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PyCUDA

Automatic GPU Programming

GPU-DG: Challenges and Solutions

1
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Lab Solutions

Lab solutions:

m Lab 1 yesterday:

Sorry, posted wrong tarball
(I think)

m Will post lab solutions after second
lab today:
http://tiker.net/tmp/
pasi-lab-solution.tar.gz
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http://tiker.net/tmp/pasi-lab-solution.tar.gz
http://tiker.net/tmp/pasi-lab-solution.tar.gz

PyCUDA

Outline

PyCUDA

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite

1
2
3
4
5
6
7

import pycuda.driver as cuda
import pycuda.autoinit, pycuda.compiler
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)

a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]
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PyCUDA Loo.py GPU-DG

Whetting your appetite

}
")

9 func = mod.get_function(” twice")
10 func(a_gpu, block=(4,4,1))

1 mod = pycuda.compiler.SourceModule("""

2 _global__ void twice( float xa)

3 {

4 int idx = threadldx.x + threadldx.yx*4;
5 alidx] *= 2;

6

7

8

12 a_doubled = numpy.empty_like(a)

13 cuda.memcpy_dtoh(a_doubled, a_gpu)
14 print a_doubled

15 print a

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite

Compute kernel

}
)

9 func = mod.get_function(” twice")
10 func(a_gpu, block=(4,4,1))

1 mod = pycuda.compiler.SourceModule("""

2 _global__ void twice( float x*a)

3 {

4 int idx = threadldx.x + threadldx.yx*4;
5 alidx] *= 2;

6

7

8

12 a_doubled = numpy.empty_like(a)

13 cuda.memcpy_dtoh(a_doubled, a_gpu)
14 print a_doubled

15 print a
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PyCUDA

Whetting your appetite, Part Il

Did somebody say “Abstraction is good”?
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Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG

Whetting your appetite, Part Il

1
2
3
4
5
6
7
8
9
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import numpy
import pycuda. autoinit
import pycuda.gpuarray as gpuarray

a_gpu = gpuarray.to_gpu(
numpy.random.randn(4,4).astype(numpy.float32))

a_doubled = (2xa_gpu).get()

print a_doubled

print a_gpu
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PyCUDA

gpuarray: Simple Linear Algebra

pycuda.gpuarray:
m Meant to look and feel just like numpy.
m gpuarray.to_gpu(numpy-_array)
®m numpy-array = gpuarray.get()
m +, -, %/, fill, sin, exp, rand,
basic indexing, norm, inner product, ...
m Mixed types (int32 + float32 = float64)
® print gpuarray for debugging.

m Allows access to raw bits
m Use as kernel arguments, textures, etc.
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PyCUDA

Sparse Matrix-Vector on the GPU

m New feature in 0.94:
Sparse matrix-vector
multiplication

m Uses “packeted format”
by Garland and Bell (also
includes parts of their code)

m Integrates with scipy.sparse.

m Conjugate-gradients solver
included
m Deferred convergence
checking
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PyCUDA

PyOpenCL <> PyCUDA: A (rough) dictionary

PyOpenCL | PyCUDA
Context | Context
CommandQueue | Stream
Buffer | mem alloc / DeviceAllocation
Program | SourceModule
Kernel | Function
Event (eg. enqueue marker) | Event
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PyCUDA

Scripting: Interpreted, not Compiled

Program creation workflow:

C Edit e
Cor’rl1pi|e
l
Link
|
( Run )*
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PyCUDA

Scripting: Interpreted, not Compiled

Program creation workflow:

C Edit e
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PyCUDA

Scripting: Interpreted, not Compiled

Program creation workflow:

C E(Eit e

| l
.l
Run

)7
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PyCUDA Loo.py GPU-DG

PyCUDA: Workflow

C Edit ) Cache? —
l lno
( Run ) nvcc —> .cubin
!
SourceModule("...") Upload to GPU ——
| PyCUDA

[

( Run on GPU )
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PyCUDA

PyCUDA in the CUDA ecosystem

C/C++ Python
! 1 CUDA has two Programming
Runtime API PyCuda Interfaces:
~ P m “Runtime” high-level
Driver API (separate install)
L : m “Driver” low-level
Kernel Driver (1ibcuda.so, comes with
L GPU driver)
Hardware
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PyCUDA

