
PASI Chile 2013

Basics of surface wave
simulation

L. Ridgway Scott

Departments of Computer Science and
Mathematics, Computation Institute, and
Institute for Biophysical Dynamics,

University of Chicago

People in science

Fritz Joseph Ursell FRS (28 April 1923 — 11 May 2012)

Sir George Gabriel Stokes, 1st Baronet FRS (13 August
1819 — 1 February 1903), was senior wrangler at
Cambridge in 1841. Together with Seidel, he is credited with
for identifying the concept of uniform convergence as key to
convergence of sums of functions.

Niels Henrik Abel (1802—1829) wrote, in a letter to a
colleague in 1824, “in analysis one is largely concerned with
functions that can be represented by power-series. As soon
as other functions enter—and this happens rarely—then
[induction] does not work any more and an infinite number of
incorrect theorems arise from false conclusions”

Dispersion relations

The dispersion relation for (linear) water waves is
ω(k) =

√

k tanh(k). This can be compared to the linearized
model equations: k = 2π/λ (k ≤ 0.4 iff λ ≥ 15.7).

Dispersion equations

The dispersion relation for water waves is
ω(k) =

√

k tanh(k).

The dispersion relation for shallow water is ω(k) = k .

The dispersion relation for BBM is

ω(k) =
k

1 + 1
6k2

(1)

The dispersion relation for KdV is

ω(k) = k
(

1 − 1
6k2

)

(2)

The dispersion relation for the optimized model [BPS81] is

ω(k) =
0.9898k

1 + 0.1325k2
(3)

Discretizing 2nd order derivative

Defining a matrix for solving αu − u′′ = f :
kc=0;
for k=1:nr;
kc=kc+1; iv(kc)=k; jv(kc)=k;
sv(kc)=alfa+(2/(dx*dx));
end
for k=2:nr;
kc=kc+1; iv(kc)=k-1; jv(kc)=k;
sv(kc)=-(1/(dx*dx));
end
for k=2:nr;
kc=kc+1; iv(kc)=k; jv(kc)=k-1;
sv(kc)=-(1/(dx*dx));
end
svm=sparse(iv,jv,sv);

BBM difference method

Using the sparse matrix fod associated with the
first-order finite difference

and the sparse matrix svm associated with solving
αu − u′′ = f , the time-stepping for BBM looks like

...
cfl=dt/dx
for k=1:nts
yu=yu-cfl*svm\ (fod(yu + yu .* yu));

end

We can test this scheme using a solitary wave.

Numerical error

There is substantial numerical error in a first-order
time-stepping scheme (dx=.1, dt=.01)

First-order versus second-order

Define ŷi+1 = yi +∆t f (yi). Then

explicit Euler: yi+1 = ŷi+1

predictor corrector: yi+1 = 1
2(ŷi+1 + yi +∆t f (ŷi+1))

relative max error dx dt cpu seconds
explicit 4.3646e-02 1.0e-01 1.0e-03 0.5
Euler 2.2438e-02 5.0e-02 5.0e-04 1.6

4.4059e-03 2.5e-02 1.0e-04 13.0
predictor 1.9110e-03 1.0e-01 1.0e-02 0.2
corrector 4.9510e-04 5.0e-02 5.0e-03 0.5

8.0939e-05 2.0e-02 2.0e-03 2.1
2.0380e-05 1.0e-02 1.0e-03 7.0
5.1133e-06 5.0e-03 5.0e-04 25.8

Table: Comparison of first-order (explicit Euler) and second-order
(predictor-corrector) time-stepping schemes.

More efficient second-order

The predictor-corrector scheme requires twice as
many function evaluations (applications of “filter”
or sparse matrix operations).
Once the first time-step y1 has been computed via
predictor-corrector, we can switch to the leap-frog
(a.k.a. Verlet) scheme:

yi+1 = yi−1 + 2∆t f (yi)) (4)

Exercise [BPS85]:

implement the leap-frog scheme and

compare it with predictor-corrector with respct
to accuracy and efficiency.

Analysis of the difference method

We have combined two centered, second-order
differences, one for d/dx and the other for d2/dx2.
So we expect the combination to be second order.
However, there is a representation that makes this
very clear and also leads the way to a remarkable
fourth-order scheme.
We can write the solution to

ut + f (u)x − uxxt = 0

as
ut = −K ∗ f (u) (5)

where the “∗” denotes convolution and

K (x) = −sign(x)1
2e−|x |

Convolution representation

The equation ut + f (u)x − uxxt = 0 can be written
as a convolution ut = −K ∗ f (u) because the
Green’s function for 1 − d2/dx2 is

G(x) = 1
2e−|x |.

