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Intro PyOpenCL

Course Outline
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Intro: GPUs, OpenCL

GPU Programming with PyOpenCL

1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



What and Why? OpenCL

Outline

Intro: GPUs, OpenCL
m What and Why?
m Intro to OpenCL
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What and Why? OpenCL
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Intro What and Why? OpenCL

CPU Chip Real Estate

! LLoé&IS tge)

Die floorplan: VIA lsaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2. ¢
NYU
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What and Why? OpenCL

“CPU-style” Cores

ALU
(Execute)
- Data cache
(A big one)
¢
T
Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

Slimming down

( E"“-lt’) Remove components that
xecute . . .
help a single instruction

- stream run fast

Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

More Space: Double the Number of Cores

ALU ALV

(Execute) (Execute)

Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

ALU ALU
(Execute) (Execute)

i L
i

ALU ALU
(Execute) (Execute)

Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

...and again
N | | . o |
[ o |
[ o | .
O | | I S
@
1
Credit: Kayvon Fatahalian (Stanford) NYU



What and Why? OpenCL

very different/independent

...and again
o | o |
[ o |
ALU ALU ALU

[ o | .

[aw ]
— 16 independent instruction streams
Reality: instruction streams not actually

n U

Credit: Kayvon Fatahalia
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Intro What and Why? OpenCL

Saving Yet More Space

ALU

(Execute)

@
1

Creditr Kayvon Fatahalian (Stanford NYU
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Intro What and Why? OpenCL

Saving Yet More Space

ALU Idea #2

(Execute)

Amortize cost/complexity of
managing an instruction stream
across many ALUs

— SIMD

NYU

Creditr Kayvon Fatahatian (Stanford
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Intro What and Why? OpenCL

Saving Yet More Space

ALU1| [ ALU2| [ ALU3| | ALU4

Idea #2

ALUS| | ALUG| | ALU7 || ALUS Amortize cost/complexity of
managing an instruction stream
across many ALUs

— SIMD

NYU
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Intro

Saving Yet More Space

ALU1| [ ALU2| [ ALU3| | ALU4

ALU5| [ ALU6| | ALU7 | | ALUS8

Shared Ctx Data

Creditr Kayvon Fatahatian (Stanford
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What and Why? OpenCL

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

— SIMD

NYU
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What and Why? OpenCL

Gratuitous Amounts of Parallelism!

Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

Gratuitous Amounts of Parallelism!

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

Remaining Problem: Slow Memory

Memory still has very high latency. ..
... but we've removed most of the
hardware that helps us deal with that.

We've removed
m caches
m branch prediction
m out-of-order execution

So what now?

NYU
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What and Why? OpenCL

Remaining Problem: Slow Memory

Memory still has very high latency. ..
... but we've removed most of the
hardware that helps us deal with that.

We've removed

m caches
Idea #3

m branch prediction

m out-of-order execution Even more parallelism
So what now? + Some extra memory
= A solution!
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What and Why? OpenCL

) ) (| )

|ALU||ALU||ALU||ALU|

=

Shared Ctx Data

Idea #3

Even more parallelism
+ Some extra memory

= A solution!
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What and Why? OpenCL

) ) (| )

|ALU||ALU||ALU||ALUI

=

\
Idea #3
Even more parallelism
q + Some extra memory
= A solution!
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Intro What and Why? OpenCL

GPU Architecture Summary

Core ldeas:

Many slimmed down cores
— lots of parallelism

More ALUs, Fewer Control Units
Avoid memory stalls by interleaving

execution of SIMD groups
(“Warps”)

Credit: Kayvon Fatahalian (Stanford) NYU
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What and Why? OpenCL

Connection: Hardware <> Programming Model

@
1
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model

Idea:

m Program as if there were
“infinitely” many cores

m Program as if there were
“infinitely” many ALUs per
core

-0 B AR
0 B0 R
HE0 B0 B
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What and Why? OpenCL

Connection: Hardware <> Programming Model

0

N HER B

Consider: Which is easy to do automatically?
m Parallel program — sequential hardware

or

m Sequential program — parallel hardware?

T
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

i

218 i
Privte

(“Registers™)
=
EEEE

218 Cx

Axis 1

Shared

=
I

Software representation
Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

16148 Cox
Shared

B'T YIRA LY L bk —

218 Cx
o

-
e

Axis 1

Software representation
Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL

What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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Axis 1
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Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL

What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0
DS S |

Really: Group provides

pool of parallelism to draw
from.

Axis 1

X,Y,Z order within group
matters. (Not among

groups, though.) @
u

Software representation
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What and Why? OpenCL

Connection: Hardware <> Programming Model
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Intro PyOpenCL

What and Why? OpenCL

Connection: Hardware <> Programming Model
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What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

-0 B
-0 B

i

B get_local_id(axis)?/size(axis)?