PyCUDA: Vital Information

http://mathema.tician.de/
software/pycuda

Complete documentation

X Consortium License
(no warranty, free for all use)

m Convenient abstractions
Array, Fast Vector Math, Reductions

m Requires: numpy, Python 2.4+
(Win/OS X/Linux)
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Andreas Klockner GPU-Python with PyOpenCL and PyCUDA


http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda

Outline

Automatic GPU Programming
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Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

m Obvious idea: Let the computer do it.
m One way: Smart compilers
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Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

m Obvious idea: Let the computer do it.
m One way: Smart compilers

m GPU programming requires complex tradeoffs
m Tradeoffs require heuristics
m Heuristics are fragile
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Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

m Obvious idea: Let the computer do it.

m One way: Smart compilers
m GPU programming requires complex tradeoffs
m Tradeoffs require heuristics
m Heuristics are fragile

m Another way: Dumb enumeration

m Enumerate loop slicings
m Enumerate prefetch options
m Choose by running resulting code on actual hardware
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PyCUDA Loo.py GPU-DG

Loo.py Example

Empirical GPU loop optimization:
a, b, ¢, i, j, k=/[var(s) for s in "abcijk”]

n = 500
k = make_loop_kernel([
LoopDimension("i", n),

LoopDimension("j", n),

I]_f)o[pDimension(" K", n), loo.py

i+nxj], i+nxk]xb[k+nxj
(cli+nud], ali+nekl<bfictnsi]) what would you like

to unroll today?
gen_kwargs = {
"min_threads”: 128,
"min_blocks”: 32,

}
— ldeal case: Finds 160 GF/s kernel
without human intervention. n
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Loo.py Status

m Limited scope:
m Require input/output separation
m Kernels must be expressible using
“loopy” model

(i.e. indices decompose into “output” 100.])}'
and “reduction”) what would you like

| | Enough for DG, LA, FD, ... to unroll today?
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Loo.py Status

m Limited scope:
m Require input/output separation
m Kernels must be expressible using
“loopy” model

(i.e. indices decompose into “output 100.])}'
and “reduction”) what would you like

| | Enough for DG, LA, FD, ... to unroll today?

Kernel compilation limits trial rate

Non-Goal: Peak performance

Good results currently for dense linear
algebra and (some) DG subkernels
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Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions
m Introduction
m Challenges
m Benefits of Metaprogramming
m GPU-DG: Performance and Generality
m Viscous Shock Capture
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Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions
m Introduction
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Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Q :=J; Dx C RY. %
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Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Q :=J; Dx C RY. %

Solve a conservation law on u+V-F(u)=0
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Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Le-tQ::Ukac:Rdé@2

Solve a conservation law on Q: u+V-F(u)=0

Maxwell’s Equations: EM field: E(x,t), H(x,t) on Q governed by

1 ' 1
OE—-VxH=-2 8;H+ =V x E=0,
€ € 1

v.E:g V-H=0.
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Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:
0= / urp + [V - F(u)]edx
D«

:/ urp — F(u) - Vodx + (- F)*¢@dSx,
Dy 9D

Subsitute in basis functions, introduce elementwise stiffness, mass,
and surface mass matrices matrices S, M, Mj:

ek = =" DY KF(uk)] + LX[A - F = (A - F)"]acop,-

For straight-sided simplicial elements:
Reduce D% and L to reference matrices. n
NYU
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Introduction Challenges Benefits Performance Shocks

Decomposition of a DG operator into Subtasks

DG's execution decomposes into two (mostly) separate branches:

3tuk

1

|—> Flux Gather Flux Lifting — 1
uk
L, F(u) Local Differentiation

Green: Element-local parts of the DG operator.
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Introduction Challenges Benefits Performance Shocks

DG on GPUs: Possible Advantages

DG on GPUs: Why?

m GPUs have deep Memory Hierarchy
m The majority of DG is local.

m Compute Bandwidth > Memory Bandwidth
m DG is arithmetically intense.

m GPUs favor dense data.
m Local parts of the DG operator are dense.

NYU
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Introduction Challenges Benefits Performance Shocks

DG on the GPU: What are we trying to achieve?

