
PASI, 4 Jan 2011

Exaflop/s, seriously!
David Keyes

Division of Mathematical and Computer Sciences and Engineering, KAUST
Fu Foundation Professor of Applied Mathematics, Columbia University

Based on an article “The Exascale: Why and How” to appear in 2011 in
Comptes Rendus de l’Academie des Sciences (CRAS)

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 Credits for this talk include the IESP team
www.exascale.org

The International Exascale
 Software Roadmap,
J. Dongarra, P. Beckman, et al.,
 International Journal of High
 Performance Computer
 Applications 25(1), 2011 (to
 appear), ISSN 1094-3420.

PASI, 4 Jan 2011

PASI, 4 Jan 2011

 Questions to consider
n Why the push to the exascale?
n What will systems a thousand times faster than today’s

 petascale systems look like architecturally?
n What will be the implications of their budgets for

 power and acquisition?
n What should we do about it to prepare, algorithmically?

PASI, 4 Jan 2011

Why push to extreme scale?
n  Better resolve model’s full, natural range of length or time scales
n  Accommodate physical effects with greater fidelity
n  Allow the model degrees of freedom in all relevant dimensions
n  Better isolate artificial boundary conditions (e.g., in PDEs) or better

 approach realistic levels of dilution (e.g., in MD)
n  Combine multiple complex models
n  Solve an inverse problem, or perform data assimilation
n  Perform optimization or control
n  Quantify uncertainty
n  Improve statistical estimates

n  Operate without models (machine learning)

“Third paradigm”

“Fourth paradigm”

PASI, 4 Jan 2011

The third paradigm
The “third paradigm” paper (1986)

“During its spectacular rise, the computational has joined the
 theoretical and the experimental branches of science…”
 – Peter D. Lax, in J. Stat. Phys., 43:749-756

The “Grand Challenge” paper (1989)
"Grand Challenges of Computational Science” … define

 opportunities to open up vast new domains of scientific research,
 domains that are inaccessible to traditional experimental or
 theoretical models of investigation.” – Kenneth G. Wilson,

in Future Generation Computer Systems, 5:171-189

PASI, 4 Jan 2011

“….Authors in this volume … refine an
 understanding of this new paradigm

 from a variety of disciplinary
 perspectives.”

 — Gordon Bell, Microsoft Research

The Data-centric world paper (2006)
“The data need to be curated with metadata,
stored under a schema with a controlled vocabulary, and
 indexed and organized for quick and efficient temporal,
 spatial, and associative search.”
– James N. Gray et al., in IEEE Computer, 39:110-112

The fourth paradigm

PASI, 4 Jan 2011

Combining the paradigms:
forward vs. inverse problems

forward problem

solution

inverse problem

model model

params

+ regularization

PASI, 4 Jan 2011

How would these needs be felt at, e.g.,
an oil company?

n  Better resolve model’s full, natural range of length or time scales
  Discretize a reservoir into more layers and horizontal cells

n  Accommodate physical effects with greater fidelity
  Replace black oil assumption with fuller compositional effects

n  Allow the model degrees of freedom in all relevant dimensions
  Here, all three space dimensions, plus time

n  Better isolate artificial boundary conditions or better approach
 realistic levels of dilution
  Use additional cells outside of the production and injection zones to

 buffer the zones where data is needed from unknown geology and
 fluxes

PASI, 4 Jan 2011

n  Solve an inverse problem, or perform data assimilation
  Match simulation with drilling and historical production records to

 better estimate unknown parameters in the model and nudge the
 simulation towards reality, where and when reality is known

n  Combine multiple complex models
  Unify the simulations of adjacent fields to capture the effects of

 producing one of them on the other, monitor production through
 changes in seismic profiles, or model surface subsidence

n  Perform optimization or control
  Select a strategy for injection and pumping in the thousands of wells

 per reservoir

How would these needs be felt at, e.g.,
an oil company?

PASI, 4 Jan 2011

n  Quantify uncertainty
  Given the many unresolvable uncertainties in program inputs, bound

 the error in the outputs in terms of errors in the inputs

n  Improve statistical estimates
  Treating uncertain inputs as random, improve output estimates

How would these needs be felt at, e.g.,
an oil company?

PASI, 4 Jan 2011 c/o A. Dogru (used by permission)

PASI, 4 Jan 2011

Need for extreme scale goes far beyond
 these, however!

n  Oil companies are vast, with dozens of reservoirs “upstream”
 and many refineries and transportation systems “downstream”

n  Oil companies function under many constraints for product
 supply and must seek to maximize profit while satisfying
 output demands in many different product streams producible
 from the same crude

n  Tens of thousands of “valves” (literal and figurative, like
 workforce and other controls) need to be scheduled
 continuously

n  Mathematically, this is a massive, nonlinear and possibly
 nonrobust constrained optimization problem – insatiably
 power hungry

PASI, 4 Jan 2011

How should such resources be managed?
n  They are too complex for a self-contained, self-consistent theory
n  They are unsuitable for experiment, because you can only do the

 experiment (e.g., exploiting a reservoir) once
n  Engineering heuristics are useful (and used!), but

  gone are the days when employees spent decades understanding a single
 reservoir

  the external forcings (e.g., world economy) change daily, making history
 less useful

n  Simulation is an incredibly useful tool for exploring scenarios
 experimentally in a virtual world

n  Data mining and machine learning may be even more useful
 tools in the future

PASI, 4 Jan 2011

NEXT 9 SLIDES CONTAIN
RAW OUTPUT FROM THE

OCTOBER 2010 IESP WORKSHOP

PASI, 4 Jan 2011

IESP roadmapping:
19 candidate exascale applications

n  Caveat: Neither a complete nor an independent basis, but
 productive to consider
  Interesting feature: 7 of the apps represented at IESP are Gordon

 Bell prize winners or finalists

n  Discrete algorithms are underrepresented, so far
n  Not necessarily representative of IESP collaborating country

 research priorities or proportions for exascale simulation
-enabled or data-enabled computing