Note that
K (x) = G′(x) (6)

is positive for x < 0 and negative for x > 0.
We can now approximate ut via the trapezoidal
rule (h = ∆x)

ut(t , ih) ≈ −h
∑

j 6=i

K ((j − i)h) f (u(t , jh)) (7)

Convolution approximation

Using the formulation

ut(t , ih) ≈ −h
∑

j 6=i

K ((j − i)h) f (u(t , jh))

would involve O(N2) work, where N = L/h is the
number of spatial grid points (L is the length of the
computational domain). Note that we can write

ut(t , ih) ≈− h
∑

j<i

K−((j − i)h) f (u(t , jh))

− h
∑

j>i

K+((j − i)h) f (u(t , jh))
(8)

where K± = ∓1
2e−|x | since K−(0) + K+(0) = 0.

Convolution approximation

Write the corresponding algorithm (v ≈ ut) as

vi =
∑

j∈Z

kj−i fj (9)

where fj = f (u(t , jh)) and kℓ = 1
2h sign(ℓ)e−|ℓ|h for

ℓ 6= 0, k0 = 0.
Define the difference operator D2 via the filter

b=[0 1], a=[0 1 0] + 1/(eh − 2 + e−h) [-1 2 -1]

Then D2 K± = 0 and (D2k)i = 0 for |i | > 1 and

(D2k)i =







1
2h i e−h +

h i(−e−2h+2e−h)
2(eh−2+e−h)

|i | = 1

0 i = 0

Note that i = sign(i) when |i | = 1.

Convolution simplification

Note that

(D2k)±1 = ±1
2h e−h +

±h
(

−e−2h + 2e−h
)

2(eh − 2 + e−h)

= ±h
e−h(eh − 2 + e−h) +

(

−e−2h + 2e−h
)

2(eh − 2 + e−h)

= ±h
(1 − 2e−h + e−2h) +

(

−e−2h + 2e−h
)

2(eh − 2 + e−h)

=
±h

2(eh − 2 + e−h)
=

±h
2(h2 + h4/12 + · · ·)

=
±1
2h

(

1 − h2/12 + · · ·
)

.

Convolution simplification

Therefore we can write

D2v = D1f

where v = k ∗ f as defined in (9) and

(D1f)i =
h

2(eh − 2 + e−h)
(fi+1 − fi−1)

Therefore a 2-nd order scheme is obtained via

ut ≈ v

where D2v = D1f . Note that

eh − 2 + e−h = h2
(

1 +
h2

12
+

h4

360
+ · · ·

)

Gregory-Euler-Maclaurin scheme

We can compute the integral in

ut = −K ∗ f (u)

more accurately via a quadrature related to the
Euler-Maclaurin formula:
∫ ∞

0
g(x) dx ≈ 1

2hg(0)+h
∞
∑

i=1

g(ih)+
h2

12
g′(0) (10)

This scheme is 4th order accurate [Sco11]
provided g goes to zero rapidly enough at ∞.
By approximating the derivative via a difference,
we obtain a scheme known to Gregory.

Application to convolution

Applying this to the convolution integral we get
∫ ∞

−∞

K (x)f (kh − x) dx

≈ h
∑

i 6=0

K (ih)f ((k − i)h) +
h2

12
[(Kf)′]

(11)

where [g] = g(0+)− g(0−). We have

[(Kf)′] = [K ′f + Kf ′] = [K ′f]+[Kf ′] = [K] f ′(0) = −f ′(0).