Axis 1

m get_group_id(axis)?/num_groups(axis)?

m get_global_id(axis)?/size(axis)?

axis=0,1,2,...
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What and Why? OpenCL

Grids can be 1,2,3-dimensional.

-0 B
-0 B

i

B get_local_id(axis)?/size(axis)?

Axis 1

m get_group_id(axis)?/num_groups(axis)?

m get_global_id(axis)?/size(axis)?

axis=0,1,2,...
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What and Why? OpenCL

Outline

Intro: GPUs, OpenCL

m Intro to OpenCL
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What and Why? OpenCL

What is OpenCL?

OpenCL (Open Computing Language) is an

open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

m Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

m Vendor-neutral
m Comes with RTCG

Defines:
m Host-side programming interface (library)
m Device-side programming language (!) n
NYU
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What and Why? OpenCL

« Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

¢ Many industry-leading experts involved in OpenCL's design
- A healthy diversity of industry perspectives

* Apple made initial proposal and is very active in the working group
- Serving as specification editor
aavion BZRY AMDZIU ARM gl

& codeplny ERICSSON
BROADCOM. PNy

*, O °

:‘frees.gcale‘* FU]]TSU @ graphic

Z
REMEDY ',mw_ E _z ‘l@ l’:‘%’?‘j?g .C?sAIamos
Q@ -~ noka <5

Ei] Petapath CRES QuaLcomw
nvIDIA — INX SOFTWARE SYSTEMS

= o0
s3 @ &y, wemi R TosHIBA K Zii
Credit: Khronos Group

opyright Khronos Group, 2010 - Page 4
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What and Why? OpenCL

» Six months from proposal to released OpenCL 1.0 specification
- Due to a strong initial proposal and a shared commercial incentive

¢ Multiple conformant implementations shipping
- Apple’s Mac OS X Snow Leopard now ships with OpenCL

* 18 month cadence between OpenCL 1.0 and OpenCL 1.1
- Backwards compatibility protect software investment

Khronos publicly Multiple conformant
releases OpenCL 1.0 as implementations ship
royalty-free across diverse 0S
specification and platforms
Jun08 May09 } Jun10
t Dec08 t 2H09 t
Apple proposes OpenCL Khronos releases OpenCL OpenCL 1.1
working group and 1.0 conformance tests to Specification released and
contributes draft specification ensure high-quality first implementations ship
to Khronos implementations

Copyright Khronos Group, 2010 - Page 5

Credit: Khronos Group
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What and Why? OpenCL

CPUs GPUs
Multiple cores driving Emerging Increasingly general
performance increases Intersection purpose data-parallel
computing
SVEE
0
M a
OpenCL
Multi- Heterogeneous Graphics
processor Computing APIs and
programming Shading
—e.g. OpenMP Languages

OpenCL is a programming framework for heterogeneous compute resources

Copyright Khronos Group, 2010 - Page 3

Credit: Khronos Group
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What and Why? OpenCL

CL vs CUDA side-by-side
CUDA source code:

_global__ void transpose(
float *A_t, float *A,
int a_width, int a_height)

int base.idx.a =
blockldx.x * BLK_SIZE +
blockldx.y * A_BLOCK_STRIDE;
int base_idx.at =
blockldx.y * BLK_SIZE +
blockldx.x * A_T_-BLOCK_STRIDE;

int glob_idx-a
base_idx-a + threadldx.x
+ a-width * threadldx.y;

int glob_idx.a_t =
base.idx-a-t + threadldx.x
+ a-height * threadldx.y;

_shared__ float A_shared[BLK_SIZE][BLK_SIZE+1];

A_shared[threadldx.y][ threadldx.x] =
Alglob_idx_a |;

_syncthreads ();

A_t[ glob_idx_a_t ] =
A_shared[threadldx.x][ threadldx.y];
¥

ndreas Klockner

OpenCL source code:

void transpose (
--global float xa_t, __global float xa,
d a_width, 1 a_height)

int base.idx.a =
get_group_id (0) * BLK_SIZE +
get_group_id (1) * A_BLOCK_STRIDE;

int base_idx_a_t
get_group_id (1) * BLK_SIZE +
get_group_id (0) * A_T_BLOCK_STRIDE;

int glob_idx.a =
base_idx-a + get_local.id (0)
+ a_width * get_local_id (1);
int glob_idx.a_t =
base_idx-a_t + get-local-id (0)
+ a_height * get_local_id (1);

_local float a_local [BLK_SIZE][BLK_SIZE+1];

a_local [ get_local_id (1)xBLK_SIZE+get_local_id(0)] =
a[ glob_idx-a ];

barrier (CLK_LOCAL_.MEM_FENCE);

a_t[ glob_idx-a_t ] =
a_local [ get_local.id (0)xBLK_SIZE+get_local-id(1)];