Objectives:

m Main: Speed
Reduce need for compute-bound clusters

m Secondary: Generality
Be applicable to many problems

m Tertiary: Ease-of-Use
Hide complexity of GPU hardware

Setting (for now):

m Specialize to straight-sided simplices

m Optimize for (but don't specialize to)
tetrahedra (ie. 3D)

m Optimize for “medium” order (3...5) n
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Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m Challenges
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Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Differentiation

N, Local Templated

i N
Derivative Matrices Field Data b

x
b
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
N¢Ng, -
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
N¢Ng, -

On-Chip Storage
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
L - }
N¢Ng, ? -

On-Chip Storage
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
| ?
N¢Ng, -

On-Chip Storage
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Introduction Challenges Benefits Performance Shocks

Best use for on-chip memory?

Basic Problem
On-chip storage is scarce. . .
...and will be for the foreseeable future.

Possible uses:

m Matrix/Matrices
m Part of a matrix
m Field Data

m Both

How to decide? Does it matter?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Introduction Challenges Benefits Performance Shocks

Work Partition for Element-Local Operators

Natural Work Decompoaosition:
One Element per Block
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Element-Local Operators

Natural Work Decompoaosition:
One Element per Block

@ Straightforward to implement

@ No granularity penalty

@ Cannot fill wide SIMD: unused compute
power for small to medium elements

@ Data alignment: Padding wastes memory
@ Cannot amortize cost of preparation steps
(e.g. fetching)

NYU
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Introduction Challenges Benefits Performance Shocks

Loop Slicing for element-local parts of GPU DG

Per Block: K| element-local mat.mult. + matrix load
[ Preparation ]

Question: How should one assign work to threads? 9

NYU
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Introduction Challenges Benefits Performance Shocks

Loop Slicing for element-local parts of GPU DG

Per Block: K| element-local mat.mult. + matrix load

Question: How should one assign work to threads? 9

Ws: in sequence w;: “inline-parallel” Wp: in parallel

r Thread r Thread [f Thread

= = EE@E

t I t t

(amortize preparation) (exploit register space) n
NYU
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Introduction Challenges Benefits Performance Shocks

Best Work Partition?

Basic Problem

Additional tier in parallelism offers additional choices. ..
... but very little in the way of guidance.

Possible work partitions:

m One or multiple elements per

block?
m One or multiple DOFs per thread?

m In parallel?
= In sequence?
m In-line?

How to decide? Does it matter? n

NYU
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Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

m Large Blocks:
@ More Data Reuse

Q Less Parallelism. . W&W&W&W&
@ Less Latency Hiding W&W&W&

m Block Size limited by two factors:

m Output buffer size %%

m Face metadata size W

m Optimal Block Size:
not obvious @

NYU
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Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

m Large Blocks:
@ More Data Reuse

@ Less Parallelism
@ Less Latency Hiding %&%&g&
m Block Size limited by two factors: @ @
m Output buffer size & &
m Face metadata size W
m Optimal Block Size:
not obvious @
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Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:
m Large Blocks:

@ More Data Reuse
@ Less Parallelism g&g&g&
@ Less Latency Hiding
m Block Size limited by two factors: g&g&
m Output buffer size @
m Face metadata size
m Optimal Block Size:
not obvious @
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GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:
m Differentiation
m Lifting

m Surface Fluxes

128
64

Padding

\

T

Element

Element

Element

Element

Element

Element

k—
Np

KN,
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:
m Differentiation
m Lifting

m Surface Fluxes

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock")

m And demand other block sizes be a
multiple of this new size

128
64

Padding

\

T

Element

Element|Element

Element

Element|Element

k—
Np

KN,
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PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:
m Differentiation
m Lifting

m Surface Fluxes

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock")

m And demand other block sizes be a
multiple of this new size

How big? Not obvious. @

128
64

Padding

\

T

Element

Element|Element

Element

Element|Element

k——

Np

KN,
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Introduction Challenges Benefits Performance Shocks

DG on GPUs: Implementation Choices

m Many difficult questions
m Insufficient heuristics

m Answers are hardware-specific and
have no lasting value

NYU
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Introduction Challenges Benefits Performance Shocks

DG on GPUs: Implementation Choices

m Many difficult questions
m Insufficient heuristics

m Answers are hardware-specific and
have no lasting value

Proposed Solution: Tune automatically
for hardware at computation time, cache
4 tuning results.

m Decrease reliance on knowledge of
hardware internals

m Shift emphasis from
tuning results to tuning ideas

NYU
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Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m Benefits of Metaprogramming

