Easy, Effective, Efficient:

GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klockner

Courant Institute of Mathematical Sciences
New York University

PASI: The Challenge of Massive Parallelism
Lecture 1 - January 3, 2011

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL

Course Outline

Session 1: Intro

m GPU arch. motivation
m Intro to OpenCL

m Intro to PyOpenCL

m First Steps

Session 2: Dive into CL

m CL runtime

m CL device programming
language

m Notes on CL
implementations

Session 3: Code Generation

m Example uses

m Methods of RTCG
m Tuning objectives
m Case study

Session 4: Advanced Topics

® Multi-GPU: CL+MPI,

Virtual CL

m PyCUDA
m Discontinuous Galerkin n

Methods on GPUs
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro: GPUs, OpenCL

GPU Programming with PyOpenCL

1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Outline

Intro: GPUs, OpenCL
m What and Why?
m Intro to OpenCL

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Outline

Intro: GPUs, OpenCL
m What and Why?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro What and Why? OpenCL

CPU Chip Real Estate

! LLoé&IS tge)

Die floorplan: VIA lsaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2. ¢
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

“CPU-style” Cores

ALU
(Execute)
- Data cache
(A big one)
¢
T
Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Slimming down

(E"“-lt’) Remove components that
xecute . . .
help a single instruction

- stream run fast

Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

More Space: Double the Number of Cores

ALU ALV

(Execute) (Execute)

Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

ALU ALU
(Execute) (Execute)

i L
i

ALU ALU
(Execute) (Execute)

Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

...and again
N | | . o |
[o |
[o | .
O | | I S
@
1
Credit: Kayvon Fatahalian (Stanford) NYU

What and Why? OpenCL

very different/independent

...and again
o | o |
[o |
ALU ALU ALU

[o | .

[aw]
— 16 independent instruction streams
Reality: instruction streams not actually

n U

Credit: Kayvon Fatahalia

T

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro What and Why? OpenCL

Saving Yet More Space

ALU

(Execute)

@
1

Creditr Kayvon Fatahalian (Stanford NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro What and Why? OpenCL

Saving Yet More Space

ALU Idea #2

(Execute)

Amortize cost/complexity of
managing an instruction stream
across many ALUs

— SIMD

NYU

Creditr Kayvon Fatahatian (Stanford

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro What and Why? OpenCL

Saving Yet More Space

ALU1| [ALU2| [ALU3| | ALU4

Idea #2

ALUS| | ALUG| | ALU7 || ALUS Amortize cost/complexity of
managing an instruction stream
across many ALUs

— SIMD

NYU

Creditr Kayvon Fatahatian (Stanford

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro

Saving Yet More Space

ALU1| [ALU2| [ALU3| | ALU4

ALU5| [ALU6| | ALU7 | | ALUS8

Shared Ctx Data

Creditr Kayvon Fatahatian (Stanford

Andreas Klockner

What and Why? OpenCL

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

— SIMD

NYU

GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Gratuitous Amounts of Parallelism!

Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Gratuitous Amounts of Parallelism!

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Remaining Problem: Slow Memory

Memory still has very high latency. ..
... but we've removed most of the
hardware that helps us deal with that.

We've removed
m caches
m branch prediction
m out-of-order execution

So what now?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Remaining Problem: Slow Memory

Memory still has very high latency. ..
... but we've removed most of the
hardware that helps us deal with that.

We've removed

m caches
Idea #3

m branch prediction

m out-of-order execution Even more parallelism
So what now? + Some extra memory
= A solution!

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

)) (|)

|ALU||ALU||ALU||ALU|

=

Shared Ctx Data

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

)) (|)

|ALU||ALU||ALU||ALUI

=

\
Idea #3
Even more parallelism
q + Some extra memory
= A solution!

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro What and Why? OpenCL

GPU Architecture Summary

Core ldeas:

Many slimmed down cores
— lots of parallelism

More ALUs, Fewer Control Units
Avoid memory stalls by interleaving

execution of SIMD groups
(“Warps”)

Credit: Kayvon Fatahalian (Stanford) NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

@
1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

-0 B AR
0 B0 R
HE0 B0 B

@
1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

HEE 0 B

HE0 B0 B

L

@
1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

-0 B AR
0 B0 R
HE0 B0 B

@
1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

-0 B AR
0 B0 R
HE0 B0 B

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

Idea:

m Program as if there were
“infinitely” many cores

m Program as if there were
“infinitely” many ALUs per
core

-0 B AR
0 B0 R
HE0 B0 B

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

0

N HER B

Consider: Which is easy to do automatically?
m Parallel program — sequential hardware

or

m Sequential program — parallel hardware?