PASI, 4 Jan 2011

Applications inventory
n  Magnetically Confined Fusion

  Princeton PPL
  Max Planck Inst.
  LBNL
  Kyoto University

n  Molecular Dynamics
  Chinese Academy of Sciences
  LANL
  LLNL

n  Climate
  CMCC

n  Combustion
  ORNL

n  Radio Astronomy
  CSIRO

n  Aerodynamics
−  NASA
−  CERFACS

•  Fluid Dynamics and Heat
Transfer

–  ANL

•  Neutron Transport
–  ANL

•  Nuclear Fuel Assemblies
–  EDF

•  HEDP and Rad Hydro
–  U Chicago
–  ORNL

•  Electronic Structure
–  Fritz-Haber-Inst.
–  ORNL

PASI, 4 Jan 2011

Applications survey questions
n  Programming Models

  message-passing, shared memory, hybrid
n  Current scaling performance and percentage of peak

  high-water mark scalability on a node and between nodes
n  Algorithm dependencies

  PDEs, IEs, N-body, FFT, FMM, etc.
n  Software library dependencies

  ScaLAPACK, PETSc, Zoltan, VisIt, etc.
n  Balance of hardware resources

  Input/Output vs. Computation
  Communication vs. Computation
  Synchronization vs. Computation

n  Scaling requirements of memory with flop/s
  Strong (if relevant)
  Weak

PASI, 4 Jan 2011

PI Application Programming Model Scaling Cores % Peak BW Algorithmic Libraries I/O vs Comp Comm Synch Memory

per node limited? Dependencies vs. Comp. vs. Comp. vs. Flop/s

Ethier Fusion, PIC hybrid no limit particles 12 10% PDEs: equil w MG ParMetis important: pre/post frequent log-linear

DD and particle dist. grid replicated PETSc

Hypre

Guenter Fusion, PIC OpenMP/MPI hybrid 260K 32 10% FFTs BLAS important: pre/post latency crit. frequent log-linear

GPUs under investigationno known limit PDE:3+2D ScaLAPACK BW less crit.

PIC, Monte Carlo

Koniges Fusion, Gyro MPI w/hierarchical splittingno known limit 4 to 8 10% PDE: 3+2D, struct FFTW not limiting log-linear

collision, unstruct UMFPACK

BLAS

ScaLAPACK

Nakashima Fusion, PIC OpenMP/MPI hybrid 10K 16 10% yes PDE: equil RNG linear per step log-linear

GPUs useful in phases vulnerable to imbalance PIC

bulk synch SPMD DD

Aloisio Climate OpenMP/MPI hybrid PDEs: evol FFTW important: pre/post superlinear per step log-linear

32 PDEs: evol PETSc

DD with space-filling curves ScaLAPACK

Trilinos

Zhong MD DD and particle dist. 2K 8 N-body FFTW not limiting superlinear frequent log-linear

GPUs FFT

FMM

SwaminarayanMD hybrid 100K 48 18-36% yes not limiting log-linear

GPU

Cornwell Radio Astro SPMD DD 1M threads 3 20-40% FFT BLAS EB per day can be limiting log-linear

no known limit 5% GPU GRAPHLAB

Keyes Aerodynamics partial hybrid no known limit 4 5-15% yes PDE: equil ParMetis not limiting const w/weak frequent log-linear

bulk synch SPMD DD PETSc (min 1K vert/proc)

Fischer Fluid/Heat Transferpartial hybrid 260K 4 yes PDE: equil VisIt important: pre/post const w/weak frequent log-linear

bulk synch SPMD DD no known limit (min 5K vert/proc)

MPI

Siegel Neutron Transportdomain/energy/angle decomp 5-8% PETSc important: pre/post log-linear

MPI ParMetis (min 1K vert/proc)

Triangle

Graziani HEDP with FLASH bulk synch SPMD DD 130K, incl I/O 8-15% PDE: equil PARAMESH log-linear

MPI AMR Chombo, PETSc, Hypre in futureimportant: pre/post frequent

output order of mag smaller than memory footprintamenable to weaker

Scheffler Electronic StructureOpenMP/MPI hybrid 40K 10-15% eigensolver BLAS important: pre/post frequent linear

DFT ScaLAPACK

Berthou CFD for Nuclear ReatorsSPMD DD >10K PDE: equil log-linear

PDE: evol

Andre Gas Turbines nested SPMD within MPMD100K PALM important: pre/post log-linear

Sankaran/ChenCombustion bulk synch SPMD DD 224K 6 5-10% yes unrolled integrator periodic dump per step log-linear

limited hybrid PDE: evol small input

Eisenbach First Principle ThermodynamicsMC "walkers" outside of 224K 6 75% BLAS (ZGEMM)important: pre/post log-linear

bulk synch SPMD DD ScaLAPACK (multiple atoms per walker)

Messer Astro Rad Hydro bulk synch SPMD DD 90K 6 5-15% yes PDE: equil PETSc important: pre/post log-linear

OpenMP for energy/angle FFT SILO

AMR pointwise

Streitz Classical MD bulk synch SPMD DD 300K 4 30% N-body per step llinear

hybrid possible over physics FFT

86K

nested SPMD within MPMD

PASI, 4 Jan 2011

Dominant findings on models and scaling
n  Predominantly bulk synchronous, MPI and SPMD, either

 domain-, particle-, or other object-decomposed
n  Electronic Structure codes, however, are dominantly not MPI,

 but global shared memory (e.g., GlobalArrays, Linda)
n  Other models are Charm++ (NAMD) and distributed objects

 built on top of active messages and Pthreads
n  Some codes have multiple phases with not necessarily

 compatible load-balanced decompositions
n  Typically already running hybrid MPI/OpenMP with “small”

 numbers of cores, up to 48
n  We can typically weak-scale without serious loss of scaling

 out to the edge of today’s machines (300K cores), and
 theoretically beyond

PASI, 4 Jan 2011

Dominant findings on resources
n  Memory bandwidth

  Majority of the apps are already BW limited in most phases even
 with relatively few cores

n  Flop/s per byte of storage
  Generally linear or log-linear, in weak scaling

n  I/O versus computation
  With notable exceptions that are I/O intensive, the majority of

 our peta-apps need intensive I/O only at start-up and in dumping
 the output

  We expect check-pointing to become much more intensive at the
 exascale, and perhaps limiting, even with users taking charge of
 check-pointing minimal state

