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Background and Motivation
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Background

• Despite progress to reducing child mortality, nearly 18,000 children 

under 5 die every day

• Many of these deaths could be avoidable with increased utilization 

of health services

• But health service utilization by women around the world remains low
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Motivation

• A large theoretical and empirical literature on geographical 

determinants for health care seeking and MCH outcomes

• Role of physical access (travel distance) to services

• Evidence of association between distance to facility and utilization 

has been generally consistent

• Empirical evidence on association between distance to facility and 

health outcomes (e.g. child mortality) is limited and mixed

• Methodological concerns around how distance is measured

• Travel distance (Euclidean, road), travel time

• Issues around measurement error and bias in distance
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Objectives

• To understand how distance is related to utilization and health

• To explore measurement problems with distance data

• To propose a methodological solution to these problems
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Objectives

Study 1 Objectives

• To empirically examine the relationships between

• Travel distance to facility and health care utilization

• Receipt of antenatal care

• Delivery in a health facility

• Travel distance to facility and health

• Child mortality
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Objectives

Study 2 Objectives

• To develop a theory that allows for unbiased and consistent 

estimation when we have deliberately induced measurement error in 

our distance data

• And mismeasured explanatory variables, more generally
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Facility Distance and Child Mortality: 

A Study of Health Facility Access, 

Service Utilization, and Child Health

M. Karra, G. Fink, and D. Canning
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Objectives

• To examine the relationships between

• Travel distance to facility and maternal health care utilization

• Receipt of antenatal care (WHO-recommended 4 visits)

• Delivery in a health facility

• Travel distance to facility and child mortality

• Disaggregated into neonatal, post-neonatal infant, and 

post-infant child
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Data and Methods

• Pool data from Demographic and Health Surveys

• 126,835 births to 124,719 mothers across 7,901 DHS clusters in 

21 countries across 29 DHS surveys between 1990 and 2011

• Travel distance from DHS Service Availability Questionnaire (SAQ)

• Administered at DHS cluster level

• Group interview with 3-4 key informants in cluster

• Informants identify nearest facility of each type from cluster

• Hospital, health center, clinic, pharmacy, others
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Countries
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Distance Data – The SAQ

For each facility type:

1. How far in miles/km is the facility located from the cluster center?

2. Most common mode of transportation that is used to go to this facility?

3. How long (minutes/hours) does it take to go to the facility using the most 

common type of transportation?

• Following interview, facilities that were mentioned are visited by enumerator

• Advantages over using DHS GPS locations to match clusters to facilities

• Avoids the bias induced by spatial displacement of clusters

• Arguably more meaningful than straight-line distances
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Distance Variable

• We consider reported distances to one of 4 facility types:

• Nearest hospital

• Nearest doctor or low-tiered clinic

• Nearest mid-level health center

• Nearest MCH center

• Calculate minimum distance to any of these 4 facility types

• Divide the distance variable into interval categorical variable

• < 1 km to nearest facility, 1-2 km, 2-3 km, 3-5 km, 5-10 km, > 

10 km
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Distances to the Nearest Facility
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Main Analysis

• Dependent variables for health care utilization:

• Receipt of WHO-recommended 4 or more ANC visits

• Whether or not the birth was delivered in a health facility

• Dependent variables for child mortality:

• Child mortality (neonatal, post-neonatal infant, post-infant 

child)

• Main independent variable:

• Interval categorical distance to nearest facility

• Analysis: 

• Multivariate logistic regression, reported odds ratios
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Main Results: Utilization

Distance is strongly, inversely associated with service utilization

• Compared to living < 1 km from a facility, living > 10 km from a 

facility: 

• 38.8 percent lower odds of receiving 4 ANC visits

• 55.3 percent lower odds of delivering in a facility

• Very similar findings when using time to facility

• Robust to alternative specifications

• In-patient facilities only, non-migrating mothers, urban/rural, 

controlling for distance to other locations (school, market)
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Main Results: Mortality

Distance is positively associated with child mortality (specifically in 

young children)

• Compared to living < 1 km from a facility, living > 10 km from a facility: 

• 17.9 percent higher odds of dying before 5th birthday

• Disaggregation suggests that the results driven by neonatal mortality 

• 26.6 percent higher odds of dying within the first 28 days

Distance not significantly associated with mortality in older age 

groups (post-neonatal infants and post-infant children)
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Main Travel Distance Results
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Neonatal Death by Survey
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Conclusions