T

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

-0 B AR
0 B0 R
HE0 B0 B

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

218 i 3218 Cix 32148 Cix
Privte Privte

T
%
fi

16148 Cox

iy

218 Cx

Axis 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

218 i 3218 Cix 32148 Cix
Privte Privte

T
%
fi

16148 Cox

iy

218 Cx

Axis 1

Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

i

218 i
Privte

(“Registers™)
=
EEEE

218 Cx

Axis 1

Shared

=
I

Software representation
Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

-
e

Axis 1

16148 Cox
Shared

Fetch/
=
EEEE

218 Cx
o

Software representation

Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

16148 Cox
Shared

B'T YIRA LY L bk —

218 Cx
o

-
e

Axis 1

Software representation
Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

16148 Cox
Shared

B'T YIRA LY L bk —

218 Cx
o

-
e

Axis 1

N
|

(Work) Item
Software representatron

Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

i

218 i
Privte

(“Registers™)
=
EEEE

218 Cx

Axis 1

Shared

=
I

Software representation
Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL

What and Why? OpenCL

Connection: Hardware <> Programming Model

Axis 0

16148 Cox 16148 Cox
Shared Shared

Axis 1

Software representation

I

ardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

—7AXIS U |

Axis 1

-0 B AR
0 B0 R
HE0 B0 B

Software representation
Hardware

z

YU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware <> Programming Model

I AXI e/ Fech)
Do e
—
o
(“Registers”

B O 0

218 Cx
o

Axis 1

Software representation
Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL

What and Why? OpenCL

Connection: Hardware <> Programming Model

AXI

Axis 1

Software representation

Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro Py

What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

Axis 1

Software representation

Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

>
X,
*
o
]
“

4

— o o
EEE==E=s Rl ===
=) =) (]
= =
CED =D =
S e
—
= = =
% Ea vl
S e
=) (=)]
EE = =
Software representation
Hardware
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

J

} Axis 0

o oF ol |
EEE==E=spNE=Es
e, g =) =) (]
= =
e e | R EE B
—
= = =
% Ea vl
=) (=)]
EE = =
Software representation
Hardware
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

’ 7xis 1l - - =

T T T T FH B =

=

e e |)

i

v E B E

Z] el =)

] =D =

— Eallcaliva
Software representation

Hardware
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0
DS S |

Really: Group provides

pool of parallelism to draw
from.

Axis 1

X,Y,Z order within group
matters. (Not among

groups, though.) @
u

Software representation

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

’ 7xis 1l - - =

T T T T FH B =

=

e e |)

i

v E B E

Z] el =)

] =D =

— Eallcaliva
Software representation

Hardware
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL

What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

AN
N
N

Axis 1
N\

N

N

Software representation

Hardware

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Connection: Hardware <> Programming Model

} Axis 0

-0 B
-0 B

i

B get_local_id(axis)?/size(axis)?

Axis 1

m get_group_id(axis)?/num_groups(axis)?

m get_global_id(axis)?/size(axis)?

axis=0,1,2,...
SOftV' aTT TCPTTSTITLatioTT

Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Grids can be 1,2,3-dimensional.

-0 B
-0 B

i

B get_local_id(axis)?/size(axis)?

Axis 1

m get_group_id(axis)?/num_groups(axis)?

m get_global_id(axis)?/size(axis)?

axis=0,1,2,...
SOftV' aTT TCPTTSTITLatioTT

Hardware

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

Outline

Intro: GPUs, OpenCL

m Intro to OpenCL

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

What is OpenCL?

OpenCL (Open Computing Language) is an

open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

m Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

m Vendor-neutral
m Comes with RTCG

Defines:
m Host-side programming interface (library)
m Device-side programming language (!) n
NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

« Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

¢ Many industry-leading experts involved in OpenCL's design
- A healthy diversity of industry perspectives

* Apple made initial proposal and is very active in the working group
- Serving as specification editor
aavion BZRY AMDZIU ARM gl

& codeplny ERICSSON
BROADCOM. PNy

*, O °

:‘frees.gcale‘* FU]]TSU @ graphic

Z
REMEDY ',mw_ E _z ‘l@ l’:‘%’?‘j?g .C?sAIamos
Q@ -~ noka <5

Ei] Petapath CRES QuaLcomw
nvIDIA — INX SOFTWARE SYSTEMS

= o0
s3 @ &y, wemi R TosHIBA K Zii
Credit: Khronos Group

opyright Khronos Group, 2010 - Page 4

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

» Six months from proposal to released OpenCL 1.0 specification
- Due to a strong initial proposal and a shared commercial incentive

