
PyCUDA Loo.py GPU-DG

Easy, Effective, Efficient:
GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klöckner

Courant Institute of Mathematical Sciences
New York University

PASI: The Challenge of Massive Parallelism
Lecture 4 · January 8, 2011

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Lab Solutions

Lab solutions:

Lab 1 yesterday:
Sorry, posted wrong tarball
(I think)

Will post lab solutions after second
lab today:
http://tiker.net/tmp/

pasi-lab-solution.tar.gz

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab-solution.tar.gz
http://tiker.net/tmp/pasi-lab-solution.tar.gz


PyCUDA Loo.py GPU-DG

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite

1 import pycuda.driver as cuda
2 import pycuda.autoinit , pycuda.compiler
3 import numpy
4
5 a = numpy.random.randn(4,4).astype(numpy.float32)
6 a gpu = cuda.mem alloc(a.nbytes)
7 cuda.memcpy htod(a gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite

1 mod = pycuda.compiler.SourceModule(”””
2 global void twice( float ∗a)
3 {
4 int idx = threadIdx.x + threadIdx.y∗4;
5 a[ idx ] ∗= 2;
6 }
7 ”””)
8
9 func = mod.get function(”twice”)

10 func(a gpu, block=(4,4,1))
11
12 a doubled = numpy.empty like(a)
13 cuda.memcpy dtoh(a doubled, a gpu)
14 print a doubled
15 print a

Compute kernel

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite

1 mod = pycuda.compiler.SourceModule(”””
2 global void twice( float ∗a)
3 {
4 int idx = threadIdx.x + threadIdx.y∗4;
5 a[ idx ] ∗= 2;
6 }
7 ”””)
8
9 func = mod.get function(”twice”)

10 func(a gpu, block=(4,4,1))
11
12 a doubled = numpy.empty like(a)
13 cuda.memcpy dtoh(a doubled, a gpu)
14 print a doubled
15 print a

Compute kernel

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite, Part II

Did somebody say “Abstraction is good”?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite, Part II

1 import numpy
2 import pycuda.autoinit
3 import pycuda.gpuarray as gpuarray
4
5 a gpu = gpuarray.to gpu(
6 numpy.random.randn(4,4).astype(numpy.float32))
7 a doubled = (2∗a gpu).get()
8 print a doubled
9 print a gpu

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to gpu(numpy array)

numpy array = gpuarray.get()

+, -, ∗, /, fill, sin, exp, rand,
basic indexing, norm, inner product, . . .

Mixed types (int32 + float32 = float64)

print gpuarray for debugging.

Allows access to raw bits

Use as kernel arguments, textures, etc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Sparse Matrix-Vector on the GPU

New feature in 0.94:
Sparse matrix-vector
multiplication

Uses “packeted format”
by Garland and Bell (also
includes parts of their code)

Integrates with scipy.sparse.

Conjugate-gradients solver
included

Deferred convergence
checking

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

PyOpenCL ↔ PyCUDA: A (rough) dictionary

PyOpenCL PyCUDA
Context Context

CommandQueue Stream

Buffer mem alloc / DeviceAllocation

Program SourceModule

Kernel Function

Event (eg. enqueue marker) Event

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

PyCUDA: Workflow

Edit

PyCUDA

Run

SourceModule("...")

Cache?

nvcc

no

.cubin

Upload to GPU

Run on GPU

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

PyCUDA in the CUDA ecosystem

Hardware

Kernel Driver

Driver API

Runtime API PyCuda

C/C++ Python

CUDA has two Programming
Interfaces:

“Runtime” high-level
(separate install)

“Driver” low-level
(libcuda.so, comes with
GPU driver)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

PyCUDA: Vital Information

http://mathema.tician.de/

software/pycuda

Complete documentation

X Consortium License
(no warranty, free for all use)

Convenient abstractions
Array, Fast Vector Math, Reductions

Requires: numpy, Python 2.4+
(Win/OS X/Linux)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda


PyCUDA Loo.py GPU-DG

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

Obvious idea: Let the computer do it.

One way: Smart compilers

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: Dumb enumeration

Enumerate loop slicings
Enumerate prefetch options
Choose by running resulting code on actual hardware

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

Obvious idea: Let the computer do it.

One way: Smart compilers

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: Dumb enumeration

Enumerate loop slicings
Enumerate prefetch options
Choose by running resulting code on actual hardware

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

Obvious idea: Let the computer do it.