• People live relatively close to facilities 

• Literature is focused on the most remote areas (> 5 km or > 

10 km), but such distances are rare

• 50-60 percent of households are within 3 km

• Distance to facilities does not only matter when facilities are far, but 

also within relatively narrow radiuses

• Suggests that relatively minor factors are likely to have 

substantial effects on health behaviors

• Reducing distance to facilities may increase health care utilization 

and, more importantly, improve neonatal survival
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Estimation with Induced Measurement 

Error in Explanatory Variables: 

A Numerical Integration Approach

M. Karra and D. Canning
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The Measurement Error Problem

• Measurement error in an explanatory variable in a regression yields 

biased (attenuated) and inconsistent estimates

• Typically, structure of measurement error is unknown

• Sometimes, however, measurement error is often added to data to 

protect respondent confidentiality

• The structure of this induced measurement error may be known
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The Measurement Error Problem

• Examples include:

• Coarsening of the variable into bands (age, income, location)

• Building error into the data collection (randomized response)

• Deliberately adding noise / scrambling data (geographic locations)

• Naïve regressions with perturbed data can seriously bias results

• Previous methods to adjust for the error (e.g. regression calibration) 

assume normality in the variable and in the error
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The Measurement Error Problem

• Want to estimate:

𝑦𝑖 = 𝛼 + 𝛽𝑔 𝑥𝑖 + 𝛾𝑧𝑖 + 𝜀𝑖
• In the data, 𝑥𝑖 not observed but we do get 𝑚𝑖, which is 𝑥𝑖

measured with error

• Running the regression with 𝑚𝑖, i.e.

𝑦𝑖 = 𝛼 + 𝛽𝑔 𝑚𝑖 + 𝛾𝑧𝑖 + 𝜀𝑖
will yield biased estimates of 𝛽
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Objective

• To develop a theory that allows for unbiased and consistent 

estimation of a linear regression where measurement error in 

the explanatory variable is known
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Approach

• Calculate the expected value of the true explanatory variable, given 

mismeasured variable and error generating process

• Integrate over all possible actual values of the true data, weighted 

by conditional probability of data values given the observed 

perturbed data

• Replace the perturbed variable with this expectation

• This approach is related to regression calibration 

• Regression calibration is a special case where the true variable and 

error are independent and normally distributed
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Data Requirement

• Our approach typically will require an independent source of 

the underlying true distribution of data, 𝑝 𝑥

• To link individuals to exposures at the zip code level when the 

data reports only at the state level, we need independent 

information on the population distribution in each zip code

• One possible exception: if the distribution of the perturbed 

data can be inverted (see Appendix for technical explanation)
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Applications of the Method

• Special cases include:

• Normally distributed additive error (regression calibration)

• Applications include:

• Coarsened location variables (state-county-zip, etc.)

• Continuous variables in intervals (income levels, age bands)

• Randomized responses in data (throwing a die to tell the truth)

• Perturbed spatial data (geoscrambling)
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Application to Perturbed Spatial 

Data: A Simulation Exercise
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Geoscrambling in the DHS

• In the Demographic and Health Surveys (DHS), GPS 

coordinates of surveyed household (HH) clusters are collected

• These coordinates are then scrambled using a random angle, 

random radius displacement algorithm

• Urban HH clusters: displaced up to 2 km

• Rural HH clusters: displaced up to 5 km, with every 100th

cluster displaced up to 10 km
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• A graphic example of having one facility (orange dot) 

and one HH cluster (blue dot)

• HH cluster is displaced by a distance at a random radius

• Calculating distance measures to this facility will be 

measured with error, and this error will bias estimates

Geoscrambling in the DHS



Example: One Facility, One Cluster



• Start with simple example of having one facility (orange dot) 

and one cluster (blue dot)

• Blue dot is displaced by various distances

One Facility, One Cluster









• Measurement of distance more likely to be biased upwards

• Displaced distances are more likely to be larger than original 

distances

One Facility, One Cluster



Two Facilities, One Cluster



• Extend the example of one facility-one cluster that is displaced 

to two facilities-one cluster

• This implies that the cluster can potentially be mismeasured

(distance is wrong) and mismatched (facility is wrong)

Two Facilities, One Cluster



• Generate a 100 x 100 grid space

• Place 100 facilities uniformly across this grid at locations 

𝑟 = 𝑟𝑧1 , 𝑟𝑧2 for 𝑧1, 𝑧2 = 1,… , 100

• Place 1,000 HH clusters uniformly across this grid at 

locations 𝑥 = 𝑥1, 𝑥2 . Cluster 𝑖 is denoted 𝑥𝑖 = 𝑥𝑖1, 𝑥𝑖2
• Since the placement of clusters is uniform, we know that 

