Easy, Effective, Efficient:

GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klockner

Courant Institute of Mathematical Sciences
New York University

PASI: The Challenge of Massive Parallelism
Lecture 4 - January 8, 2011

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

Automatic GPU Programming

GPU-DG: Challenges and Solutions

1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Lab Solutions

Lab solutions:

m Lab 1 yesterday:

Sorry, posted wrong tarball
(I think)

m Will post lab solutions after second
lab today:
http://tiker.net/tmp/
pasi-lab-solution.tar.gz

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

http://tiker.net/tmp/pasi-lab-solution.tar.gz
http://tiker.net/tmp/pasi-lab-solution.tar.gz

PyCUDA

Outline

PyCUDA

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG

Whetting your appetite

1
2
3
4
5
6
7

import pycuda.driver as cuda
import pycuda.autoinit, pycuda.compiler
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)

a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG

Whetting your appetite

}
")

9 func = mod.get_function(” twice")
10 func(a_gpu, block=(4,4,1))

1 mod = pycuda.compiler.SourceModule("""

2 _global__ void twice(float xa)

3 {

4 int idx = threadldx.x + threadldx.yx*4;
5 alidx] *= 2;

6

7

8

12 a_doubled = numpy.empty_like(a)

13 cuda.memcpy_dtoh(a_doubled, a_gpu)
14 print a_doubled

15 print a

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG

Whetting your appetite

Compute kernel

}
)

9 func = mod.get_function(” twice")
10 func(a_gpu, block=(4,4,1))

1 mod = pycuda.compiler.SourceModule("""

2 _global__ void twice(float x*a)

3 {

4 int idx = threadldx.x + threadldx.yx*4;
5 alidx] *= 2;

6

7

8

12 a_doubled = numpy.empty_like(a)

13 cuda.memcpy_dtoh(a_doubled, a_gpu)
14 print a_doubled

15 print a

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

Whetting your appetite, Part Il

Did somebody say “Abstraction is good”?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG

Whetting your appetite, Part Il

1
2
3
4
5
6
7
8
9

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

import numpy
import pycuda. autoinit
import pycuda.gpuarray as gpuarray

a_gpu = gpuarray.to_gpu(
numpy.random.randn(4,4).astype(numpy.float32))

a_doubled = (2xa_gpu).get()

print a_doubled

print a_gpu

NYU

PyCUDA

gpuarray: Simple Linear Algebra

pycuda.gpuarray:
m Meant to look and feel just like numpy.
m gpuarray.to_gpu(numpy-_array)
®m numpy-array = gpuarray.get()
m +, -, %/, fill, sin, exp, rand,
basic indexing, norm, inner product, ...
m Mixed types (int32 + float32 = float64)
® print gpuarray for debugging.

m Allows access to raw bits
m Use as kernel arguments, textures, etc.

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

Sparse Matrix-Vector on the GPU

m New feature in 0.94:
Sparse matrix-vector
multiplication

m Uses “packeted format”
by Garland and Bell (also
includes parts of their code)

m Integrates with scipy.sparse.

m Conjugate-gradients solver
included
m Deferred convergence
checking

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

PyOpenCL <> PyCUDA: A (rough) dictionary

PyOpenCL | PyCUDA
Context | Context
CommandQueue | Stream
Buffer | mem alloc / DeviceAllocation
Program | SourceModule
Kernel | Function
Event (eg. enqueue marker) | Event

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

Scripting: Interpreted, not Compiled

Program creation workflow:

C Edit e
Cor’rl1pi|e
l
Link
|
(Run)*

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

Scripting: Interpreted, not Compiled

Program creation workflow:

C Edit e

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

Scripting: Interpreted, not Compiled

Program creation workflow:

C E(Eit e

| l
.l
Run

)7

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG

PyCUDA: Workflow

C Edit) Cache? —
l lno
(Run) nvcc —> .cubin
!
SourceModule("...") Upload to GPU ——
| PyCUDA

[

(Run on GPU)

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

PyCUDA in the CUDA ecosystem

C/C++ Python
! 1 CUDA has two Programming
Runtime API PyCuda Interfaces:
~ P m “Runtime” high-level
Driver API (separate install)
L : m “Driver” low-level
Kernel Driver (1ibcuda.so, comes with
L GPU driver)
Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA

PyCUDA: Vital Information

http://mathema.tician.de/
software/pycuda

Complete documentation

X Consortium License
(no warranty, free for all use)

m Convenient abstractions
Array, Fast Vector Math, Reductions

m Requires: numpy, Python 2.4+
(Win/OS X/Linux)

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda

Outline

Automatic GPU Programming

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

m Obvious idea: Let the computer do it.
m One way: Smart compilers

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

m Obvious idea: Let the computer do it.
m One way: Smart compilers

m GPU programming requires complex tradeoffs
m Tradeoffs require heuristics
m Heuristics are fragile

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

m Obvious idea: Let the computer do it.

m One way: Smart compilers
m GPU programming requires complex tradeoffs
m Tradeoffs require heuristics
m Heuristics are fragile

m Another way: Dumb enumeration

m Enumerate loop slicings
m Enumerate prefetch options
m Choose by running resulting code on actual hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG

Loo.py Example

Empirical GPU loop optimization:
a, b, ¢, i, j, k=/[var(s) for s in "abcijk”]

n = 500
k = make_loop_kernel([
LoopDimension("i", n),

LoopDimension("j", n),

I]_f)o[pDimension(" K", n), loo.py

i+nxj], i+nxk]xb[k+nxj
(cli+nud], ali+nekl<bfictnsi]) what would you like

to unroll today?
gen_kwargs = {
"min_threads”: 128,
"min_blocks”: 32,

}
— ldeal case: Finds 160 GF/s kernel
without human intervention. n

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Loo.py Status

m Limited scope:
m Require input/output separation
m Kernels must be expressible using
“loopy” model

(i.e. indices decompose into “output” 100.])}'
and “reduction”) what would you like

| | Enough for DG, LA, FD, ... to unroll today?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Loo.py Status

m Limited scope:
m Require input/output separation
m Kernels must be expressible using
“loopy” model

(i.e. indices decompose into “output 100.])}'
and “reduction”) what would you like

| | Enough for DG, LA, FD, ... to unroll today?

Kernel compilation limits trial rate

Non-Goal: Peak performance

Good results currently for dense linear
algebra and (some) DG subkernels

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions
m Introduction
m Challenges
m Benefits of Metaprogramming
m GPU-DG: Performance and Generality
m Viscous Shock Capture

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions
m Introduction

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Q :=J; Dx C RY. %

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Let Q :=J; Dx C RY. %

Solve a conservation law on u+V-F(u)=0

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Le-tQ::Ukac:Rdé@2

Solve a conservation law on Q: u+V-F(u)=0

Maxwell’s Equations: EM field: E(x,t), H(x,t) on Q governed by

1 ' 1
OE—-VxH=-2 8;H+ =V x E=0,
€ € 1

v.E:g V-H=0.

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Discontinuous Galerkin Method

Multiply by test function, integrate by parts:
0= / urp + [V - F(u)]edx
D«

:/ urp — F(u) - Vodx + (- F)*¢@dSx,
Dy 9D

Subsitute in basis functions, introduce elementwise stiffness, mass,
and surface mass matrices matrices S, M, Mj:

ek = =" DY KF(uk)] + LX[A - F = (A - F)"]acop,-

For straight-sided simplicial elements:
Reduce D% and L to reference matrices. n
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Decomposition of a DG operator into Subtasks

DG's execution decomposes into two (mostly) separate branches:

3tuk

1

|—> Flux Gather Flux Lifting — 1
uk
L, F(u) Local Differentiation

Green: Element-local parts of the DG operator.

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

DG on GPUs: Possible Advantages

DG on GPUs: Why?

m GPUs have deep Memory Hierarchy
m The majority of DG is local.

m Compute Bandwidth > Memory Bandwidth
m DG is arithmetically intense.

m GPUs favor dense data.
m Local parts of the DG operator are dense.

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

DG on the GPU: What are we trying to achieve?

Objectives:

m Main: Speed
Reduce need for compute-bound clusters

m Secondary: Generality
Be applicable to many problems

m Tertiary: Ease-of-Use
Hide complexity of GPU hardware

Setting (for now):

m Specialize to straight-sided simplices

m Optimize for (but don't specialize to)
tetrahedra (ie. 3D)

m Optimize for “medium” order (3...5) n

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m Challenges

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Differentiation

N, Local Templated

i N
Derivative Matrices Field Data b

x
b

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
N¢Ng, -

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
N¢Ng, -

On-Chip Storage

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
L - }
N¢Ng, ? -

On-Chip Storage

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Element-Local Operations: Lifting

K
Local Templated Facial
N Lifting Matrix Field Data N Ny
| ?
N¢Ng, -

On-Chip Storage

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Best use for on-chip memory?