¢ Multiple conformant implementations shipping
- Apple’s Mac OS X Snow Leopard now ships with OpenCL

* 18 month cadence between OpenCL 1.0 and OpenCL 1.1
- Backwards compatibility protect software investment

Khronos publicly Multiple conformant
releases OpenCL 1.0 as implementations ship
royalty-free across diverse 0S
specification and platforms
Jun08 May09 } Jun10
t Dec08 t 2H09 t
Apple proposes OpenCL Khronos releases OpenCL OpenCL 1.1
working group and 1.0 conformance tests to Specification released and
contributes draft specification ensure high-quality first implementations ship
to Khronos implementations

Copyright Khronos Group, 2010 - Page 5

Credit: Khronos Group

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

CPUs GPUs
Multiple cores driving Emerging Increasingly general
performance increases Intersection purpose data-parallel
computing
SVEE
0
M a
OpenCL
Multi- Heterogeneous Graphics
processor Computing APIs and
programming Shading
—e.g. OpenMP Languages

OpenCL is a programming framework for heterogeneous compute resources

Copyright Khronos Group, 2010 - Page 3

Credit: Khronos Group

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

CL vs CUDA side-by-side
CUDA source code:

_global__ void transpose(
float *A_t, float *A,
int a_width, int a_height)

int base.idx.a =
blockldx.x * BLK_SIZE +
blockldx.y * A_BLOCK_STRIDE;
int base_idx.at =
blockldx.y * BLK_SIZE +
blockldx.x * A_T_-BLOCK_STRIDE;

int glob_idx-a
base_idx-a + threadldx.x
+ a-width * threadldx.y;

int glob_idx.a_t =
base.idx-a-t + threadldx.x
+ a-height * threadldx.y;

_shared__ float A_shared[BLK_SIZE][BLK_SIZE+1];

A_shared[threadldx.y][threadldx.x] =
Alglob_idx_a |;

_syncthreads ();

A_t[glob_idx_a_t] =
A_shared[threadldx.x][threadldx.y];
¥

ndreas Klockner

OpenCL source code:

void transpose (
--global float xa_t, __global float xa,
d a_width, 1 a_height)

int base.idx.a =
get_group_id (0) * BLK_SIZE +
get_group_id (1) * A_BLOCK_STRIDE;

int base_idx_a_t
get_group_id (1) * BLK_SIZE +
get_group_id (0) * A_T_BLOCK_STRIDE;

int glob_idx.a =
base_idx-a + get_local.id (0)
+ a_width * get_local_id (1);
int glob_idx.a_t =
base_idx-a_t + get-local-id (0)
+ a_height * get_local_id (1);

_local float a_local [BLK_SIZE][BLK_SIZE+1];

a_local [get_local_id (1)xBLK_SIZE+get_local_id(0)] =
a[glob_idx-a];

barrier (CLK_LOCAL_.MEM_FENCE);

a_t[glob_idx-a_t] =
a_local [get_local.id (0)xBLK_SIZE+get_local-id(1)];

GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

OpenCL <> CUDA: A dictionary

OpenCL | CUDA
Grid | Grid
Work Group | Block
Work Item | Thread
- kernel | __global__
_global | _device__
__local | __shared__
__private | __local__
imagend_t | texture<type, n, ...>
barrier(LMF) | __syncthreads()

get_local_id(012)
get_group_id(012)
get_global_id(012)

threadIldx.xyz
blockIdx.xyz

— (reimplement) n

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host ["]” -
~ || Compute Device 0 (platform 1)
(CPU) . t
Compute Device 1 (piatform 1)

[alalul n

00~ 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Mamar:

Compute Device 1 (piatform 0)

Host — L
(CPU) [I["] Compute Device 0 (Piatform 1)
Moo
Compute Device 1 (piatform 1)

[alalul n

["]I] — I] Memory

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Platform 0 (e.g. CPUs)

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host
(CPU)

[I["] || Compute Device 0 (Piaform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

0

Host
(CPU)

Compute Device 0 (Piatform 1)

[alalul n

00~ 1

Platform 1 (e.g. GPUs)