GPU-Python with PyOpenCL and PyCUDA



What and Why? OpenCL

OpenCL <> CUDA: A dictionary

OpenCL | CUDA
Grid | Grid
Work Group | Block
Work Item | Thread
- kernel | __global__
_global | _device__
__local | __shared__
__private | __local__
imagend_t | texture<type, n, ...>
barrier(LMF) | __syncthreads()

get_local_id(012)
get_group_id(012)
get_global_id(012)

threadIldx.xyz
blockIdx.xyz

— (reimplement) n

NYU
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What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

NYU
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host ["]” -
~ || Compute Device 0 (platform 1)
(CPU) . t
Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Mamar:

Compute Device 1 (piatform 0)

Host — L
(CPU) [I["] Compute Device 0 (Piatform 1)
Moo
Compute Device 1 (piatform 1)

[alalul n

["]I] — I] Memory
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Platform 0 (e.g. CPUs)

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host
(CPU)

[I["] || Compute Device 0 (Piaform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

0

Host
(CPU)

Compute Device 0 (Piatform 1)

[alalul n

00~ 1

Platform 1 (e.g. GPUs)

1
1
1
I
Compute Device 1 (piatform 1) :
l
1
1
1
1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

(think “chip”,
has memory
interface)

—|

Host
(CPU)

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

[I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

(think “chip”, :
h Compute Device 0 (piatform 0)
as memory —_
interface)
Compute Device 1 (piatform 0)
Host ["]” -
~ || Compute Device 0 (platform 1)
(CPU) . t

] Compute Device 1 (piatform 1)

Compute Unit r:tu!.‘
think “processor”, lnon,

( P oo™ [l

has insn. fetch)
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

(think “chip”, :
h Compute Device 0 (piatform 0)
as memory —_
interface)
Compute Device 1 (piatform 0)
Host ["]” -
~ || Compute Device 0 (platform 1)
(CPU) . t

Compute Device 1 (piatform 1)

Compute Unit F‘.‘
H “ " | N
(think “processor”, oA - )U

has insn. fetch)

Processing Element
(think “SIMD lane™)
-
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host
(CPU)

[I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1
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Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

[I["] ~ | Compute Device 0 (platform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

Device Language: ~ C99 n
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Intro What and Why? OpenCL

Why do Scripting for GPUs?

m GPUs are everything that scripting
languages are not.

m Highly parallel
m Very architecture-sensitive
m Built for maximum FP/memory
throughput
— complement each other

m CPU: largely restricted to control
tasks (~1000/sec)

m Scripting fast enough
m Python + CUDA = PyCUDA
m Python + OpenCL = PyOpenCL

1

NYU
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PyOpenCL First Contact About PyOpenCL

Outline

GPU Programming with PyOpenCL
m First Contact
m About PyOpenCL

NYU
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PyOpenCL First Contact About PyOpenCL

Outline

GPU Programming with PyOpenCL
m First Contact
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Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL

1
2
3
4
5
6
7
8

import pyopencl as cl, numpy
a = numpy.random.rand(256x+3).astype(numpy.float32)

ctx = cl. create_some_context ()
queue = cl.CommandQueue(ctx)

a_dev = cl. Buffer(ctx, cl.mem_flags. READ_WRITE, size=a.nbytes)
9 cl. enqueue_write_buffer (queue, a_dev, a)

10

11 prg = cl.Program(ctx, """

12 __kernel void twice( __global float *a)
13 { a[ get_global_id (0)] *=2; }

14 "), build ()

15

16 prg.twice(queue, a.shape, (1,), a_dev)
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Dive into PyOpenCL

1
2
3
4
5
6
7
8

import pyopencl as cl, numpy
a = numpy.random.rand(256x+3).astype(numpy.float32)

ctx = cl. create_some_context ()
queue = cl.CommandQueue(ctx)

a_dev = cl. Buffer(ctx, cl.mem_flags. READ_WRITE, size=a.nbytes)
9 cl. enqueue_write_buffer (queue, a_dev, a)

10

11 prg = cl.Program(ctx, """

12 _kernel void twice( __global float *a)

13 { a[ get_global_id (0)] *=2; } Compute kernel
14 """, build ()

15

16 prg.twice(queue, a.shape, (1,), a_dev)
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Dive into PyOpenCL: Getting Results

10
11
12
13
14
15
16
17
18
19
20
21

a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl. enqueue_write_buffer (queue, a_dev, a)

prg = cl.Program(ctx, """