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

m Specialize code for user-given problem:
m Flux Terms

NYU
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Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

m Specialize code for user-given problem:
m Flux Terms
m Automated Tuning:

® Memory layout
m Loop slicing
m Gather granularity
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Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

m Specialize code for user-given problem:
m Flux Terms
m Automated Tuning:
® Memory layout
m Loop slicing
m Gather granularity
m Constants instead of variables:

m Dimensionality

m Polynomial degree
m Element properties
m Matrix sizes
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Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:
m Flux Terms
m Automated Tuning:
® Memory layout
m Loop slicing
m Gather granularity
m Constants instead of variables:

m Dimensionality

m Polynomial degree
m Element properties
m Matrix sizes

Loop Unrolling

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA
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Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:
m Flux Terms (*)
m Automated Tuning:
® Memory layout
m Loop slicing (*)
m Gather granularity
m Constants instead of variables:
m Dimensionality
m Polynomial degree
m Element properties
m Matrix sizes

Loop Unrolling

NYU
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Introduction Challenges Benefits Performance Shocks

Loop Slicing for Differentiation

2.2 ‘ ‘ 3.0
Local differentiation, matrix-in-shared,
order 4, with microblocking 2.8
2.0f point size denotes w, €{1,--,4} Q'
(] 2.6
= 1.8f i |
E Q 2.4
1) 12.2
£16 ¢® @}
z 12.0%
C
o @
£ 14 o {1.8
9]
(0]
X
w

1.6

*O?
LZ’Et . ."8 cteta..e ."7
LT L

1.2

0.8— ‘ : 1.0

15 20 25 30
u, (7]
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Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms

oz/D ut<,0+[V-F(u)]godx—/aD [A-F— (A F)JpdS«

Flux term
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Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms

oz/D ut<,0+[V-F(u)]godx—/aD [A-F— (A F)JpdS«

Flux term

Flux terms:
m vary by problem
m expression specified by user

m evaluated pointwise

NYU
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Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell's Equations

- (F— F*)e o= 5 [x (IH] — o x [E])]
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Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell's Equations

A k 1 N A
n-(F—F)e ::E[nx ([H] — it x [E])]
User writes: Vectorial statement in math. notation

flux = 1/2xcross(normal, h.int—h.ext
—alphaxcross(normal, e. int —e.ext))

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell's Equations

- (F— F*)e o= 5 [x (IH] — o x [E])]

We generate: Scalar evaluator in C (6x)

aflux +=(
((( val_a_field5 — val_b_field5 ) fpair —>normal[2]
— (val_a_field4d — val_b_field4 )« fpair —>normal[0])
+ val_a_field0 — val_b_field0 )* fpair —>normal[0]
— ((( val_a_fieldd — val_b_field4 ) xfpair—>normal[1]
— (val_a_fieldl — val_b_fieldl )« fpair —>normal[2])
+ val_afield3 — val_b_field3) * fpair —>normal[1]
)*value_type (0.5);
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Introduction Challenges Benefits Performance Shocks

Hedge DG Solver

High-Level Operator Description m Uses CPU, GPU code
m Maxwell's generation

m Euler m Open Source (GPL3)

m Poisson _ _
Compressible Navier-Stokes, . .. = Written in Python,

m One Code runs. ..

...on CPU, CUDA

...on {CPU,CUDA}+MPI
...in 1D, 2D, 3D

...at any order

NYU
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Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m GPU-DG: Performance and Generality
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Introduction Challenges Benefits Performance Shocks

Nvidia GTX280 vs. single core of Intel Core 2 Duo E8400

300

GFlops/s

6
@
1
NYU

4
Polynomial Order N
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Introduction Challenges Benefits Performance Shocks

Memory Bandwidth on a GTX 280

=
[e)]
o

—
i
o

Global Memory Bandwidth [GB/s]
= =
o N
o o

1 2 3 4 5 6 7 8 9
Polynomial Order N ¢

NYU
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GPU-DG Introduction Challenges Benefits Performance Shocks

Multiple GPUs via MPI: 16 GPUs vs. 64 CPUs

Flop Rates: 16 GPUs vs 64 CPU cores

4000 | HIEE GPU
B CPU

3000

GFlops/s

N
o
S
=

1000

2 4 6 8 10
Polvnomial Order N
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GPU-DG Introduction Challenges Benefits Performance Shocks

GPU-DG in Double Precision

GPU-DG: Double vs. Single Precision

400 ‘ | | | 1.0
350 || Single | | ~— Ratio|
300 t Double 108

£250 | 1os

§200 |

G 150 | {04
100} mm , ,

% 7 ,1 71 1 0.2
50 | g 0 ; o ,
0 ééééﬂ@rwﬂ

Polvnomial Order N
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Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m Viscous Shock Capture
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Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws — shocks?