PASI, 4 Jan 2011

Dominant findings on resources, cont.
n  Communication versus computation

  In weak scaling there is generally a constant ratio of near
-neighbor communication to computation, represented by a
 minimum collections of vertices, cells, particles, etc., per
 processor

n  Synchronization versus computation
  We require frequent global collectives

  At least once per timestep in evolutionary codes
  Even more frequently when implicit linear algebra needs to be performed

 within each timestep

PASI, 4 Jan 2011

Core algorithms

n  PDEs: equilibrium (implicit)
n  PDEs: evolution (explicit)
n  FFT
n  FMM
n  Particle pushing
n  Adaptive mesh refinement
n  Sparse and dense linear algebra
n  ODE integrators

PASI, 4 Jan 2011

Minimal library dependencies
n  MPI, GlobalArrays, GasNet
n  ParMetis
n  BLAS, ScaLAPACK
n  UMFPACK, SuperLU, MUMPS
n  PETSc, hypre, Trilinos, SUNDIALS
n  Chombo, SAMRAI
n  FFTW
n  GraphLib
n  VisIt, VTK
n  Triangle
n  PALM
n  SILO, ADIOS, HDF5
n  BOOST

PASI, 4 Jan 2011

END OF PRIMARY SOURCE DATA

PASI, 4 Jan 2011

 Remaining presentation plan
n  Reflect briefly on progress in high-end scientific

 computing
  as captured in ACM Gordon Bell prize trends
  as analyzed in some of the eight U.S. DOE “extreme scale”

 workshops of 2009-2010 (extremescale.labworks.org)

n  Peek briefly at structure of a core motivating application
n  Take a look at a few hurdles and possible solutions in

 algorithmic and programming model development arenas

PASI, 4 Jan 2011

 Exascale considerations
n  Applications

  What do we want to simulate at the exascale, why, and in what best
 formulation or sets of formulations?

n  Architectures
  What are the hurdles of granularity, cost, power, programmability,

 systems software, reliability (resilience) in delivering exascale
 systems, and how can they be surmounted?

n  Algorithms
  How can we get the applications to run on architectures that are

 physically and fiscally achievable (“co-design” of architecture and
 application)

PASI, 4 Jan 2011

Philosophy of an algorithmicist
n  Applications are given (as function of time)
n  Architectures are given (as function of time)
n  Algorithms and software must be adapted or created to bridge to

 hostile architectures for the sake of the complex applications
  as important as ever today, with transformation of Moore’s Law from

 speed-based to concurrency-based, due to power considerations
  scalability still important, but new memory-bandwidth stresses arise

 when on-chip memories are shared
  greatest challenge is lack of performance robustness of individual

 cores, which can spoil load balance
n  Knowledge of algorithmic capabilities can usefully influence

  the way applications are formulated
  the way architectures are constructed

n  Knowledge of application and architectural opportunities can
 usefully influence algorithmic development

PASI, 4 Jan 2011

Six orders of
 magnitude in
 20 years

Tracking third paradigm progress:
Gordon Bell Prize “peak performance”

2010 FMM Physiology 196,608 XT-5 780,000

PASI, 4 Jan 2011

Tracking third paradigm progress:
Gordon Bell Prize: “price performance”

5.5 orders of
 magnitude in
 20 years

2009 Gravitation & turbulence cluster (GPU) 0.0081

PASI, 4 Jan 2011

2002
2003

2003-2004 (2 vol)
2004

 2006
2006

2007

Many recent reports ride
the “Bell curve” for

 simulation

Fusion Simulation
 Project

June 2007

2007 These are
mostly downloadable;
(e-mail me if interested)

18th AIAA Computational Fluid Dynamics Conference, June 25–28, 2007, Miami, FL

Petaflops Opportunities for the NASA Fundamental

Aeronautics Program

Dimitri J. Mavriplis ∗

David Darmofal †

David Keyes ‡

Mark Turner §

The premise of this paper is the observation that the engineering community in general,
and the NASA aeronautics program in particular, have not been active participants in the
renewed interest in high performance computing at the national level. Advocacy for high
performance computing has increasingly been taken up by the science community with
the argument that computational methods are becoming a third pillar of scientific discov-
ery alongside theory and experiment. Computational engineering, on the other hand, has
continually been relegated to a set of mature software tools which run on commodity hard-
ware, with the notion that engineering problems are not complex enough to warrant the
deployment of state-of-the-art hardware on such a vast scale. We argue that engineering
practices can benefit equally from an aggressive program in high performance computa-
tional methods, and that these problems are at least as important as science problems,
particularly with regards to any national competitiveness agenda. Because NASA aero-
nautics has historically been a principal driver of computational engineering research and
development, the current situation represents an opportunity for the NASA aeronautics
program to resume its role as a leading advocate for high performance computational engi-
neering at the national level. We outline a sample set of Grand Challenge problems which
are used to illustrate the potential benefits a reinvigorated program could produce, and use
these examples to identify critical barriers to progress and required areas of investment.
We conclude by noting that other communities have spent significant efforts in formulating
the case for increased investment in high performance computing activities, and that a
similar roadmap will be required for the engineering community.

I. Introduction

In 1976, the ILLIAC IV supercomputer went into production use at the NASA Ames Research Center.

Although the performance of this machine was below original design expectations, the ILLIAC IV never-

theless constituted the most powerful supercomputer in the world at the time,
1

and gave NASA researchers

an order of magnitude more computational power than had previously been available. The driving appli-

cations in the agency at that time were none other than computational fluid dynamics (CFD), and NASA

quickly became the high-performance computing (HPC) leader in this field, thanks in part to visionary lead-

ership, state-of-the-art facilities, and forward thinking education and hiring practices.
2

The rapid pace of

development and early success of CFD within the NASA aeronautics program led to the creation of the Nu-

merical Aerodynamic Simulator (NAS), which hosted a variety of leading edge supercomputers over the 80’s

and 90’s. When the US Government developed a comprehensive multi-agency program for high-performance

computing under the High-Performance Computing and Communication Program in the 1990’s (HPCCP),

∗Professor, Department of Mechanical Engineering, University of Wyoming, AIAA Associate Fellow.
†Associate Professor, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Member AIAA.
‡Professor, Department of Applied Physics and Applied Mathematics, Columbia University.
§Research Professor, Department of Aerospace Engineering & Engineering Mechanics, University of Cincinnati, AIAA As-

sociate Fellow.
Copyright c� 2007 by Dimitri J. Mavriplis. Published by the American Institute of Aeronautics and Astronautics, Inc. with

permission.

