus hidden, as in the GPU cases discussed above. We observe small fluctuations,
with a maximum amplitude of about 2%, that are larger when using the whole 8 cores per node and that are probably due to
resource sharing between processes, to NUMA effects, to interconnect contention or to memory bus contention. The average
elapsed time per time step is 6.61 s when we use four cores and 4.08 s when we use eight cores. Therefore by using eight
cores instead of four, as expected due to resource sharing, we only gain a factor of 6.61 s/4.08 s = 1.62, significantly lower
than the ideal factor of 2.

Fig. 17 shows GPU/CPU speedup, computed as the ratio of the average timings of the reference CPU runs from Fig. 16 and
the average timings of the GPU runs of Fig. 11 (with MPI + PCIe bus sharing). The average speedup of GPU runs versus CPU
runs on four cores per node is 19.83, the maximum is 20.26 and the minimum is 19.62; versus CPU runs on eight cores per
node, the average is 12.25, the maximum is 12.56 and the minimum is 11.96. The values around 20x are smaller than the
factor of 25x that we got in our first article [71], which only considered the case of a single GPU (and no MPI). The two rea-
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Weak Scaling Results 

We can confirm this by estimating the cost of running the code without overlap between communication and computa-
tion using blocked MPI send and receives. In Fig. 15, in which we compare the GPU weak scaling results of Fig. 11 with the
same simulations performed using blocking MPI, we see that the average value of elapsed time per time step is 0.333 s in the
case of non blocking MPI and 0.388 s in the case of blocking MPI, i.e., a difference of (0.388–0.333) s/0.333 s = 0.165 = 16.5%.
This shows that overlapping is efficient in our implementation of the spectral-element algorithm and that using a simpler
blocking implementation would have resulted in a loss of performance. More importantly, previous experiments have shown
blocking communications to be untenable because of bottlenecks once the number of processors exceeds on the order of
2000 [38], resulting in very poor scaling above that limit. Although the number of GPUs in this article is far below this thresh-
old, we anticipate clusters with several thousand GPUs in the near future and thus using blocking MPI is not a valid option.

Comparing the green curves (full calculation for the real problemwithout sharing of the PCIe bus) and the magenta curves
(modified calculation in which the MPI buffers are not built, nothing gets copied through the PCIe bus, and MPI is completely
turned off) gives an estimate of the total cost of running the problem on a cluster, i.e., having cut the mesh into pieces, which
implies building MPI buffers, sending/receiving them with MPI, and processing them once they are received. We measure
that this total cost is of the order of 0.325 s/0.291 s = 1.117 = 11.7%. We emphasize that this cost does not affect the efficiency
and scalability of the code, as it is not serialized.
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GPU: Blocking vs non-
blocking MPI

Fig. 16 shows some reference CPU weak scaling results, using four cores per node out of the eight cores that are available,
for the same mesh as for the GPU tests, i.e., with 3.6 GB on each core, or 14.4 GB per node, out of a maximum of 24 GB per
node. To use the resources in a balanced way, we assign two MPI processes to each of the two quad-core Nehalem processors
on each node. We pin processes to cores using process binding to avoid process migration by the Linux kernel during the
runs. Again, each run is repeated three times. We overlay reference CPU weak scaling results using all eight cores per node.
To do this, we cut each mesh slice in two but use twice as many MPI processes, thus using 1.8 GB of memory per core instead
of 3.6 GB but keeping the same total mesh size. On average the weak scaling is excellent because communications are almost
completely overlapped by calculations and thus hidden, as in the GPU cases discussed above. We observe small fluctuations,
with a maximum amplitude of about 2%, that are larger when using the whole 8 cores per node and that are probably due to
resource sharing between processes, to NUMA effects, to interconnect contention or to memory bus contention. The average
elapsed time per time step is 6.61 s when we use four cores and 4.08 s when we use eight cores. Therefore by using eight
cores instead of four, as expected due to resource sharing, we only gain a factor of 6.61 s/4.08 s = 1.62, significantly lower
than the ideal factor of 2.

Fig. 17 shows GPU/CPU speedup, computed as the ratio of the average timings of the reference CPU runs from Fig. 16 and
the average timings of the GPU runs of Fig. 11 (with MPI + PCIe bus sharing). The average speedup of GPU runs versus CPU
runs on four cores per node is 19.83, the maximum is 20.26 and the minimum is 19.62; versus CPU runs on eight cores per
node, the average is 12.25, the maximum is 12.56 and the minimum is 11.96. The values around 20x are smaller than the
factor of 25x that we got in our first article [71], which only considered the case of a single GPU (and no MPI). The two rea-
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core out of 24 GB. Weak scaling is excellent in both cases owing to very good overlap between communication and calculation (as illustrated in Fig. 15).
Fluctuations are more pronounced when all eight cores are used per node because of resource sharing.
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CPU: 4 vs 8 cores/node

Speedup GPU/CPU 
~12x or 20x 

(depending on how you count)
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That’s a much harder problem (to be 
continued...)
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