1
1
1
I
Compute Device 1 (piatform 1) :
l
1
1
1
1

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

(think “chip”,
has memory
interface)

—|

Host
(CPU)

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

[I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

NYU

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

(think “chip”, :
h Compute Device 0 (piatform 0)
as memory —_
interface)
Compute Device 1 (piatform 0)
Host ["]” -
~ || Compute Device 0 (platform 1)
(CPU) . t

] Compute Device 1 (piatform 1)

Compute Unit r:tu!.‘
think “processor”, lnon,

(P oo™ [l

has insn. fetch)

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

(think “chip”, :
h Compute Device 0 (piatform 0)
as memory —_
interface)
Compute Device 1 (piatform 0)
Host ["]” -
~ || Compute Device 0 (platform 1)
(CPU) . t

Compute Device 1 (piatform 1)

Compute Unit F‘.‘
H “ " | N
(think “processor”, oA -)U

has insn. fetch)

Processing Element
(think “SIMD lane™)
-

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host

(CPU) [I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

Host
(CPU)

[I["] ~ || Compute Device 0 (piatform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Compute Device 0 (piatform 0)

Compute Device 1 (piatform 0)

[I["] ~ | Compute Device 0 (platform 1)

Compute Device 1 (piatform 1)

[alalul n

00~ 1

Device Language: ~ C99 n

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro What and Why? OpenCL

Why do Scripting for GPUs?

m GPUs are everything that scripting
languages are not.

m Highly parallel
m Very architecture-sensitive
m Built for maximum FP/memory
throughput
— complement each other

m CPU: largely restricted to control
tasks (~1000/sec)

m Scripting fast enough
m Python + CUDA = PyCUDA
m Python + OpenCL = PyOpenCL

1

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

Outline

GPU Programming with PyOpenCL
m First Contact
m About PyOpenCL

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

Outline

GPU Programming with PyOpenCL
m First Contact

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL

1
2
3
4
5
6
7
8

import pyopencl as cl, numpy
a = numpy.random.rand(256x+3).astype(numpy.float32)

ctx = cl. create_some_context ()
queue = cl.CommandQueue(ctx)

a_dev = cl. Buffer(ctx, cl.mem_flags. READ_WRITE, size=a.nbytes)
9 cl. enqueue_write_buffer (queue, a_dev, a)

10

11 prg = cl.Program(ctx, """

12 __kernel void twice(__global float *a)
13 { a[get_global_id (0)] *=2; }

14 "), build ()

15

16 prg.twice(queue, a.shape, (1,), a_dev)

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL

1
2
3
4
5
6
7
8

import pyopencl as cl, numpy
a = numpy.random.rand(256x+3).astype(numpy.float32)

ctx = cl. create_some_context ()
queue = cl.CommandQueue(ctx)

a_dev = cl. Buffer(ctx, cl.mem_flags. READ_WRITE, size=a.nbytes)
9 cl. enqueue_write_buffer (queue, a_dev, a)

10

11 prg = cl.Program(ctx, """

12 _kernel void twice(__global float *a)

13 { a[get_global_id (0)] *=2; } Compute kernel
14 """, build ()

15

16 prg.twice(queue, a.shape, (1,), a_dev)

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Getting Results

10
11
12
13
14
15
16
17
18
19
20
21

a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl. enqueue_write_buffer (queue, a_dev, a)

prg = cl.Program(ctx, """

__kernel void twice(-_global float x*a)
{ a[get_global_id (0)] *=2; }

"), build ()

prg.twice(queue, a.shape, (1,), a_dev)

result = numpy.empty_like(a)

cl. enqueue_read_buffer (queue, a_dev, result).wait()
import numpy.linalg as la

assert la.norm(result — 2xa) ==

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Grouping

10
11
12
13
14
15
16
17
18
19
20
21

a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
cl. enqueue_write_buffer (queue, a_dev, a)

prg = cl.Program(ctx, """

__kernel void twice(-_global float x*a)

{ a[get_local_id (0)+ get_local_size (0)*get_group_id (0)] *= 2; }
"), build ()

prg.twice(queue, a.shape, (256,), a_dev)

result = numpy.empty_like(a)

cl. enqueue_read_buffer (queue, a_dev, result).wait()
import numpy.linalg as la

assert la.norm(result — 2xa) ==

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..

...compute ¢; = a;b;?

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..
...compute ¢; = a;b;?

... use groups of 16 x 16 work items?

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. ..
...compute ¢; = a;b;?
... use groups of 16 x 16 work items?

...benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

Outline

GPU Programming with PyOpenCL

m About PyOpenCL

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

PyOpenCL Philosophy

Provide complete access
Automatically manage resources
Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

PyOpenCL: Completeness

PyOpenCL exposes all of OpenCL.

For example:
m Every GetInfo() query

m Images and Samplers

m Memory Maps
m Profiling and Synchronization
L]

GL Interop

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

PyOpenCL: Completeness

PyOpenCL supports (nearly)
every OS that has an OpenCL

implementation. 00
m Linux C 0
m OS X
m Windows

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

Automatic Cleanup

m Reachable objects (memory,
streams, ...) are never destroyed.

m Once unreachable, released at an "

unspecified future time.
m Scarce resources (memory) can be ‘
explicitly freed. (obj.release()) . ’
m Correctly deals with multiple

contexts and dependencies. (based
on OpenCL's reference counting)

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

PyOpenCL: Documentation

PyOpenCL o512 documentation net | modes | in
Table Of Contents Welcome to PyOpenCL’s documentation!

PyOpenCL gives you easy, Pythonic access to the OpenCL paraliel computation APL. What makes PyOpenCL special?

* Objct clearup ted o fetme of cbjects. This o, oten caled A1 C1-+, mokes i much caser to Wrte correc, feak- and
crashiiree

+ Competanese, PyOpenCL puts the full power of OpenCL's APl at your disposal If you wish. Every obscure get_Jnfol auery and all
QL calls are accessible.

This Page « Automatic Error Checking. Al errors are automatically translated Into Python exceptions

« Speed. PyOpenCL's base layer Is written In C++, 5o all the niceties above are virtualy free.

Show Source « Helpful Documentation. You're looking at It

Quick search « Liberal license. PyOpenCL Is open-source under the MIT license and free for commercial, academic, and private use

F Here's an example, to give you an impression:

overt ropncl s
oramodute. [EELEE
5 inport nurpy.linalg as 1a

Next topic
Instalat

a = nunpy. randor. rand 50000) astype (nunpy. loat32)
b = nunpy_ randon. rand (50600) astype (nunpy. Tloat32)

et - clcontext()
queus - cL.ConnandQueus (¢t6)

o - clnsn_flags
gtut = cUautientctn. nf ret oy | af. convrosr
BZbuf - cllBufer(ctx, nf.READLONLY | nf COPY_HOST
Gast bt L Bofertcte, wT WRLTE LYY b meytesy

org - el Prograncet,
vold sun(_global const float a
{ToReL canst TLest S, gtobet Fiaat 260

d - get_global_id(0)
elgial = slgid] + blgidl:
) busld)
pry.sun(queus, a.shaps, a_buf, b_buf, dest_buf)

2B = nungy enp, ke (s)
tlangieus_read bufferiqueus. dst buf, a_plus_b).vait()

print Ta.norm(a_plus_b - (ash))

(You can find this example as exaples/dens.py in the PyOpenCL source distribution.)

Contents

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

PyOpenCL: Vital Information

http://mathema.tician.de/
software/pyopencl

Complete documentation

m MIT License
(no warranty, free for all use)

Requires: numpy, Python 2.4+,

Support via mailing list.

1

NYU
Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

http://mathema.tician.de/software/pyopencl
http://mathema.tician.de/software/pyopencl

Intro PyOpenCL First Contact About PyOpenCL

An Appetizer

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy

2 import pyopencl as cl

3 import pyopencl.array as cl_array
4

5 ctx = cl.create_some_context ()

6 queue = cl.CommandQueue(ctx)
7

8 a_gpu = cl.array . to_device (

9 ctx, queue, numpy.random.randn(4,4).astype(numpy.float32))
10 a_doubled = (2xa_gpu).get()

11 print a_doubled

12

print a_gpu n

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

Questions?

NYU

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

PyOpenCL First Contact About PyOpenCL

Image Credits

Andreas Klockner GPU-Python with PyOpenCL and PyCUDA

Isaiah die shot: VIA Technologies
Dictionary: sxc.hu/topfer

C870 GPU: Nvidia Corp.

Old Books: flickr.com/ppdigital @
OpenCL Logo: Apple Corp./Ars Technica
OS Platforms: flickr.com/aOliN.Tk

Floppy disk: flickr.com/ethanhein @

NYU

	Intro: GPUs, OpenCL
	What and Why?
	Intro to OpenCL

	GPU Programming with PyOpenCL
	First Contact
	About PyOpenCL

