
Intro PyOpenCL

Easy, Effective, Efficient:
GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klöckner

Courant Institute of Mathematical Sciences
New York University

PASI: The Challenge of Massive Parallelism
Lecture 1 · January 3, 2011

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL

Course Outline

Session 1: Intro

GPU arch. motivation

Intro to OpenCL

Intro to PyOpenCL

First Steps

Session 2: Dive into CL

CL runtime

CL device programming
language

Notes on CL
implementations

Session 3: Code Generation

Example uses

Methods of RTCG

Tuning objectives

Case study

Session 4: Advanced Topics

Multi-GPU: CL+MPI,
Virtual CL

PyCUDA

Discontinuous Galerkin
Methods on GPUs

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL

Outline

1 Intro: GPUs, OpenCL

2 GPU Programming with PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Outline

1 Intro: GPUs, OpenCL
What and Why?
Intro to OpenCL

2 GPU Programming with PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Outline

1 Intro: GPUs, OpenCL
What and Why?
Intro to OpenCL

2 GPU Programming with PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

13

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Slimming down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

14

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Two cores (two fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

15

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

. . . again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Four cores (four fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

16

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17 Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17 Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24 Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24 Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)
Frag 1 … 8

Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

ALU ALU ALU ALU

ALU ALU ALU ALU

33

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2

3 4

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

34

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

GPU Architecture Summary

Core Ideas:

1 Many slimmed down cores
→ lots of parallelism

2 More ALUs, Fewer Control Units

3 Avoid memory stalls by interleaving
execution of SIMD groups
(“warps”)

Credit: Kayvon Fatahalian (Stanford)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware

Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel: Func-

tion on Grid)

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel: Func-

tion on Grid)

(Work) Group

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

Grid

(Kernel: Func-

tion on Grid)

(Work) Group

(Work) Item

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

get local id(axis)?/size(axis)?

get group id(axis)?/num groups(axis)?

get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

get local id(axis)?/size(axis)?

get group id(axis)?/num groups(axis)?

get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Outline

1 Intro: GPUs, OpenCL
What and Why?
Intro to OpenCL

2 GPU Programming with PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

Vendor-neutral

Comes with RTCG

Defines:

Host-side programming interface (library)

Device-side programming language (!)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Who?

© Copyright Khronos Group, 2010 - Page 4

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design

- A healthy diversity of industry perspectives

• Apple made initial proposal and is very active in the working group

- Serving as specification editor

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

When?

© Copyright Khronos Group, 2010 - Page 5

OpenCL Timeline

• Six months from proposal to released OpenCL 1.0 specification

- Due to a strong initial proposal and a shared commercial incentive

• Multiple conformant implementations shipping

- Apple’s Mac OS X Snow Leopard now ships with OpenCL

• 18 month cadence between OpenCL 1.0 and OpenCL 1.1

- Backwards compatibility protect software investment

Apple proposes OpenCL
working group and
contributes draft specification
to Khronos

Khronos publicly
releases OpenCL 1.0 as
royalty-free
specification

Khronos releases OpenCL
1.0 conformance tests to
ensure high-quality
implementations

Jun08

Dec08

May09

2H09

Multiple conformant
implementations ship
across diverse OS
and platforms

Jun10

OpenCL 1.1
Specification released and
first implementations ship

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Why?

© Copyright Khronos Group, 2010 - Page 3

Processor Parallelism

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general
purpose data-parallel

computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL is a programming framework for heterogeneous compute resources

Credit: Khronos Group

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

CL vs CUDA side-by-side

CUDA source code:
global void transpose(

float ∗A t, float ∗A,
int a width, int a height)

{
int base idx a =
blockIdx .x ∗ BLK SIZE +
blockIdx .y ∗ A BLOCK STRIDE;

int base idx a t =
blockIdx .y ∗ BLK SIZE +
blockIdx .x ∗ A T BLOCK STRIDE;

int glob idx a =
base idx a + threadIdx.x
+ a width ∗ threadIdx.y;

int glob idx a t =
base idx a t + threadIdx.x
+ a height ∗ threadIdx .y;

shared float A shared[BLK SIZE][BLK SIZE+1];

A shared[threadIdx .y][threadIdx .x] =
A[glob idx a];

syncthreads ();

A t[glob idx a t] =
A shared[threadIdx .x][threadIdx .y];