__kernel void twice( -_global float x*a)
{ a[ get_global_id (0)] *=2; }

"), build ()

prg.twice(queue, a.shape, (1,), a_dev)

result = numpy.empty_like(a)

cl. enqueue_read_buffer (queue, a_dev, result ).wait()
import numpy.linalg as la

assert la.norm(result — 2xa) ==
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Dive into PyOpenCL: Grouping

10
11
12
13
14
15
16
17
18
19
20
21

a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl. enqueue_write_buffer (queue, a_dev, a)

prg = cl.Program(ctx, """

__kernel void twice( -_global float x*a)

{ a[ get_local_id (0)+ get_local_size (0)*get_group_id (0)] *= 2; }
"), build ()

prg.twice(queue, a.shape, (256,), a_dev)

result = numpy.empty_like(a)

cl. enqueue_read_buffer (queue, a_dev, result ).wait()
import numpy.linalg as la

assert la.norm(result — 2xa) ==
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Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..

...compute ¢; = a;b;?

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..
...compute ¢; = a;b;?

... use groups of 16 x 16 work items?
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Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..
...compute ¢; = a;b;?
... use groups of 16 x 16 work items?

...benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)
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Outline

GPU Programming with PyOpenCL

m About PyOpenCL

NYU
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PyOpenCL Philosophy

Provide complete access
Automatically manage resources
Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

NYU
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PyOpenCL: Completeness

PyOpenCL exposes all of OpenCL.

For example:
m Every GetInfo() query

m Images and Samplers

m Memory Maps
m Profiling and Synchronization
L]

GL Interop

NYU
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PyOpenCL: Completeness

PyOpenCL supports (nearly)
every OS that has an OpenCL

implementation. 00
m Linux C 0
m OS X
m Windows

NYU
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Automatic Cleanup

m Reachable objects (memory,
streams, ...) are never destroyed.

m Once unreachable, released at an "

unspecified future time.
m Scarce resources (memory) can be ‘
explicitly freed. (obj.release()) . ’
m Correctly deals with multiple

contexts and dependencies. (based
on OpenCL's reference counting)

NYU
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PyOpenCL: Documentation

PyOpenCL o512 documentation net | modes | in
Table Of Contents Welcome to PyOpenCL’s documentation!

PyOpenCL gives you easy, Pythonic access to the OpenCL paraliel computation APL. What makes PyOpenCL special?

* Objct clearup ted o fetme of cbjects. This o, oten caled A1 C1-+, mokes i much caser to Wrte correc, feak- and
crashiiree

+ Competanese, PyOpenCL puts the full power of OpenCL's APl at your disposal If you wish. Every obscure get_Jnfol auery and all
QL calls are accessible.

This Page « Automatic Error Checking. Al errors are automatically translated Into Python exceptions

« Speed. PyOpenCL's base layer Is written In C++, 5o all the niceties above are virtualy free.

Show Source « Helpful Documentation. You're looking at It

Quick search « Liberal license. PyOpenCL Is open-source under the MIT license and free for commercial, academic, and private use

F Here's an example, to give you an impression:

overt ropncl s
oramodute. [EELEE
5 inport nurpy.linalg as 1a

Next topic
Instalat

a = nunpy. randor. rand 50000) astype (nunpy. loat32)
b = nunpy_ randon. rand (50600) astype (nunpy. Tloat32)

et - clcontext()
queus - cL.ConnandQueus (¢t6)

o - clnsn_flags
gtut = cUautientctn. nf ret oy | af. convrosr
BZbuf - cllBufer(ctx, nf.READLONLY | nf COPY_HOST
Gast bt L Bofertcte, wT WRLTE LYY b meytesy

org - el Prograncet,
vold sun(_global const float a
{ToReL canst TLest S, gtobet Fiaat 260

d - get_global_id(0)
elgial = slgid] + blgidl:
) busld)
pry.sun(queus, a.shaps, a_buf, b_buf, dest_buf)

2B = nungy enp, ke (s)
tlangieus_read bufferiqueus. dst buf, a_plus_b).vait()

print Ta.norm(a_plus_b - (ash))

(You can find this example as exaples/dens.py in the PyOpenCL source distribution.)

Contents
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PyOpenCL: Vital Information

http://mathema.tician.de/
software/pyopencl

Complete documentation

m MIT License
(no warranty, free for all use)

Requires: numpy, Python 2.4+,

Support via mailing list.

1

NYU
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An Appetizer

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy

2 import pyopencl as cl

3 import pyopencl.array as cl_array
4

5 ctx = cl.create_some_context ()

6 queue = cl.CommandQueue(ctx)
7

8 a_gpu = cl.array . to_device (

9 ctx, queue, numpy.random.randn(4,4).astype(numpy.float32))
10 a_doubled = (2xa_gpu).get()

11 print a_doubled

12

print a_gpu n

NYU
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Questions?

NYU
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