1 of 36

American Institute of Aeronautics and Astronautics Paper 2007-4084

2007

 Mathematical
 Challenges for the

 Department of
 Energy

January 2008

2008
 2010

2010

How are problems like these solved at
 the petascale today?

  Iterative methods based on domain decomposition and
 message-passing
  Each individual processor works on a subdomain of

 the original problem and exchanges information at its
 boundaries with other processors that own
 subdomains with which it interacts causally, to evolve
 in time or to establish equilibrium (steady state)

  The programming model is SPMD/BSP/CSP
  Single Program, Multiple Data
  Bulk Synchronous Programming refers to alternating

 nearly uniformly sized chunks of work on each
 processor with bursts of exchanges of data

  a.k.a. Communicating Sequential Processes
  Nearly all successful large-scale simulations are built this

 way today – and this may change radically at the exascale

PASI, 4 Jan 2011

SPMD parallelism
with domain decomposition

Partitioning of the grid
 induces block structure on
 the system matrix
 (Jacobian)

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

 to proc “2”

PASI, 4 Jan 2011

Domain decomposition
is relevant to any local stencil formulation

finite elements finite volumes

•  All lead to sparse Jacobian matrices

J=

node i

row i
•  However, the inverses are generally
 dense; even the factors suffer
 unacceptable fill-in in 3D
•  Want to solve in subdomains only, and
 use to precondition full sparse problem

finite differences

uniform Cartesian
 adaptive

PASI, 4 Jan 2011

Newton-Krylov-Schur-Schwarz:
a solver “workhorse”

Newton
nonlinear solver
asymptotically

 quadratic

Krylov
accelerator
spectrally
adaptive

Schur
preconditioner
parallelizable
 by structure

Schwarz
preconditioner
parallelizable

 by domain

PASI, 4 Jan 2011

Workhorse innards: Krylov-Schwarz,
a Bulk Synchronous Process (“BSP”)

local
 scatter

Jac-vec

multiply

precond
 sweep

daxpy inner
 product

Krylov
 iteration

…

Idle time due to load imbalance becomes a
 challenge at, say, one million cores, when
 one processor can hold up all of the rest at a
 synchronization point

P1:

P2:

Pn:

communication imbalance computation imbalance

PASI, 4 Jan 2011

Newton-Krylov-Schwarz
 for (k = 0; k < n_Newton; k++) {
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) {
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop

Newton
 loop

Krylov
 loop

concurrent
 preconditioner

 loop

Outer loops (not shown): continuation, implicit timestepping, optimization

PASI, 4 Jan 2011

What will first “general purpose” exaflop/s
 machines look like?

n  Many paths beyond today’s CMOS silicon-based logic
n  Earliest and most significant post-CMOS device improvement

 may be carbon nanotube memory, but not in 10 years
  up to tens of GB on a 1 cm-square die
  will deal directly with the “memory wall” problem

n  Two paths from peta- to exa-
  IBM: BlueGene’s successor, maybe at 22nm linewidth technology –

 some architectural merger of BlueGene, Power, and Cell
  All others: GPGPU-based spinoff

n  At least for PDE-based scientific codes:
  programming model will still be message-passing (due to large legacy

 code base), adapted to multicore processors beneath the MPI interface,
 and made less synchronous

PASI, 4 Jan 2011

Potential System Architectures
What is Possible?

c/o SciDAC Review 16, February 2010

PASI, 4 Jan 2011

Prototype exascale hardware:
a heterogeneous, distributed memory
GigaHz KiloCore MegaNode system

c/o P. Beckman

~3

PASI, 4 Jan 2011

Hurdle #1: memory bandwidth eats up the
 entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)
Feasible Power Envelope (20MW)

c/o John Shalf, LBNL

PASI, 4 Jan 2011

Hurdle #1: memory bandwidth eats up the
 entire power budget

c/o John Shalf, LBNL

PASI, 4 Jan 2011

This situation will not improve enough by 2018
 to permit us to be profligate with memory

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

c/o John Shalf, LBNL

PASI, 4 Jan 2011

Hurdle #2: memory capacity eats up the
 entire fiscal budget

$0.00

$100.00

$200.00

$300.00

$400.00

$500.00

$600.00

16 32 64 128 256

C
os

t i
n

M
ill

io
ns

 o
f D

ol
la

rs

Petabytes of Memory

Cost in $M (8 gigabit modules)

Cost in $M (16 Gigabit modules)

1/2 of $200M system

c/o John Shalf, LBNL

PASI, 4 Jan 2011

Hurdle #3: power requires slower clocks
 and greater concurrency

c/o SciDAC Review 16, February 2010

PASI, 4 Jan 2011

Implications
n  Expanding the number of nodes (processor-memory units) to

 106 is not a serious threat to algorithms that lend themselves
 to well-amortized precise load balancing (like PDEs)
  Provided that the nodes are performance reliable

n  The real challenge is expanding the number of cores on a node
 to 103

  Must be done while memory and memory bandwidth per node
 expand by (at best) ten-fold less

n  It is already about 103 slower to to retrieve an operand from
 main DRAM memory than to perform an arithmetic operation
 – will get worse by a factor of ten
  Almost all operands must come from registers or upper cache

PASI, 4 Jan 2011

Implications, cont.
n  Draconian reduction required in power per flop and per byte

 will make computing and copying data less reliable
  voltage difference between “0” and “1” will be reduced
  circuit elements will be smaller and subject to greater physical

 noise per signal
  there will be more errors that must be caught and corrected

n  Power will have to be cycled off and on or clocks slowed and
 speeded based on compute schedules and based on cooling
 capacity
  makes per node performance rate unreliable

PASI, 4 Jan 2011

Sources of nonuniformity
n  System

  Manufacturing, dynamic power management, soft errors, hard
 component failures, OS jitter, software-mediated resiliency,
 TLB/cache performance variations, network contention, etc.

n  Algorithmic
  Physics at gridcell scale (e.g., table lookup, equation of state,

 external forcing), discretization adaptivity, solver adaptivity,
 precision adaptivity, etc.

n  Effects are similar when it comes to waiting at synchronization
 points

n  Possible solutions for system nonuniformity will improve
 programmability, too

PASI, 4 Jan 2011

Implications, cont.