Basic Problem
On-chip storage is scarce. . .
...and will be for the foreseeable future.

Possible uses:

m Matrix/Matrices
m Part of a matrix
m Field Data

m Both

How to decide? Does it matter?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Work Partition for Element-Local Operators

Natural Work Decompoaosition:
One Element per Block

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Work Partition for Element-Local Operators

Natural Work Decompoaosition:
One Element per Block

@ Straightforward to implement

@ No granularity penalty

@ Cannot fill wide SIMD: unused compute
power for small to medium elements

@ Data alignment: Padding wastes memory
@ Cannot amortize cost of preparation steps
(e.g. fetching)

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Loop Slicing for element-local parts of GPU DG

Per Block: K| element-local mat.mult. + matrix load
[Preparation]

Question: How should one assign work to threads? 9

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Loop Slicing for element-local parts of GPU DG

Per Block: K| element-local mat.mult. + matrix load

Question: How should one assign work to threads? 9

Ws: in sequence w;: “inline-parallel” Wp: in parallel

r Thread r Thread [f Thread

= = EE@E

t I t t

(amortize preparation) (exploit register space) n
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Best Work Partition?

Basic Problem

Additional tier in parallelism offers additional choices. ..
... but very little in the way of guidance.

Possible work partitions:

m One or multiple elements per

block?
m One or multiple DOFs per thread?

m In parallel?
= In sequence?
m In-line?

How to decide? Does it matter? n

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

m Large Blocks:
@ More Data Reuse

Q Less Parallelism. . W&W&W&W&
@ Less Latency Hiding W&W&W&

m Block Size limited by two factors:

m Output buffer size %%

m Face metadata size W

m Optimal Block Size:
not obvious @

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:

m Large Blocks:
@ More Data Reuse

@ Less Parallelism
@ Less Latency Hiding %&%&g&
m Block Size limited by two factors: @ @
m Output buffer size & &
m Face metadata size W
m Optimal Block Size:
not obvious @

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Work Partition for Surface Flux Evaluation

Granularity Tradeoff:
m Large Blocks:

@ More Data Reuse
@ Less Parallelism g&g&g&
@ Less Latency Hiding
m Block Size limited by two factors: g&g&
m Output buffer size @
m Face metadata size
m Optimal Block Size:
not obvious @

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:
m Differentiation
m Lifting

m Surface Fluxes

128
64

Padding

\

T

Element

Element

Element

Element

Element

Element

k—
Np

KN,

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:
m Differentiation
m Lifting

m Surface Fluxes

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock")

m And demand other block sizes be a
multiple of this new size

128
64

Padding

\

T

Element

Element|Element

Element

Element|Element

k—
Np

KN,

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

More than one Granularity

Different block sizes introduced so far:
m Differentiation
m Lifting

m Surface Fluxes

Introduce another, smaller block size to
satisfy SIMD width and alignment
constraints. (“Microblock")

m And demand other block sizes be a
multiple of this new size

How big? Not obvious. @

128
64

Padding

\

T

Element

Element|Element

Element

Element|Element

k——

Np

KN,

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

DG on GPUs: Implementation Choices

m Many difficult questions
m Insufficient heuristics

m Answers are hardware-specific and
have no lasting value

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

DG on GPUs: Implementation Choices

m Many difficult questions
m Insufficient heuristics

m Answers are hardware-specific and
have no lasting value

Proposed Solution: Tune automatically
for hardware at computation time, cache
4 tuning results.

m Decrease reliance on knowledge of
hardware internals

m Shift emphasis from
tuning results to tuning ideas

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m Benefits of Metaprogramming

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

m Specialize code for user-given problem:
m Flux Terms

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

m Specialize code for user-given problem:
m Flux Terms
m Automated Tuning:

® Memory layout
m Loop slicing
m Gather granularity

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

m Specialize code for user-given problem:
m Flux Terms
m Automated Tuning:
® Memory layout
m Loop slicing
m Gather granularity
m Constants instead of variables:

m Dimensionality

m Polynomial degree
m Element properties
m Matrix sizes

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:
m Flux Terms
m Automated Tuning:
® Memory layout
m Loop slicing
m Gather granularity
m Constants instead of variables:

m Dimensionality

m Polynomial degree
m Element properties
m Matrix sizes

Loop Unrolling

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

Introduction Challenges Benefits Performance Shocks

Metaprogramming for GPU-DG

Specialize code for user-given problem:
m Flux Terms (*)
m Automated Tuning:
® Memory layout
m Loop slicing (*)
m Gather granularity
m Constants instead of variables:
m Dimensionality
m Polynomial degree
m Element properties
m Matrix sizes

Loop Unrolling

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Loop Slicing for Differentiation

2.2 ‘ ‘ 3.0
Local differentiation, matrix-in-shared,
order 4, with microblocking 2.8
2.0f point size denotes w, €{1,--,4} Q'
(] 2.6
= 1.8f i |
E Q 2.4
1) 12.2
£16 ¢® @}
z 12.0%
C
o @
£ 14 o {1.8
9]
(0]
X
w

1.6

*O?
LZ’Et . ."8 cteta..e ."7
LT L

1.2

0.8— ‘ : 1.0

15 20 25 30
u, (7]

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms

oz/D ut<,0+[V-F(u)]godx—/aD [A-F— (A F)JpdS«

Flux term

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms

oz/D ut<,0+[V-F(u)]godx—/aD [A-F— (A F)JpdS«

Flux term

Flux terms:
m vary by problem
m expression specified by user

m evaluated pointwise

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell's Equations

- (F— F*)e o= 5 [x (IH] — o x [E])]

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell's Equations

A k 1 N A
n-(F—F)e ::E[nx ([H] — it x [E])]
User writes: Vectorial statement in math. notation

flux = 1/2xcross(normal, h.int—h.ext
—alphaxcross(normal, e. int —e.ext))

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell's Equations

- (F— F*)e o= 5 [x (IH] — o x [E])]

We generate: Scalar evaluator in C (6x)

aflux +=(
(((val_a_field5 — val_b_field5) fpair —>normal[2]
— (val_a_field4d — val_b_field4)« fpair —>normal[0])
+ val_a_field0 — val_b_field0)* fpair —>normal[0]
— (((val_a_fieldd — val_b_field4) xfpair—>normal[1]
— (val_a_fieldl — val_b_fieldl)« fpair —>normal[2])
+ val_afield3 — val_b_field3) * fpair —>normal[1]
)*value_type (0.5);

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Hedge DG Solver

High-Level Operator Description m Uses CPU, GPU code
m Maxwell's generation

m Euler m Open Source (GPL3)

m Poisson _ _
Compressible Navier-Stokes, . .. = Written in Python,

m One Code runs. ..

...on CPU, CUDA

...on {CPU,CUDA}+MPI
...in 1D, 2D, 3D

...at any order

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m GPU-DG: Performance and Generality

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Nvidia GTX280 vs. single core of Intel Core 2 Duo E8400

300

GFlops/s

6
@
1
NYU

4
Polynomial Order N

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Memory Bandwidth on a GTX 280

=
[e)]
o

—
i
o

Global Memory Bandwidth [GB/s]
= =
o N
o o

1 2 3 4 5 6 7 8 9
Polynomial Order N ¢

NYU

20

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

GPU-DG Introduction Challenges Benefits Performance Shocks

Multiple GPUs via MPI: 16 GPUs vs. 64 CPUs

Flop Rates: 16 GPUs vs 64 CPU cores

4000 | HIEE GPU
B CPU

3000

GFlops/s

N
o
S
=

1000

2 4 6 8 10
Polvnomial Order N

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

GPU-DG Introduction Challenges Benefits Performance Shocks

GPU-DG in Double Precision

GPU-DG: Double vs. Single Precision

400 ‘ | | | 1.0
350 || Single | | ~— Ratio|
300 t Double 108

£250 | 1os

§200 |

G 150 | {04
100} mm , ,

% 7 ,1 71 1 0.2
50 | g 0 ; o ,
0 ééééﬂ@rwﬂ

Polvnomial Order N

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

Introduction Challenges Benefits Performance Shocks

Outline

GPU-DG: Challenges and Solutions

m Viscous Shock Capture

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws — shocks?

— t=0.00

10

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Benefits Performance Shocks

Introduction Challenges

Nonlinear conservation laws — shocks?

— t=0.00

© B
S 3

10

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws — shocks?