𝑝 𝑥 = 𝑝 𝑥1, 𝑥2 is uniform 

Simulation Setup



• We want to run the regression of the association between 

distance from the cluster to the nearest facility, 𝑔 𝑥𝑖 on 

an outcome of interest, 𝑦𝑖
• In the equation 𝑦𝑖 = 𝛼 + 𝛽𝑔 𝑥𝑖 + 𝛾𝑧𝑖 + 𝜀𝑖, the 

component 𝑔 𝑥𝑖 is the function that specifies the facility 

that is nearest to a household cluster, i.e.

𝑔 𝑥𝑖 = min
𝑧1,𝑧2

𝑥𝑖1 − 𝑟𝑧1
2
+ 𝑥𝑖2 − 𝑟𝑧2

2

• We calculate the distance to the nearest facility 𝑔 𝑥𝑖
for each cluster 𝑥𝑖

Simulation Setup



• For simulation purposes, we generate the outcome of 

interest 𝑦𝑖 in accordance to relationship:

𝑦𝑖 = 1 + 1 ⋅ 𝑔 𝑥𝑖 + 𝜀𝑖
where 𝜀𝑖~𝒩 0,1

• Here, the true parameter values are 𝛼, 𝛽 = 1 and 𝛾 = 0

• To validate, we can estimate this equation

𝑦𝑖 = 𝛼𝑥 + 𝛽𝑥𝑔 𝑥𝑖 + 𝜀𝑖

and show that ෢𝛽𝑥 is unbiased.

Simulation Setup



• We now assume that we are given displaced cluster 

coordinates 𝑚 = 𝑚1, 𝑚2 instead of 𝑥1, 𝑥2
• The displacement of the cluster is given by:

• Random angle uniformly selected between 0,2𝜋

• Random distance uniformly selected between 0,5

• We run the regression

𝑦𝑖 = 𝛼𝑚 + 𝛽𝑚𝑔 𝑚𝑖 + 𝜀𝑖

to show the bias in the ෢𝛽𝑚 estimate

Simulation Setup



• Under these conditions, we know that the mechanism to induce 

the displacement error is:

𝑝 𝑚1, 𝑚2 𝑥1, 𝑥2

=

0, 𝑚1 − 𝑥1
2 + 𝑚2 − 𝑥2

2 > 5
1

5 ∙ 2𝜋 𝑚1 − 𝑥1
2 + 𝑚2 − 𝑥2

2
, 𝑚1 − 𝑥1

2 + 𝑚2 − 𝑥2
2 ≤ 5

• We now have all of the components to do our simulation

Simulation Setup



• Run numerical integration over entire grid to get expectation

• Run the regression

𝑦𝑖 = 𝛼𝐶 + 𝛽𝐶𝐸 𝑔 𝑥𝑖 |𝑚𝑖 + 𝜀𝑖

• Compare estimated ෢𝛽𝐶 with ෢𝛽𝑚 and true value of 𝛽 = 1, and 

show that ෢𝛽𝐶 is unbiased

Simulation Setup



1. Generate fixed set of 100 facilities and 1,000 clusters

2. Calculate real minimum distances for each cluster

Iterate over following 4 steps:

3. Draw random error 𝜀𝑖 and generate outcome 𝑦𝑖

4. Run the true regression and get ෢𝛽𝑥 estimate (unbiased)

5. Perturb each cluster 𝑥𝑖 to 𝑚𝑖, run naïve regression with 𝑚𝑖

and get ෢𝛽𝑚 (biased)

6. Estimate expectation of the true distance by numerical 

integration, run adjusted regression, and get ෢𝛽𝐶 (unbiased)

Iterate 1,000 times to get empirical distributions of ෢𝛽𝑥, ෢𝛽𝑚, ෢𝛽𝐶

Simulation Steps



Empirical Distributions of ෢𝛽𝑥, ෢𝛽𝑚, ෢𝛽𝐶 under 1,000 iterations, 

mesh length ℎ = 1 (100 x 100 mesh)