Pax MPI
(1994 - 2010)

PASI, 4 Jan 2011

Moans from application developers
n  The present consensus path to exascale is thousand-fold

 manycore
  However, memory bandwidth is already limiting today’s low core count

 nodes to less than 10% of peak on most apps, whose kernels offer little
 cache reuse (e.g., stencil ops or sparse matvecs)

  Processors are cheap and (relative to memory) small in chip area and
 relatively low in power, so there is no harm in having them in excess
 most of the time, but the opportunities for exploiting the main new
 source for performance are undemonstrated for most applications

n  While there is opportunity for combining today’s individually
 high capability simulations into complex simulations, there is
 no silver bullet for merging the data structures of the separate
 applications
  The data copying inherent in the code coupling will likely prevent

 exploitation of the apparent concurrency opportunities

PASI, 4 Jan 2011

Chief issues identified by apps groups of the
International Exascale Software Project (IESP)

n  I/O
n  Fault tolerance
n Reproducibility of computations
n  Programming models and algorithms

PASI, 4 Jan 2011

I/O
n  For some important apps, I/O is a likely

 bottleneck
  For input, for output (including visualization), or for

 checkpointing, or any combination

n  I/O must be acknowledged as primary for many
 apps (though certainly not all), but is beyond the
 scope of this talk

PASI, 4 Jan 2011

Fault tolerance
n  IESP users reluctantly recognize that fault

 tolerance is a shared responsibility
  It is too wasteful of I/O and processing cycles to

 handle faults purely automatically

n Different types of faults may be handled different
 ways, depending upon consequences evaluated
 by scientific impact

n  Strategic, minimal workingset checkpoints can be
 orchestrated by application developers and users

PASI, 4 Jan 2011

Reproducibility
n  IESP users realize that bit-level reproducibility is unnecessarily

 expensive most of the time
n  Though scientific outcomes must be run- and machine-independent,

 we have no illusions about bit-level reproducibility for individual
 pairs of executions with the same inputs
  Since operands may be accessed in different orders, even floating point

 addition is not commutative in parallel and on inhomogeneous hardware
 platforms; this has been true for a long time

  A new feature, with an emphasis on low power (low voltage switching),
 is that lack of reproducibility may emerge for many other (hardware
-based) reasons

  If applications developers are tolerant of irreproducibility for their own
 reasons, e.g., for validation and verification through ensembles, then this
 has implications for considering less expensive, less reliable hardware

PASI, 4 Jan 2011

Programming model
n  Prior to possessing exascale hardware, users can prepare

 themselves by exploring new programming models
  on manycore and heterogeneous nodes

n  Attention to locality and reuse is valuable at all scales
  will produce performance paybacks today and in the future

n  New algorithms and data structures can be explored under the
 assumption that flop/s are cheap and moving data is
 expensive

n  Bandwidth pressure can be reduced by considering mixed
-precision algorithms, using lower precision wherever
 possible

n  Relaxation of synchrony could relieve pressure on load
 balance

PASI, 4 Jan 2011

Evolution of parallel programming models:
strong scaling within a node

shared memory
 (OpenMP)

P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P
n

 P

distributed memory
 (MPI)

local

n

 P
n

 P
n

 P
n

 P
n

 P

PGAS

local

n

 P
n

 P
n

 P
n

 P
n

 P

chip
 shared

shared

shared
HPGAS

today’s 1-level models: shared or distributed

tomorrow’s 2- or 3-level models: hybrids

PASI, 4 Jan 2011

Benefits of 2-level parallelism for 3D FFT

0

10

20

30

40

50

60

128 256 512 1024 2048 4096

32 64 128 256 512 1024

P
e
rc

e
n

ta
g

e
 o

f
C

o
m

m

No of Nodes and Cores

Comm Perf of 3D FFT on Franklin

Comm MPI

Comm MPI + OpenMP

Just four
cores per
node

c/o John Shalf, LBNL

PASI, 4 Jan 2011

Hybrid programming model for a full application:
petascale bio-electro-magnetics

Two-pronged Approach (FEM/BEM)
  Cross-validate, verify, & build confidence in

unprecedented petascale results
  Evolve sub-mm resolution human body models
  Next generation EM solvers: FFT-accelerated integral-

equation solvers (BEM prong); HP-adaptive
differential-equation solvers (FEM prong); novel
preconditioned iterative solvers

  Target multi-core clusters: Nested distributed-/shared-
memory parallelism and hybrid programming (MPI/
OpenMP)

  High-fidelity petascale BIOEM simulations
  Shed light to controversial scientific and engineering

questions

High-Fidelity BIOEM Simulation
  Minimize health risks & increase efficiency of

wireless devices
  Existing results contradictory, e.g., do children’s

smaller heads absorb more radiation or allow deeper
penetration? Need reproducible, reliable, high-
accuracy, high-resolution simulations

  Solve coupled Maxwell’s EM and Penne’s Bio-Heat
Transfer equations : Human & device models must
resolve geometry, material, EM wavelength, and
thermal mechanisms (petascale problem)

  Advance the state-of-the-art: Develop novel petascale
BIOEM simulators, investigate and quantify modeling
& analysis errors