1D advection: ‘
— t=0.00
8tu+8xu =0 — t=0.67
. . . . — t=1.33
1D advection with viscosity:
Oru~+ v - Vyu=Vy- (vVyu).
Important: Conservation form.
Upwind fluxes for advection, IPDG for second-
order |

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Nonlinear conservation laws — shocks?

1D advection:

— t=0.00
Oru+0xu=20 —— +=0.67

1900

1D advection
81—U -+

Important: Cq

Upwind fluxes|
order

(9] p.

m Detector — v7
GPU-suitability? Data locality?
Properties? [Build on work by
Persson /Peraire '06]

m Time integration
Implicit/explicit? Adaptivity? RKC for
bigger At with viscosity?

m Accuracy?
Near shocks? Away from them?

cill

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity:

0tp+ Vi - (pu) = Vi - (¥Vxp),
Ot(pu) + Vi - (u® (pu)) + Vxp = Vi - (¥Vx(pu)),
OtE + Vi - (u(E + p)) = Vx - (vVxE).

Again: Single v, sensed on p. — Undue pollution of
the other field?

[Persson/Peraire ‘06] suggest Navier-Stokes-like vis-
cosity. No good: can't control jumps in p.

Rusanov fluxes for Euler, IPDG for viscosity.

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity:
O+ V, -(pu) =V, - (vV,p)
3t(pl Sod's Problem with N=5 and K =80 1)),
1.2 ‘ ‘ : :
—
1.0r —
Again — p(exact, L? proj.) of
the ofl 0.8 p (exact, L? proj.) ||
IsH
- 0.60 |
[Perss| = is-
cosity| 0.4r-
Rusan| 0.2
| e—
00%0 02 04 06 08 10 n

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |
Shock-Wave Interaction Problem
[. with N=5 and K =80
delpf | 1 S
- p
Again gt
the of] o
D 6
[Perss| | =
cosity. 4+ WM/W
Rusan ol
ngv
0 I I I I I
|| -6 -4 -2 g 2 4 6 n
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity. 5
Rusan

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Results: Euler's Equations of Gas Dynamics

Euler's equations with viscosity: |

Shock-Wave Interaction Problem |

Ot(py

Again
the ot

[Perss
cosity.

Rusan|

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagnetism

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagnetism

Poisson

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagn

L AT

CFD

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

GPU DG Showcase

Eletromagn

L AT

CFD

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyCUDA Loo.py GPU-DG Introduction Challenges Benefits Performance Shocks

Where to from here?

PyCUDA, PyOpenCL, hedge

— http://www.cims.nyu.edu/~kloeckner/

GPU-DG Article

AK, T. Warburton, J. Bridge, J.S. Hesthaven, “Nodal
Discontinuous Galerkin Methods on Graphics Processors”,
J. Comp. Phys., 228 (21), 7863-7882.

GPU RTCG

AK, N. Pinto et al. PyCUDA: GPU Run-Time Code Generation for
High-Performance Computing, submitted.

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

http://www.cims.nyu.edu/~kloeckner/

Introduction Challenges Benefits Performance Shocks

Conclusions

m GPUs and scripting work surprisingly well together
m Enable Run-Time Code Generation
m GPU-DG is significantly faster than CPU-DG

m Method well-suited a priori
m Numerous tricks enable good performance

m Further work in GPU-DG:

m Curvilinear Elements (T. Warburton)
m Local Time Stepping
m Shock Capturing for Nonlinear Equations

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Introduction Challenges Benefits Performance Shocks

Questions?

Thank you for your attention!

http://www.cims.nyu.edu/~kloeckner/

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

http://www.cims.nyu.edu/~kloeckner/

Introduction Challenges Benefits Performance Shocks

Credits

Exclamation mark: sxc.hu/cobrasoft
Adding Machine: flickr.com/thomashawk @

Floppy disk: flickr.com /ethanhein (c9)
Carrot: OpenClipart.org

Dart board: sxc.hu/195617

m Question Mark: sxc.hu/svilen001

m Question Mark: sxc.hu/svilen001

m ?/1 Marks: sxc.hu/svilen001

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

	PyCUDA
	Automatic GPU Programming
	GPU-DG: Challenges and Solutions
	Introduction
	Challenges
	Benefits of Metaprogramming
	GPU-DG: Performance and Generality
	Viscous Shock Capture