Simulation Results

Mean SD Minimum Maximum

෢𝜷𝒙 0.9997 0.0094 0.9703 1.0301

ෞ𝜶𝒙 1.0004 0.0587 0.8193 1.1965

෢𝜷𝒎 0.8604 0.0151 0.8112 0.9085

ෞ𝜶𝒎 1.7238 0.0951 1.4458 2.0546

෢𝜷𝒄 0.9920 0.0170 0.9427 1.0460

ෞ𝜶𝒄 1.0524 0.0945 0.7785 1.3634

N 1,000

ˆ
x̂ x̂m̂m̂ c̂c̂x̂ x̂m̂m̂ c̂c̂x̂ x̂m̂m̂ c̂c̂x̂ x̂m̂m̂ c̂c



Simulation Results
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Discussion and Conclusions
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Conclusions

This Study:

• Proposes a general method for consistent inference when an 

independent variable is deliberately measured with error

• Shows how we can use numerical integration to calculate the 

expected value of the true variable

• Shows an example of how the method can be used through a 

simulation exercise

Future Work:

• Apply this method to real datasets (e.g. DHS)
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Thank You!
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For additional information: mvkarra@bu.edu



Appendices



Previous Work

• Association between distance and MCH service utilization: well-

established

• Literature review by Gabrysch and Campbell (2009)

• Found overall negative relationship between distance and 

utilization

• Subsequent studies in Zambia, Bangladesh, Malawi have 

confirmed this inverse relationship
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Previous Work

• Association between distance and child mortality remains unclear

• Literature review by Rutherford, Mulholland, and Hill (2010)

• Inconclusive evidence to demonstrate an association

• Some studies found positive effects (Vietnam, Burkina Faso, 

Ethiopia)

• Some studies found no effects (Malawi, Zambia, Kenya)

• Literature review by Okwaraji and Edmond (2012)

• Selection bias towards significant results, cannot pool 

results well

• Issues around how distance is measured
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Measures of Distance

• Key measure for analysis: travel distance to the nearest facility

• Generate four distance indicators

• Distance to the nearest hospital

• Distance to the nearest low-tiered clinic (HC3)

• Distance to the nearest mid-level health center (HC2)

• Distance to the nearest MCH center or PHC (HC1)

• Take the minimum of the four distance indicators

• For main analysis, divide into interval categories: 

• < 1 km (ref.), 1 km – 1.9 km, 2 km – 2.9 km, 3 km – 4.9 km, 5 km – 9.9 

km, > 10 km

• Similar measure created for time to nearest facility

• < 10 min (ref.), 10 – 19.9 min, 20 – 29.9 min, 30 – 59.9 min, > 60 min
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Specification

ln
𝑃𝑟 𝑌𝑖ℎ𝑐𝑗 = 1|𝑿𝑖ℎ, 𝒁𝐶 , 𝜁𝑗

1 − 𝑃𝑟 𝑌𝑖ℎ𝑐𝑗 = 1|𝑿𝑖ℎ, 𝒁𝐶 , 𝜁𝑗
= 𝛽0 + 𝛽𝐷𝐷𝑐 + 𝑿𝑖ℎ𝛾 + 𝒁𝐶𝛿 + 𝜁𝑗 + 𝜀𝑖ℎ𝑐𝑗

• 𝑌𝑖ℎ is the binary dependent variable for birth 𝑖 in household ℎ in cluster 𝑐 in 

survey 𝑗

• 𝐷𝑐 is the travel distance to nearest facility variable for cluster 𝑐

• 𝑋𝑖ℎ is the vector of individual-level and HH-level controls

• 𝑍𝐶 is the vector of cluster-level controls

• 𝜁𝑗 are survey-level fixed effects

• Regression standard errors are clustered at the DHS cluster level
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DHS Countries, Years

57

Country Year Country Year

Bangladesh 2004 Haiti 1994-95

Bangladesh 2007 Haiti 2000

Bangladesh 2011 Jordan 1990

Benin 1996 Kenya 1993

Benin 2001 Malawi 1992

Benin 2006 Mali 1995-96

Bolivia 1994 Mali 2001

Burkina Faso 1993 Morocco 1992

Cameroon 1991 Niger 1998

CAR 1994-95 Nigeria 1990

Chad 1996-97 Uganda 1995

Chad 2004 Vietnam 1997

Cote d’Ivoire 1994 Vietnam 2002

Gabon 2000 Zimbabwe 1994

Guinea 1999

Appendix



Control Variables

• Birth- and HH-level controls:

• Birth order, mother’s education (categorical), HH wealth (quintiles), age of 

mother (categorical), place of residence (urban/rural)

• For mortality regressions, hypothetical age of the child and the age of the 

child squared are added

• Cluster-level controls

• Average wealth (quintiles), average schooling for mothers
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Descriptive Statistics: Distances

59

BIRTHS

Minimum Travel Distance, categorical Mean No.