Mesh-­‐based	

Geometry	
 	

hp-­‐adap1ve	

FEM	

FFT-­‐accelerated
	
 BEM	

Samples

c/o Leszek Demkowicz, UTexas

PASI, 4 Jan 2011

Hybrid programming models not enough
n  Tools for monitoring the availability and predicted

 performance of resources within an architecture-adaptive
 and application-adaptive are improving

n  However, even perfect knowledge of resource capabilities at
 every moment and perfect load balancers will not rescue
 billion-thread SPMD implementations of PDE simulations,
 etc.
  cost of rebalancing frequently is too large
  Amdahl penalty of failing to rebalance is fatal

PASI, 4 Jan 2011

n  Can write code in styles that do not require artifactual
 synchronization

n  Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; lin_solve, bound_step, update …

n  However, we often insert into this path things that could be done
 less synchronously, because we have limited language
 expressiveness
  Jacobian and preconditioner refresh
  Convergence testing
  Algorithmic parameter adaptation
  I/O, compression
  Visualization, data mining

Evolution of parallel programming models:
breaking the synchrony stronghold

PASI, 4 Jan 2011

Adaptation to
asynchronous programming styles

n  To take full advantage of such asynchronous algorithms, we
 need to develop greater expressiveness in scientific
 programming
  Create separate threads for logically separate tasks, whose priority is

 a function of algorithmic state, not unlike the way a time-sharing OS
 works

  Join priority threads in a directed acyclic graph (DAG), a task graph
 showing the flow of input dependencies; fill idleness with noncritical
 work or steal work

n  Steps in this direction
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne),

 2009]
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]

PASI, 4 Jan 2011

Algorithmic adaptation to
asynchronous programming styles

n  Additive versions of algorithms are often available that
 significantly relax synchronicity

n  Such algorithms have received a bad rap historically
  “chaotic relaxation,” Chazan & Miranker, 1969, for instance

n  However, they can sometimes be made virtually as good as their
 multiplicative cousins
  “AFACx” versus “AFAC,” Lee, McCormick, Philip & Quinlan,

 2003, for instance

PASI, 4 Jan 2011

 Sychronization reducing algorithms will be a
 week-long “Hot Topic” at ICERM, 2011 …

PASI, 4 Jan 2011

 Peta to exa for algorithms
n  Things we need to do for exascale will help us at petascale and

 terascale
  Reducing memory requirements and memory traffic
  Exploiting hybrid and less synchronous parallel programming models
  Co-design of hardware and software (for, e.g., power management)

n  Though it inveighs against the CS aesthetic of “separation of
 concerns”, and involves more issues, co-design requires similar
 attitude and aptitude as in, say, MPI programming today
  Applications programmers have “bit the bullet” and designed excellent

 MPI-based codes, by using quality libraries designed and ported by
 specialists

  Hopefully, we will be able to isolate applications programmers from
 many of the hardware and software architectural details, just as we do
 today from message-passing details

PASI, 4 Jan 2011

Peta to exa
n Billion-way parallelism of GigaHertz cores will not

 significantly expand today’s million-way flat
 parallelism at the node level
  MPI legacy code will still be usable on the “outside” on a

 million nodes
  Changes will be mainly within a node, where we will need

 to evolve thousand-way parallelism: “MPI+X”

n  Principal challenges from peta to exa are within the
 node, and the burden is shared by the marketplace at
 all scales of node aggregation

PASI, 4 Jan 2011

Peta to exa
n Loosely speaking, the algorithmic path from peta to

 exa preserves the focus on weak scaling between
 nodes and adds (mostly) strong scaling within nodes
  The big challenge is the strong scaling within the nodes

n The synchronization cost of global reductions in
 implicit methods propagates inside the node with a
 much smaller coefficient
  Hierarchical reductions

n Dynamic load balance through “work stealing” is
 sufferable since remote DRAM access is no longer
 much slower than local DRAM access

PASI, 4 Jan 2011

Some major challenges that stay the same
in peta to exa

n  Poor scaling of collectives due to internode latency
n  Poor performance of SpMV due to shared intranode

 bandwidth
n  Poor scaling of coarse grids due to insufficient

 concurrency
n Lack of reproducibility due to floating point

 noncommutativity and algorithmic adaptivity
 (including autotuning) in efficient production mode

n Difficulty of understanding and controlling vertical
 memory transfers

Exascale drivers
  Climate, combustion, subsurface flow, nanoscience, and

 other applications depend algorithmically upon a fairly
 common core of mathematical formulations
  mainly partial differential equations (PDEs) and

 molecular dynamics (MD)
  These are multiscale-, multiphysics-based problems

  “Problems that are not multiscale or multiphysics have
 already been solved.” – John Bell, LBNL

  Typical formulations of these problems share a feature
 that work requirements grow faster than memory
 requirements
  This allows memory (Bytes) to grow more slowly than

 operations (Flops), for cost- and power-feasible
 exascale hardware design

Exascale drivers, cont.
  Three motivations

  Intrinsic interest in exascale for the individual
 codes (“capability”)

  Additional interest in their combination
 (“complexity”)

  Still further interest in solving inverse problems,
 sensitivity analysis, and UQ (“understanding”)

Capability – multiple scales
  Multiple spatial scales

  interfaces, fronts, layers
  thin relative to domain

size, δ << L
  Multiple temporal scales

  fast waves
  small transit times relative

to convection or diffusion,
τ << T

  Analyst must first isolate dynamics of interest and model the rest in a system
 that can be discretized over modest range of scales

  Often involves filtering of high frequency modes, quasi-equilibrium
 assumptions, etc.