One way: Smart compilers

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: Dumb enumeration

Enumerate loop slicings
Enumerate prefetch options
Choose by running resulting code on actual hardware

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Loo.py Example

Empirical GPU loop optimization:

a, b, c, i , j , k = [var(s) for s in ”abcijk”]
n = 500
k = make loop kernel([

LoopDimension(”i”, n),
LoopDimension(”j”, n),
LoopDimension(”k”, n),
], [
(c[ i+n∗j], a[ i+n∗k]∗b[k+n∗j])
])

gen kwargs = {
”min threads”: 128,
”min blocks”: 32,
}

→ Ideal case: Finds 160 GF/s kernel
without human intervention.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Loo.py Status

Limited scope:

Require input/output separation
Kernels must be expressible using
“loopy” model
(i.e. indices decompose into “output”
and “reduction”)
Enough for DG, LA, FD, . . .

Kernel compilation limits trial rate

Non-Goal: Peak performance

Good results currently for dense linear
algebra and (some) DG subkernels

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Loo.py Status

Limited scope:

Require input/output separation
Kernels must be expressible using
“loopy” model
(i.e. indices decompose into “output”
and “reduction”)
Enough for DG, LA, FD, . . .

Kernel compilation limits trial rate

Non-Goal: Peak performance

Good results currently for dense linear
algebra and (some) DG subkernels

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions
Introduction
Challenges
Benefits of Metaprogramming
GPU-DG: Performance and Generality
Viscous Shock Capture

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions
Introduction
Challenges
Benefits of Metaprogramming
GPU-DG: Performance and Generality
Viscous Shock Capture

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Ω :=
⋃

i Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell’s Equations: EM field: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Ω :=
⋃

i Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell’s Equations: EM field: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Ω :=
⋃

i Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell’s Equations: EM field: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx

=

ˆ
Dk

utϕ− F (u) · ∇ϕ dx +

ˆ
∂Dk

(n̂ · F )∗ϕ dSx ,

Subsitute in basis functions, introduce elementwise stiffness, mass,
and surface mass matrices matrices S , M, MA:

∂tu
k = −

∑
ν

D∂ν ,k [F (uk)] + Lk [n̂ · F − (n̂ · F )∗]|A⊂∂Dk
.

For straight-sided simplicial elements:
Reduce D∂ν and L to reference matrices.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Decomposition of a DG operator into Subtasks

DG’s execution decomposes into two (mostly) separate branches:

uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂tu
k

Green: Element-local parts of the DG operator.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

DG on GPUs: Possible Advantages

DG on GPUs: Why?

GPUs have deep Memory Hierarchy

The majority of DG is local.

Compute Bandwidth � Memory Bandwidth

DG is arithmetically intense.

GPUs favor dense data.

Local parts of the DG operator are dense.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

DG on the GPU: What are we trying to achieve?

Objectives:

Main: Speed
Reduce need for compute-bound clusters

Secondary: Generality
Be applicable to many problems

Tertiary: Ease-of-Use
Hide complexity of GPU hardware

Setting (for now):

Specialize to straight-sided simplices

Optimize for (but don’t specialize to)
tetrahedra (ie. 3D)

Optimize for “medium” order (3. . . 5)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions
Introduction
Challenges
Benefits of Metaprogramming
GPU-DG: Performance and Generality
Viscous Shock Capture

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Differentiation

Local Templated
Derivative Matrices
Local Templated

Derivative Matrices
Local Templated

Derivative Matrices

Np

Np

K

NpField Data

Geometric Factors

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

Local Templated
Lifting Matrix

NfNfp

Np

K

NfNfp
Facial

Field Data

(Inverse) Jacobians

On-Chip Storage

?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

Local Templated
Lifting Matrix

NfNfp

Np

K

NfNfp
Facial

Field Data

(Inverse) Jacobians

On-Chip Storage

?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

Local Templated
Lifting Matrix

NfNfp

Np

K

NfNfp
Facial

Field Data

(Inverse) Jacobians

On-Chip Storage

?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

Local Templated
Lifting Matrix

NfNfp

Np

K

NfNfp
Facial

Field Data

(Inverse) Jacobians

On-Chip Storage

?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Best use for on-chip memory?

Basic Problem

On-chip storage is scarce. . .
. . . and will be for the foreseeable future.