We can retain a 4th order scheme by
approximating f ′(0) to second order:

f ′(0) ≈
f (h)− f (−h)

2h

Convolution simplification

Define

(Jf)i =
h
24

(f (i + 1)− f (i − 1))

Therefore a 4th order scheme is obtained via

ut ≈ v1 + v2

where
D2v1 = D1f

and
v2 = Jf

Note that

J =
eh − 2 + e−h

12
D1.

Convolution simplification

Using the 4th order GEM scheme together with a
4th order Runge-Kutta scheme for time stepping,
we get an overall 4th order scheme.
We compare this with the 2nd order approximation for the BBM
equation using predictor-corrector (2nd order) time stepping for
propagating a soliton of amplitute 3 for 30 time units.

rel. max err. dx dt cpu secs

predictor 1.8e-03 5.0e-02 5.0e-03 4.2
corrector 4.7e-04 2.5e-02 2.5e-03 14.9
fourth 1.7e-03 1.0e-01 1.0e-01 0.46
order 7.0e-05 1.0e-01 5.0e-02 0.73

3.7e-09 1.0e-02 5.0e-03 39.1
2.7e-10 5.0e-03 2.5e-03 177.0
9.1e-10 2.0e-03 1.0e-03 1056.9

Table: Comparison of second-order scheme and 4th-order scheme.

Solitary interaction detail

Solitary interaction for BBM is not exact.

Solitary interaction details

As reported in [BPS80], the solitary interaction for
BBM produces an oscillatory tail of maximum
amplitude -0.01674.

[BPS80] noted that the larger solitary wave
increases in amplitude due to the interaction.
We find that the larger wave has increased in size
by 1.822 × 10−05, only 3.037 × 10−06 times the
original amplitude.
In [BPS80], the increase in size was reported to be over two
orders of magnitude larger.

The smaller solitary wave decreases in amplitude
by 2.422 × 10−04, in agreement with the results
reported in [BPS80].

Nonexact interaction

The top curve is the amplitude of the dispersive tail, middle
curve is the decrease in the smaller wail, and the bottom
curve is the increase in the larger wave.

The 4-th order Runge-Kutta method

The standard Runge-Kutta method used is closely
related to Simpson’s rule:

w1 = un − 1
2∆tF (un)

w2 = un − 1
2∆tF (w1)

w3 = un −∆tF (w2)

un+1 = un −
∆t
6

(

F (un)

+ 2F (w1) + 2F (w2) + F (w3)
)

(12)

This has four function evaluations per time step.

A 5-th order method

A fifth-order method can be obtained by combining
4-th order Adams-Bashforth (as a predictor)

ûn+1 = un −
∆t
24

(

55F (un)

− 59F (un−1) + 37F (un−2)− 9F (un−3)
)

(13)

with 5-th order Adams-Moulton (implicit normally)

un+1 = un −
∆t
720

(

251F (ûn+1) + 646F (un)

− 264F (un−1) + 106F (un−2)− 19F (un−3)
)

(14)

This has two function evaluations per time step.

RK versus AM

Solitary wave propagation test for two time-stepping
methods: error versus cpu time. For Runge-Kutta, h = 2∆t .
For Adams-Moulton, h/∆t takes values between 2 and 8.

RK versus AM

Solitary wave propagation test for two time-stepping
methods: error versus mesh size for h = ∆t .

New things

Efficient schemes allow the exploration of new phenomena
[HS74]

Close up of big Gaussian

Boussinesq using FEniCS

The FEniCS Project automates simulation code
[LMW12].

The Boussinesq equations have been
implemented using FEniCS tools, in particular
using Dolfin [LPT12].

FEniCS tools include GPU support [Rat10].

The FEniCS book [LMW12] can be obtained at
http://fenicsproject.org/book/index.html

See “Download from Launchpad”

J. L. Bona, W. G. Pritchard, and L. R. Scott, Solitary-wave interaction, Physics of Fluids 23 (1980), 438–441.

, An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A 302 (1981),
457–510.

, Numerical schemes for a model for nonlinear dispersive waves, J. Comp Phys. 60 (1985), 167–186.

J.L. Hammack and H. Segur, The Korteweg-de Vries equation and water waves. part 2. comparison with experiments,
Journal of Fluid mechanics 65 (1974), no. 02, 289–314.

A. Logg, K.A. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The
FEniCS book, vol. 84, Springer, 2012.

N.D. Lopes, P.J.S. Pereira, and L. Trabucho, Improved boussinesq equations for surface water waves, Automated
Solution of Differential Equations by the Finite Element Method: T he FEniCS Book (A. Logg, K.A. Mardal, and
G. Wells, eds.), Springer-Verlag New York Inc, 2012, pp. 471–504.

F. Rathgeber, Automated finite element computations in the fenics framework using general purpose graphics
processing units, Ph.D. thesis, 2010.

L. Ridgway Scott, Numerical analysis, Princeton Univ. Press, 2011.