  May lead to infinitely “stiff” subsystem requiring implicit treatment
  Resulting implicit subsystem may be very ill-conditioned

n Richtmyer-Meshkov instability, c/o A. Mirin, LLNL

  Interfacial coupling examples
  Ocean-atmosphere coupling

 in climate
  Core-edge coupling in

 tokamaks
  Fluid-structure vibrations in

 aerodynamics
  Boundary layer-bulk

 phenomena in fluids
  Surface-bulk phenomena in

 solids

  Bulk-bulk coupling examples
  Radiation-hydrodynamics
  Magneto-hydrodynamics

Complexity – multiple components

n SST Anomalies, c/o A. Czaja, MIT

  Coupled systems may admit destabilizing modes not present in either
 system alone

  Subsurface contaminant
 transport and petroleum
 recovery

  Climate prediction
  Medical imaging
  Stellar dynamics, e.g.,

 supernovae
  Waves in inhomogeneous

 media
  Nondestructive evaluation of

 bridges, other structures

  Uncertainty can be in
  constitutive laws
  initial conditions
  boundary conditions

Understanding – multiple parameters

n Subsurface property estimation, c/o Roxar

  Sensitivity, optimization, parameter estimation, boundary control all
 require the ability to apply the inverse action of the Jacobian of the system
 – a capability present in all Newton-like implicit methods

PASI, 4 Jan 2011

Path for scaling up applications
n  Weak scale applications up to distributed memory limits

  Proportional to number of nodes
n  Strong scale applications beyond this

  Proportional to cores per node/memory unit
n  Scale the workflow, itself

  Proportional to the number of instances (ensembles)
  Integrated end-to-end simulation

n  Co-design process is staged, with any of these types of scaling
 valuable by themselves

n  Big question: does the software for co-design factor? Or is all
 the inefficiency at the data copies at interfaces between the
 components after a while?

PASI, 4 Jan 2011

Limitations to be explored by early apps
n  Strong scaling algorithms

  sufficient coarse grain parallelism but
  expect load imbalance to be the main problem due to

 irregular task/data size
  bulk synchronous algorithms on one million nodes do not

 tolerate load imbalance worse than one part per million for
 a synchronous task

n  Single node performance
  Compiler-generated code for hybrid/multicore
  linear algebra kernels

  typically come with autotuning
  nonstandard linear algebra kernels

  we need the autotuning tools, not just their output

PASI, 4 Jan 2011

Needs to be explored by early apps
n Tools to generate domain-specific languages and for

 powerful source-to-source transformations
  to enhance composability

  want to enable new science and expand developer and user
 communities, so we must *decrease* complexity as we go to
 exascale

  for writing performance-portable code (retargetable)
  to extend effective lifetime of code over generations of

 hardware
  to implement domain-specific frameworks

  frameworks are widely perceived as successful solutions of many
 HPC problems

  the future is increasingly multidisciplinary, so these must
 interoperate

PASI, 4 Jan 2011

Needs to be explored by early apps, cont.
n  Expanded/different programming models

  move more of the burden of managing scheduling of computation and
 placement of data to runtime

  expand intrinsically fault tolerant programming models to be relevant
 to a broader class of algorithms

  interoperability of programming models (GAS, MPI, Cilk, HPCS, etc.)

n  Understanding the design space
  tradeoffs associated with options for power consumption and resilience
  the nature of expected faults, including common signaled faults and

 especially silent faults

PASI, 4 Jan 2011

Criteria for early apps
n  Application running at at least the terascale today, with obvious

 need for more
n  In progressing to the exascale, should be able to achieve

 scientific goals in its own domain
  amenability to experimental validation

n  Should possess a well-defined set of steps to progress to
 exascale

n  Should have a community supporting the application that has
 the skills and experience to engage with the co-design process

n  Has to be open and should ideally spawn modules for common
 use

n  Overall portfolio should attempt span application space

PASI, 4 Jan 2011

Exascale apps candidates

n Multiscale, multiphysics problems
n  Problems that have a superlinear scaling of work with

 memory capacity
  for cost- and power-feasible exascale hardware design,

 which is memory- and communication bandwidth-limited

PASI, 4 Jan 2011

Required software enabling technologies
 Model-related

  Geometric modelers
  Meshers
  Discretizers
  Partitioners
  Solvers / integrators
  Adaptivity systems
  Random no. generators
  Subgridscale physics
  Uncertainty

 quantification
  Dynamic load balancing
  Graphs and

 combinatorial algs.
  Compression

 Development-related
  Configuration systems
  Source-to-source

 translators
  Compilers
  Simulators
  Messaging systems
  Debuggers
  Profilers

 Production-related
  Dynamic resource

 management
  Dynamic performance

 optimization
  Authenticators
  I/O systems
  Visualization systems
  Workflow controllers
  Frameworks
  Data miners
  Fault monitoring,

 reporting, and
 recovery

High-end computers come
 with little of this stuff.

 Most has to be contributed
 by the user community

PASI, 4 Jan 2011

Algorithmic Priority Research Directions (1)
n Advanced mathematical methods for scientific

 understanding in exascale simulations,
 including in situ
  Uncertainty quantification, intrusive and

 nonintrusive
  Optimization, inverse problems, sensitivity
  Analysis and Visualization
  Validation and Verification

PASI, 4 Jan 2011

Algorithmic Priority Research Directions (2)
n Exascale algorithms that expose and exploit

 multiple levels of parallelism
  Communication-reducing algorithms
  Synchronization-reducing algorithms
  Fault resilient algorithms

n  Support for multiphysics, multiscale methods
  Break the SPMD and BSP paradigms when joining

 multiple different codes
  Stability of coupling

PASI, 4 Jan 2011

Algorithmic Priority Research Directions (3)
n Exascale algorithms for constructing and

 adapting discrete objects
  Algorithms that deal with unpredictable, dynamic

 workloads and have few flops to hide

n Mixed precision arithmetic, to use the lowest
 precision required to achieve a given accuracy
 outcome
  Improves runtime, power consumption
  Reformulate algorithms to find corrections, rather

 than solutions

PASI, 4 Jan 2011

Progressive by-product
n The consolation for the architecture-induced hard

 work of reducing synchrony is that algorithms have
 been waiting for this freedom for a long time
  freedom to adapt the mesh or vary the timestep locally
  freedom to vary the physical models at the cells or particle

 level
  Freedom to vary the precision

n Once the synchronization is thrown on the
 programming model and runtime system,
 developers are less constrained

PASI, 4 Jan 2011

The wrong reward

n  Since a flop is by far cheaper to provision and to power up,
 relative to memory and memory transfer rate, good designs
 over-provision flops, so that they are never limiting
  Percentage of peak is therefore a counter-productive metric,

 since it penalizes for over-provisioning something cheap
  Percentage of the instantaneously limiting resource, typically

 memory bandwidth, is the most interesting figure of merit for a
 given execution of the “right problem”

