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KdV equation

The equation balances nonlinear advection with
dispersion:

ut + 6uux + uxxx = 0 (1)

(Korteweg & de Vries 1895, Boussinesq [Bou77,
p. 360]); has a family of solutions

u(t , x) =
c
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sech2 (1
2

√
c(x − ct)

)

which move at constant speed c without change of
shape.
Matches observations of J. Scott Russell (1845).



BBM equation

An equivalent equation that balances nonlinear
advection with dispersion is

ut + ux + 2uux − uxxt = 0 (2)

(Peregrine 1964, Benjamin, Bona and Mahoney
1972) which has similar solutions [ZWG02]
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The BBM equation is better behaved numerically.
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(
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(3)



Solitary wave exercises

The KdV and BBM equations can be compared by
using the underlying advection model ut + ux = 0.

Thus we can swap time derivatives for (minus)
space derivatives: ut ≈ −ux . This suggests the
near equivalence of the terms uxxx ≈ −uxxt .

Derive the solitary wave solution for

ut + ux + 2uux + uxxx = 0 (4)

and compare this with the solitary wave for BBM

Show that the two forms converge as the wave
amplitude goes to zero.



Tsunami controversy

Terry Tao says ”solitons are large-amplitude (and thus nonlinear)
phenomena, whereas tsunami propagation (in deep water, at
least) is governed by low-amplitude (and thus essentially linear)
equations. Typically, linear waves disperse due to the fact that the
group velocity is usually sensitive to the wavelength; but in the
tsunami regime, the group velocity is driven by pressure effects
that relate to the depth of the ocean rather than the wavelength of
the wave, and as such there is essentially no dispersion, thus
creating traveling waves that have some superficial resemblance
to solitons, but arise through a different mechanism.
It is true, though, that KdV also arises from a shallow water wave
approximation. The main distinction seems to be that the shallow
water equation comes from assuming that the pressure behaves
like the hydrostatic pressure, whereas KdV arises if one assumes
instead that the velocity is irrotational (which is definitely not the
case for tsunami waves).”



Tsunami analysis

We know that tsunamis must have long wave
lengths since their amplitude is small.

Otherwise, no devastating amount of energy
(height times width) can be transmitted.

The time scale of tsunami impact is minutes, not
hours as occurs in hurricane storm surge.

So the wave needs to be long and fast.

KDV/BBM provide such a mechanism.

Key question: what causes such a long wave to
form?
Modeling question: does KdV require flow to be
irrotational?



Different solutions to KdV/BBM

There are many other types of solutions
to KdV/BBM.

soliton interactions

dispersion

compare: no dispersion

dispersive shock waves [EKL12]

Exercise: explore different initial states

Compare with data [Gre61].



Soliton interaction (BBM)



Multi-soliton interaction (BBM)



Gaussian dispersion (BBM)



Compare Gaussian with no dispersion



Leading depression



Trailing depression=-leading depression



Very long waves are mostly linear

yo = a ∗ (exp(−c ∗ (r − s)2)), a = .0001, c = .004



Less long waves are more dispersive

yo = a ∗ (exp(−c ∗ (r − s)2)), a = .0001, c = .01



Shorter waves are very dispersive

yo = a ∗ (exp(−c ∗ (r − s)2)), a = .0001, c = .1



Software issues

One-D problems are simple,

so you can use simple software systems, e.g.,
Matlab/octave.

Consider the time-stepping scheme for the
advection problem

0 = ut + f (u)x

given by

ui+1,j = ui ,j −
∆t
∆x

(f (u)i ,j − f (u)i ,j−1)



Tricks with octave: filter

The “filter” command performs finite difference
specified by vectors “b” and “a”:

b=[ +1 -1 ];
a=[ 1 ];
xr=dx*[1:1000000];
yu=exp(-(.05*(xr-50)).ˆ 2);
...
cfl=dt/dx
for k=1:nts
yu=yu-cfl*filter(b,a,yu + yu .* yu);
end



Details about filter

Typing “help filter” in octave produces

- - Loadable Function: y = filter (B, A, X)

Return the solution to the following linear,
time-invariant difference equation:

N
∑

k=0

a(k + 1)y(n − k) =
M
∑

k=0

b(k + 1)x(n − k)

where N=length(a)-1 and M=length(b)-1.



Equivalent difference matrix

Using “filter” is equivalent to multiplying by the
sparse matrix “fod” defined as follows:

tdx=2*dx;
kc=0;
for k=2:nr;
kc=kc+1; hiv(kc)=k; hjv(kc)=k-1; hsv(kc)=-(1/tdx);
end
for k=1:nr;
kc=kc+1; hiv(kc)=k; hjv(kc)=k; hsv(kc)=+(1/tdx);
end

fod=sparse(hiv,hjv,hsv);

Key is to create a sparse matrix.