}

OpenCL source code:
void transpose(

global float ∗a t, global float ∗a,
unsigned a width, unsigned a height)
{

int base idx a =
get group id (0) ∗ BLK SIZE +
get group id (1) ∗ A BLOCK STRIDE;

int base idx a t =
get group id (1) ∗ BLK SIZE +
get group id (0) ∗ A T BLOCK STRIDE;

int glob idx a =
base idx a + get local id (0)
+ a width ∗ get local id (1);

int glob idx a t =
base idx a t + get local id (0)
+ a height ∗ get local id (1);

local float a local [BLK SIZE][BLK SIZE+1];

a local [get local id (1)∗BLK SIZE+get local id(0)] =
a[glob idx a];

barrier (CLK LOCAL MEM FENCE);

a t [glob idx a t] =
a local [get local id (0)∗BLK SIZE+get local id(1)];

}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL ↔ CUDA: A dictionary

OpenCL CUDA
Grid Grid

Work Group Block
Work Item Thread

kernel global

global device

local shared

private local

imagend t texture<type, n, ...>
barrier(LMF) syncthreads()

get local id(012) threadIdx.xyz

get group id(012) blockIdx.xyz

get global id(012) – (reimplement)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL What and Why? OpenCL

Why do Scripting for GPUs?

GPUs are everything that scripting
languages are not.

Highly parallel
Very architecture-sensitive
Built for maximum FP/memory
throughput

→ complement each other

CPU: largely restricted to control
tasks (∼1000/sec)

Scripting fast enough

Python + CUDA = PyCUDA

Python + OpenCL = PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Outline

1 Intro: GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Outline

1 Intro: GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL

1 import pyopencl as cl , numpy
2
3 a = numpy.random.rand(256∗∗3).astype(numpy.float32)
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl . enqueue write buffer (queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)

Compute kernel

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL

1 import pyopencl as cl , numpy
2
3 a = numpy.random.rand(256∗∗3).astype(numpy.float32)
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl . enqueue write buffer (queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)

Compute kernel

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Getting Results

8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl . enqueue write buffer (queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)
17
18 result = numpy.empty like(a)
19 cl . enqueue read buffer (queue, a dev, result). wait()
20 import numpy.linalg as la
21 assert la .norm(result − 2∗a) == 0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Grouping

8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl . enqueue write buffer (queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice(global float ∗a)
13 { a[get local id (0)+ get local size (0)∗get group id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (256,), a dev)
17
18 result = numpy.empty like(a)
19 cl . enqueue read buffer (queue, a dev, result). wait()
20 import numpy.linalg as la
21 assert la .norm(result − 2∗a) == 0

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Outline

1 Intro: GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

PyOpenCL Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

PyOpenCL: Completeness

PyOpenCL exposes all of OpenCL.

For example:

Every GetInfo() query

Images and Samplers

Memory Maps

Profiling and Synchronization

GL Interop

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

PyOpenCL: Completeness

PyOpenCL supports (nearly)
every OS that has an OpenCL
implementation.

Linux

OS X

Windows

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Automatic Cleanup

Reachable objects (memory,
streams, . . .) are never destroyed.

Once unreachable, released at an
unspecified future time.

Scarce resources (memory) can be
explicitly freed. (obj.release())

Correctly deals with multiple
contexts and dependencies. (based
on OpenCL’s reference counting)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

PyOpenCL: Documentation

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

PyOpenCL: Vital Information

http://mathema.tician.de/

software/pyopencl

Complete documentation

MIT License
(no warranty, free for all use)

Requires: numpy, Python 2.4+.

Support via mailing list.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

http://mathema.tician.de/software/pyopencl
http://mathema.tician.de/software/pyopencl

Intro PyOpenCL First Contact About PyOpenCL

An Appetizer

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy
2 import pyopencl as cl
3 import pyopencl.array as cl array
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a gpu = cl array . to device (
9 ctx , queue, numpy.random.randn(4,4).astype(numpy.float32))

10 a doubled = (2∗a gpu).get()
11 print a doubled
12 print a gpu

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Questions?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Intro PyOpenCL First Contact About PyOpenCL

Image Credits

Isaiah die shot: VIA Technologies
Dictionary: sxc.hu/topfer
C870 GPU: Nvidia Corp.
Old Books: flickr.com/ppdigital
OpenCL Logo: Apple Corp./Ars Technica
OS Platforms: flickr.com/aOliN.Tk

Floppy disk: flickr.com/ethanhein

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

	Intro: GPUs, OpenCL
	What and Why?
	Intro to OpenCL

	GPU Programming with PyOpenCL
	First Contact
	About PyOpenCL