— t=0.00

10

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Benefits Performance Shocks

Introduction Challenges

Nonlinear conservation laws — shocks?

— t=0.00

© B
S 3

10
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Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws — shocks?

1D advection: ‘
— t=0.00
8tu+8xu =0 — t=0.67
. . . . — t=1.33
1D advection with viscosity:
Oru~+ v - Vyu=Vy- (vVyu).
Important: Conservation form.
Upwind fluxes for advection, IPDG for second-
order |
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Nonlinear conservation laws — shocks?

1D advection:

— t=0.00
Oru+0xu=20 —— +=0.67

1900

1D advection
81—U -+

Important: Cq

Upwind fluxes|
order

(9] p.

m Detector — v7
GPU-suitability? Data locality?
Properties? [Build on work by
Persson /Peraire '06]

m Time integration
Implicit/explicit? Adaptivity? RKC for
bigger At with viscosity?

m Accuracy?
Near shocks? Away from them?
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity:

0tp+ Vi - (pu) = Vi - (¥Vxp),
Ot(pu) + Vi - (u® (pu)) + Vxp = Vi - (¥Vx(pu)),
OtE + Vi - (u(E + p)) = Vx - (vVxE).

Again: Single v, sensed on p. — Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can't control jumps in p.

Rusanov fluxes for Euler, IPDG for viscosity.
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity:
O+ V, -(pu) =V, - (vV,p)
3t(pl Sod's Problem with N=5 and K =80 1)),
1.2 ‘ ‘ : :
—
1.0r —
Again — p(exact, L? proj.) of
the ofl 0.8 p (exact, L? proj.) ||
IsH
- 0.60 |
[Perss| = is-
cosity| 0.4r-
Rusan| 0.2
| e—
00%0 02 04 06 08 10 n
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |
Shock-Wave Interaction Problem
[ . with N=5 and K =80
delpf | 1 S
- p
Again gt
the of] o
D 6
[Perss| | =
cosity. 4+ WM/W
Rusan ol
ngv
0 I I I I I
|| -6 -4 -2 g 2 4 6 n
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity. 5
Rusan

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|
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Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|
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GPU DG Showcase

Eletromagnetism
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GPU DG Showcase

Eletromagnetism

Poisson
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GPU DG Showcase

Eletromagn

L AT

CFD
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GPU DG Showcase

Eletromagn

L AT

CFD
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Where to from here?

PyCUDA, PyOpenCL, hedge

— http://www.cims.nyu.edu/~kloeckner/

GPU-DG Article

AK, T. Warburton, J. Bridge, J.S. Hesthaven, “Nodal
Discontinuous Galerkin Methods on Graphics Processors”,
J. Comp. Phys., 228 (21), 7863-7882.

GPU RTCG

AK, N. Pinto et al. PyCUDA: GPU Run-Time Code Generation for
High-Performance Computing, submitted.
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Conclusions

m GPUs and scripting work surprisingly well together
m Enable Run-Time Code Generation
m GPU-DG is significantly faster than CPU-DG

m Method well-suited a priori
m Numerous tricks enable good performance

m Further work in GPU-DG:

m Curvilinear Elements (T. Warburton)
m Local Time Stepping
m Shock Capturing for Nonlinear Equations
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Questions?

Thank you for your attention!

http://www.cims.nyu.edu/~kloeckner/
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Credits

Exclamation mark: sxc.hu/cobrasoft
Adding Machine: flickr.com/thomashawk @

Floppy disk: flickr.com /ethanhein (c9)
Carrot: OpenClipart.org

Dart board: sxc.hu/195617

m Question Mark: sxc.hu/svilen001

m Question Mark: sxc.hu/svilen001

m ?/1 Marks: sxc.hu/svilen001
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