Performance of difference matrix vs. filter



Using filter for boundary value problems

There are some challenges is using “filter” to solve
two-point boundary value problems.
Suppose we want to solve

αu−uxx = f on x0 < x < x1, u(xi) = 0 for i = 0, 1.

We can do this via
b=[ 0 1 ];
a=[0 alfa 0]+(1/(dx*dx))*[-1 2 -1 ];
u=filter(b,a,f);
However, filter assumes a boundary condition
u(x0) = u′(x0) = 0.



Behavior of filter

u(x0) = u′(x0) = 0 gives different solution
need to modify it by a homogeneous solution to get the correct
boundary conditions.



Experimental comparisons

BBM model has been tested against laboratory
experiments [BPS81]
Key parameter for model is the Stokes number

S =
aλ2

d3 ,

where

a is the wave amplitude,

λ is the wave length, and

d is the water depth.
Example: a = 1, λ = 106, d = 104 (meters)
=⇒ S = 1.



Modeling issues

For S < 1, the data in [BPS81] suggest that the
linear dispersive model is as accurate as nonlinear
dispersive

For larger S > 10 the model experiences greater
than 10% errors.

Question: how important is dispersion in such
simulations?
The results in [BPS81] also suggest the
importance of dissipation due to bottom friction for
small values of depth d .



Comparing two models

What about the different nonlinear, dispersive
models: KdV versus BBM?

Possible to give analytic comparisons [BPS83].

Compare the model [BC99]

ut + ux + 2uux + uxtt = 0



Time scales

The time scale for these models is

t =

√

d
g

where d is the water depth and g is the
acceleration due to gravity:

g = 9.81 meters/second2 ≈ 32.2 feet/second2

For d ≈ 104 meters, this means t ≈ 1
2 minute.

For d ≈ 10 meters, this means t ≈ one second.
Thus we can think that the time scale of interest is
a small number of seconds, less than a minute.



Wave speeds

For small amplitude waves, the wave speed in
nondimensional coordinates is essentially 1.
That means the wave speed is the length scale
divided by the time scale.
Therefore the speed c is given by

c ≈
d
t
=

d
√

d/g
=

√

dg

For d ≈ 104 meters, this means
c ≈ 313 meters/second ≈ 700 miles/hour.
(speed of sound at sea level is 343.2 m/s)
For d ≈ 10 m, c ≈ 9.9 m/s ≈ 22 miles/hour.
For reference, Usain Bolt has run 100 meters at
an average speed of 10.44 meters per second



Comparing nonlinearity and dispersion

Suppose we have a wave of amplitude α = a/d
and wave length λ = L/d .

That is, u(x) ≈ αφ(x/λ). Then KdV looks like

ut + ux(1 + α + λ−2) = 0 (5)

We have seen that tsunamis have small
amplitude: α ≈ 10−4.

This suggests that nonlinearity has little effect.

But how big can the wave length be?

Known inundation by tsunamis places a limit on L.



Wave length

The character of the wave propagation depends
on wave length.

For a fixed mass of water, a smaller amplitude
requires a longer wave length.

For a 1 meter wave, a length L = 10 kilometers
(λ = L/d = 1) yields a catastrophic wave.

Historic 10 meter tsunamis might have λ/d = 100.

25 kilometers

catastrophic

1 kilometer

10 meters

historic400 meters



Hilo Bay, Big Island, Hawaii

Compare the 1960 Chilean-generated tsunami effect on Hilo
11/14/12 6:58 AMHilo, HI - Google Maps

Imagery ©2012 Data MBARI, DigitalGlobe, GeoEye, Map data ©2012 Google -

To see all the details that are visible on the
screen, use the "Print" link next to the map.



Influence of depth

The KdV/BBM models do not include varying
depth.
However, we can get a sense of how effects
change as d becomes smaller.
Recall our notation: wave amplitude α = a/d and
wave length λ = L/d .

That is, u(x) ≈ αφ(x/λ). Then KdV looks like

ut + ux(1 + α + λ−2) = 0

As d decreases, the nonlinear term increases and
the dispersion term decreases.



Long-time integration of Gaussian

Here we take typical amplitude (1 meter) and a wave length of
about 25 kilometers in a depth of 104 meters.



Wave volume

Exercise: compute what the area under the curve
is for the first wave in the dispersive wave train.

Exercise: compute the evolution of a wave that
has a negative Gaussian (depression) initially.
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