  The “right problem” is the one that provides the requisite
 accuracy with the requisite confidence at some combination of
 lowest energy and shortest execution time

PASI, 4 Jan 2011

Summary:
High reward R&D themes for algorithms

n Mixed precision arithmetic, to use the lowest precision
 required to achieve a given accuracy outcome
  Improves runtime, power consumption
  Reformulate algs to find corrections, rather than solutions

n  Prioritization of critical path and noncritical tasks
  DAG scheduling of critical path tasks
  Allows taking advantage of asynchronicity between major

 steps and adaptive load balancing for noncritical tasks

n Communication-reducing algorithms
n And, of course, better mathematical formulations

PASI, 4 Jan 2011

Where have you seen these strategies before?
n  Maximize parallel execution

  Expose as much data parallelism and data reuse as possible
  Map algorithm to hardware as efficiently as possible
  Maximize concurrent communication and computation

n  Maximize memory bandwidth
  Minimize data transfers, especially access to main memory
  Consider recomputing rather than storing and retrieving
  Optimize memory layout so transferred blocks are fully used

n  Maximize instruction throughput
  Avoid low-throughput arithmetic instructions
  Trade precision for speed when precision doesn’t matter
  Avoid variable control flows wherever possible

c/o Y .S. Cheng, Fu Sing Technologies (ParCFD’10 GPU Tutorial, 17 May 2010)

PASI, 4 Jan 2011

Reminder about the source of simulations
n  Computational science and engineering is not about individual

 large-scale analyses, done fast and “thrown over the wall”
n  Both “results” and their sensitivities are desired; often multiple

 operation points to be simulated are known a priori, rather than
 sequentially

n  Sensitivities may be fed back into optimization process
n  Full PDE analyses may also be inner iterations in a

 multidisciplinary computation
n  In such contexts, “exaflop/s” may mean 1,000 analyses running

 somewhat asynchronously with respect to each other, each at 1
 PF/s – clearly a less daunting challenge than 1 analysis running
 at 1 EF/s

PASI, 4 Jan 2011

 Recapitulation
n  Reflected briefly on progress in high-end scientific computing
n  Peeked briefly at some motivating applications
n  Looked generically at PDE-based simulation and the basis of

 continued optimism for its growth – capability-wise
n  Looked at some specific hurdles to and opportunities for

 PDE-based simulation posed by high-end architecture

PASI, 4 Jan 2011

Kennedy’s Challenge, 1962

 “We choose to do [these] things, not
 because they are easy, but because
 they are hard, because that goal will
 serve to organize and measure the
 best of our energies and skills,
 because that challenge is one that
 we are willing to accept, one we are
 unwilling to postpone, and one
 which we intend to win...”

PASI, 4 Jan 2011

Acknowledgment:
 today’s Peta-op/s machines

1012 neurons @ 1 KHz = 1 PetaOp/s

PASI, 4 Jan 2011

Zetta-scale, anyone?

PASI, 4 Jan 2011

Extra slides

PASI, 4 Jan 2011

It’s all about the solver (at the ultrascale)
n  Given, for example:

  a “physics” phase that
 scales as O(N)

  a “solver” phase that
 scales as O(N3/2)

  computation is almost all
 solver after several
 doublings

n  Most applications groups
 have not yet “felt” this
 curve in their gut
  this is changing

Solver takes
 50% time
 on 64 procs

Solver takes
 97% time
 on 64K
 procs

Weak scaling limit, assuming efficiency of
 100% in both physics and solver phases

problem size

PASI, 4 Jan 2011

Some noteworthy algorithmic adaptations to
 distributed memory architecture

n  Multi-step relaxation and Krylov schemes (long history + Demmel’07)
  Exchange several steps worth of neighbor data at once – replaces many small

 messages with one large (requires extra computing to preserve stability)
n  Restricted Schwarz (Cai & Sarkis)

  omit every other local communication (actually leads to better convergence,
 now proved)

n  Extrapolated Schwarz (Garbey & Tromeur-Dervout)
  hide interprocessor latency by extrapolating messages received in time

 integration, with rollback if actual messages have discrepancies in lower
 Fourier modes (higher mode discrepancies decay anyway)

n  Nonlinear Schwarz (Cai & Keyes)
  reduce global Krylov-Schwarz synchronizations by applying NKS within well

-connected subdomains and performing few global outer Newton iterations
 (interchange of loops, move synchronization outside)

n  Aggressive coarsening in AMG (Falgout, Yang, et al.)
  reduce size of coarse problems to trade-off cost per iteration with number of

 iterations (and many other such preconditioner quality ideas)

PASI, 4 Jan 2011

Some noteworthy algorithmic adaptations to
 hierarchical memory architecture

n  ATLAS/Sparsity (Whalley & Dongarra, Demmel & Yelick)
  block (and and selectively fill and reorder for sparse) for

 optimal cache performance of linear kernels

n  Block-vector Krylov methods (Baker et al.)
  amortize the unavoidable streaming of large sparse Jacobian

 through cache over several matrix-vector multiplies

n  Block relaxation methods (Ruede, Stals, Douglas)
  similar to above, but for triangular backsolves

n  Reduced precision preconditioning (Smith et al.)
  double effective bandwidth by truncating precision of already

 approximate operators

PASI, 4 Jan 2011

Often neglected algorithmic possibilities for
 more scalability

n  Parallelization in the time (or generally causal) dimension,
 particularly in nonlinear problems after spatial concurrency
 is exhausted
  Converts a time-like variable to space-like
  Unlikely to be less fruitful in future architectural balances,

 since this concurrency comes at the expense of memory
n  Creating independent ensembles for asynchronous evaluation

 (parameter exploration or stochastic model) after space-time
 concurrency is exhausted on the direct problem

n  Trading finely resolved discretizations (very sparse) for
 higher-order discretizations (block dense), or other
 algorithmic innovations that alter the granularity of bulk
 synchronous work between data movements