Possible uses:

Matrix/Matrices

Part of a matrix

Field Data

Both

How to decide? Does it matter?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Element-Local Operators

Natural Work Decomposition:
One Element per Block

+ Straightforward to implement
+ No granularity penalty
- Cannot fill wide SIMD: unused compute

power for small to medium elements
- Data alignment: Padding wastes memory
- Cannot amortize cost of preparation steps

(e.g. fetching)

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Element-Local Operators

Natural Work Decomposition:
One Element per Block

+ Straightforward to implement
+ No granularity penalty
- Cannot fill wide SIMD: unused compute

power for small to medium elements
- Data alignment: Padding wastes memory
- Cannot amortize cost of preparation steps

(e.g. fetching)

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Loop Slicing for element-local parts of GPU DG

Per Block: KL element-local mat.mult. + matrix load
Preparation

Question: How should one assign work to threads?

ws : in sequence
Thread

t

wi : “inline-parallel”
Thread

t

wp: in parallel

Thread

t

(amortize preparation) (exploit register space)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Loop Slicing for element-local parts of GPU DG

Per Block: KL element-local mat.mult. + matrix load
Preparation

Question: How should one assign work to threads?

ws : in sequence
Thread

t

wi : “inline-parallel”
Thread

t

wp: in parallel

Thread

t

(amortize preparation) (exploit register space)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Best Work Partition?

Basic Problem

Additional tier in parallelism offers additional choices. . .
. . . but very little in the way of guidance.

Possible work partitions:

One or multiple elements per
block?

One or multiple DOFs per thread?

In parallel?
In sequence?
In-line?

How to decide? Does it matter?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

Large Blocks:
+ More Data Reuse
- Less Parallelism
- Less Latency Hiding

Block Size limited by two factors:

Output buffer size
Face metadata size

Optimal Block Size:
not obvious

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

Large Blocks:
+ More Data Reuse
- Less Parallelism
- Less Latency Hiding

Block Size limited by two factors:

Output buffer size
Face metadata size

Optimal Block Size:
not obvious

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

Large Blocks:
+ More Data Reuse
- Less Parallelism
- Less Latency Hiding

Block Size limited by two factors:

Output buffer size
Face metadata size

Optimal Block Size:
not obvious

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:

Differentiation

Lifting

Surface Fluxes

Idea

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock”)

And demand other block sizes be a
multiple of this new size

How big? Not obvious.

Element

Element

. . .

Element

Element

. . .

Element

Element

. . .

Padding

Np
KMNp

128

64

0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:

Differentiation

Lifting

Surface Fluxes

Idea

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock”)

And demand other block sizes be a
multiple of this new size

How big? Not obvious.

Element

Element

. . .

Element

Element

. . .

Element

Element

. . .

Padding

Np
KMNp

128

64

0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:

Differentiation

Lifting

Surface Fluxes

Idea

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock”)

And demand other block sizes be a
multiple of this new size

How big? Not obvious.

Element

Element

. . .

Element

Element

. . .

Element

Element

. . .

Padding

Np
KMNp

128

64

0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

DG on GPUs: Implementation Choices

Many difficult questions

Insufficient heuristics

Answers are hardware-specific and
have no lasting value

Proposed Solution: Tune automatically
for hardware at computation time, cache
tuning results.

Decrease reliance on knowledge of
hardware internals

Shift emphasis from
tuning results to tuning ideas

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

DG on GPUs: Implementation Choices

Many difficult questions

Insufficient heuristics

Answers are hardware-specific and
have no lasting value

Proposed Solution: Tune automatically
for hardware at computation time, cache
tuning results.

Decrease reliance on knowledge of
hardware internals

Shift emphasis from
tuning results to tuning ideas

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions
Introduction
Challenges
Benefits of Metaprogramming
GPU-DG: Performance and Generality
Viscous Shock Capture

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:

Flux Terms

(*)

Automated Tuning:

Memory layout
Loop slicing

(*)

Gather granularity

Constants instead of variables:

Dimensionality
Polynomial degree
Element properties
Matrix sizes

Loop Unrolling

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:

Flux Terms

(*)

Automated Tuning:

Memory layout
Loop slicing

(*)

Gather granularity

Constants instead of variables:

Dimensionality
Polynomial degree
Element properties
Matrix sizes

Loop Unrolling

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:

Flux Terms

(*)

Automated Tuning:

Memory layout
Loop slicing

(*)

Gather granularity

Constants instead of variables:

Dimensionality
Polynomial degree
Element properties
Matrix sizes

Loop Unrolling

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:

Flux Terms

(*)

Automated Tuning:

Memory layout
Loop slicing

(*)

Gather granularity

Constants instead of variables:

Dimensionality
Polynomial degree
Element properties
Matrix sizes

Loop Unrolling

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:

Flux Terms (*)

Automated Tuning:

Memory layout
Loop slicing (*)
Gather granularity

Constants instead of variables:

Dimensionality
Polynomial degree
Element properties
Matrix sizes

Loop Unrolling

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Loop Slicing for Differentiation

15 20 25 30
wp

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

E
x
e
cu

ti
o
n
 t

im
e
 [
m
s]

Local differentiation, matrix-in-shared,
order 4, with microblocking
point size denotes wi ∈

{
1, ,4

}

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

w
s

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx −
ˆ
∂Dk

[n̂ · F − (n̂ · F )∗]ϕ dSx︸ ︷︷ ︸
Flux term

Flux terms:

vary by problem

expression specified by user

evaluated pointwise

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms

0 =

ˆ
Dk

utϕ+ [∇ · F (u)]ϕ dx −
ˆ
∂Dk

[n̂ · F − (n̂ · F )∗]ϕ dSx︸ ︷︷ ︸
Flux term

Flux terms:

vary by problem

expression specified by user

evaluated pointwise

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell’s Equations

n̂ · (F − F ∗)E :=
1

2
[n̂ × (JHK− αn̂ × JEK)]

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell’s Equations

n̂ · (F − F ∗)E :=
1

2
[n̂ × (JHK− αn̂ × JEK)]

User writes: Vectorial statement in math. notation

flux = 1/2∗cross(normal, h. int−h.ext
−alpha∗cross(normal, e. int−e.ext))

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell’s Equations

n̂ · (F − F ∗)E :=
1

2
[n̂ × (JHK− αn̂ × JEK)]

We generate: Scalar evaluator in C (6×)

a flux += (
((( val a field5 − val b field5 )∗ fpair−>normal[2]
− ( val a field4 − val b field4 )∗ fpair−>normal[0])

+ val a field0 − val b field0 )∗ fpair−>normal[0]
− ((( val a field4 − val b field4 ) ∗ fpair−>normal[1]
− ( val a field1 − val b field1 )∗ fpair−>normal[2])

+ val a field3 − val b field3 ) ∗ fpair−>normal[1]
)∗value type (0.5);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Hedge DG Solver

High-Level Operator Description

Maxwell’s
Euler
Poisson
Compressible Navier-Stokes, . . .

One Code runs. . .

. . . on CPU, CUDA

. . . on {CPU,CUDA}+MPI

. . . in 1D, 2D, 3D

. . . at any order

Uses CPU, GPU code
generation

Open Source (GPL3)

Written in Python,

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions
Introduction
Challenges
Benefits of Metaprogramming
GPU-DG: Performance and Generality
Viscous Shock Capture

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Nvidia GTX280 vs. single core of Intel Core 2 Duo E8400

0 2 4 6 8 10
Polynomial Order N

0

50

100

150

200

250

300

G
Fl

o
p
s/

s

GPU

CPU

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Memory Bandwidth on a GTX 280

1 2 3 4 5 6 7 8 9
Polynomial Order N

20

40

60

80

100

120

140

160

180

200

G
lo

b
a
l 
M

e
m

o
ry

 B
a
n
d
w

id
th

 [
G

B
/s

]

Gather
Lift
Diff
Assy.
Peak

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Multiple GPUs via MPI: 16 GPUs vs. 64 CPUs

0 2 4 6 8 10
Polynomial Order N

0

1000

2000

3000

4000

G
Fl

o
p
s/

s

Flop Rates: 16 GPUs vs 64 CPU cores

GPU
CPU

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

GPU-DG in Double Precision

0 2 4 6 8 10
Polynomial Order N

0

50

100

150

200

250

300

350

400

G
Fl

o
p
s/

s

GPU-DG: Double vs. Single Precision

Single
Double

0.0

0.2

0.4

0.6

0.8

1.0

Ratio

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Outline

1 PyCUDA

2 Automatic GPU Programming

3 GPU-DG: Challenges and Solutions
Introduction
Challenges
Benefits of Metaprogramming
GPU-DG: Performance and Generality
Viscous Shock Capture

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws → shocks?

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

1D advection:

∂tu + ∂xu = 0

1D advection with viscosity:

∂tu + v · ∇xu = ∇x · (ν∇xu).

Important: Conservation form.

Upwind fluxes for advection, IPDG for second-
order

Detector → ν?
GPU-suitability? Data locality?
Properties? [Build on work by
Persson/Peraire ‘06]

Time integration
Implicit/explicit? Adaptivity? RKC for
bigger ∆t with viscosity?

Accuracy?
Near shocks? Away from them?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws → shocks?

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

1D advection:

∂tu + ∂xu = 0

1D advection with viscosity:

∂tu + v · ∇xu = ∇x · (ν∇xu).

Important: Conservation form.

Upwind fluxes for advection, IPDG for second-
order

Detector → ν?
GPU-suitability? Data locality?
Properties? [Build on work by
Persson/Peraire ‘06]

Time integration
Implicit/explicit? Adaptivity? RKC for
bigger ∆t with viscosity?

Accuracy?
Near shocks? Away from them?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws → shocks?

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

1D advection:

∂tu + ∂xu = 0

1D advection with viscosity:

∂tu + v · ∇xu = ∇x · (ν∇xu).

Important: Conservation form.

Upwind fluxes for advection, IPDG for second-
order

Detector → ν?
GPU-suitability? Data locality?
Properties? [Build on work by
Persson/Peraire ‘06]

Time integration
Implicit/explicit? Adaptivity? RKC for
bigger ∆t with viscosity?

Accuracy?
Near shocks? Away from them?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws → shocks?

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

0 2 4 6 8 10
x

u
(x

)

t=0.00

t=0.67

t=1.33

1D advection:

∂tu + ∂xu = 0

1D advection with viscosity:

∂tu + v · ∇xu = ∇x · (ν∇xu).

Important: Conservation form.

Upwind fluxes for advection, IPDG for second-
order

Detector → ν?
GPU-suitability? Data locality?
Properties? [Build on work by
Persson/Peraire ‘06]

Time integration
Implicit/explicit? Adaptivity? RKC for
bigger ∆t with viscosity?

Accuracy?
Near shocks? Away from them?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler’s Equations of Gas Dynamics

Euler’s equations with viscosity:

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ),

∂t(ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x(ρu)),

∂tE +∇x · (u(E + p)) = ∇x · (ν∇xE ).

Again: Single ν, sensed on ρ. → Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can’t control jumps in ρ.

Rusanov fluxes for Euler, IPDG for viscosity.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
, 
p

Sod's Problem with N=5 and K=80

ρ

p

ρ (exact, L2  proj.)

p (exact, L2  proj.)

6 4 2 0 2 4 6
x

0

2

4

6

8

10

12

ρ
, 
p

Shock-Wave Interaction Problem
with N=5 and K=80

ρ

p

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagnetism

Poisson

CFD

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagnetism

Poisson

CFD

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagnetism

Poisson

CFD

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagnetism

Poisson

CFD

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Where to from here?

PyCUDA, PyOpenCL, hedge

→ http://www.cims.nyu.edu/~kloeckner/

GPU-DG Article

AK, T. Warburton, J. Bridge, J.S. Hesthaven, “Nodal
Discontinuous Galerkin Methods on Graphics Processors”,
J. Comp. Phys., 228 (21), 7863–7882.

GPU RTCG

AK, N. Pinto et al. PyCUDA: GPU Run-Time Code Generation for
High-Performance Computing, submitted.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://www.cims.nyu.edu/~kloeckner/


PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Conclusions

GPUs and scripting work surprisingly well together

Enable Run-Time Code Generation

GPU-DG is significantly faster than CPU-DG

Method well-suited a priori
Numerous tricks enable good performance

Further work in GPU-DG:

Curvilinear Elements (T. Warburton)
Local Time Stepping
Shock Capturing for Nonlinear Equations

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Questions?

?

Thank you for your attention!

http://www.cims.nyu.edu/~kloeckner/

image credits

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://www.cims.nyu.edu/~kloeckner/


PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Image Credits

Exclamation mark: sxc.hu/cobrasoft

Adding Machine: flickr.com/thomashawk

Floppy disk: flickr.com/ethanhein
Carrot: OpenClipart.org
Dart board: sxc.hu/195617
Question Mark: sxc.hu/svilen001
Question Mark: sxc.hu/svilen001
?/! Marks: sxc.hu/svilen001

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA


	PyCUDA
	Automatic GPU Programming
	GPU-DG: Challenges and Solutions
	Introduction
	Challenges
	Benefits of Metaprogramming
	GPU-DG: Performance and Generality
	Viscous Shock Capture