Urban 

Mean

Rural 

Mean

Minimum distance to facility, < 1 km 0.279 35,387 0.534 0.177

Minimum distance to facility, 1 – 1.9 km 0.091 11,542 0.160 0.064

Minimum distance to facility, 2 – 2.9 km 0.152 19,279 0.158 0.150

Minimum distance to facility, 3 – 4.9 km 0.121 15,347 0.066 0.143

Minimum distance to facility, 5 – 9.9 km 0.153 19,406 0.050 0.194

Minimum distance to facility, > 10 km 0.204 25,874 0.031 0.272

N 126,835 42,746 84,089



Descriptive Statistics: Outcomes

60

Outcome Variables Mean No.

WHO Recommended ANC Visits (1 = yes) 0.394 49,186

Delivery in a health facility (1 = yes) 0.426 53,152

Child death 0.082 10,427

Neonatal death 0.030 3,806

Post-neonatal infant death 0.034 4,427

Post-infant child death 0.017 2,189

N 126,835



Descriptive Statistics: Distances

61

CLUSTERS

Minimum Travel Distance, categorical Mean No.

Urban 

Mean

Rural 

Mean

Minimum distance to facility, < 1 km 0.318 2,514 0.538 0.186

Minimum distance to facility, 1 – 1.9 km 0.111 869 0.169 0.074

Minimum distance to facility, 2 – 2.9 km 0.170 1,340 0.160 0.175

Minimum distance to facility, 3 – 4.9 km 0.116 915 0.058 0.150

Minimum distance to facility, 5 – 9.9 km 0.133 1,052 0.048 0.185

Minimum distance to facility, > 10 km 0.153 1,211 0.027 0.229

N 7,901 3,346 4,555



Descriptive Statistics: Covariates

62

Mother-Level Covariates Mean SD No.

Wealth, quintiles 2.893 1.392

Education, none (1 = yes) 0.532 66,323

Education, primary (1 = yes) 0.271 33,777

Education, secondary (1 = yes) 0.176 21,890

Education, higher (1 = yes) 0.022 2,727

Maternal age, years 28.214 7.041

Marital status (1 = married) 0.865 107,875

Urban (1 = yes) 0.284 35,399

Cluster-Level Covariates

Average wealth, quintiles 2.889 1.066

Average education, highest level 0.682 0.616

Distance to primary school, km 1.724 4.822

N 124,719



Descriptive Statistics: Covariates

63

Birth-Level Covariates Mean SD No.

Birth order 3.876 2.651

Multiple birth (1 = yes) 0.027 3,383

Child sex (1= female) 0.494 62,705

Time from birth to survey date, months 24.311 16.115

N 126,835



Main Travel Distance Results

64

(1) (2) (3)

Neonatal ANC Visits Delivery

Reference : < 1 km

1 km – 1.9 km 1.077 0.834*** 0.920

(0.927 - 1.251) (0.769 - 0.904) (0.828 - 1.023)

2 km – 2.9 km 1.163** 0.825*** 0.754***

(1.020 - 1.327) (0.767 - 0.887) (0.681 - 0.835)

3 km – 4.9 km 1.250*** 0.779*** 0.691***

(1.087 - 1.439) (0.715 - 0.850) (0.612 - 0.779)

5 km – 9.9 km 1.191** 0.713*** 0.547***

(1.042 - 1.363) (0.652 - 0.779) (0.483 - 0.620)

> 10 km 1.266*** 0.612*** 0.447***

(1.108 - 1.445) (0.559 - 0.671) (0.394 - 0.508)

N 125,167 124,719 124,719

*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1



(1) (2) (3)

Neonatal ANC Visits Delivery

Reference : < 10 min

Time: 10 min – 19.9 min 1.074 0.872*** 0.794***

(0.952 - 1.212) (0.814 - 0.933) (0.722 - 0.873)

Time: 20 min – 29.9 min 1.157** 0.807*** 0.732***

(1.015 - 1.319) (0.745 - 0.874) (0.659 - 0.814)

Time: 30 min – 59.9 min 1.223*** 0.748*** 0.602***

(1.078 - 1.389) (0.692 - 0.809) (0.538 - 0.674)

Time: > 60 min 1.256*** 0.688*** 0.477***

(1.105 - 1.429) (0.627 - 0.753) (0.419 - 0.543)

N 125,167 124,719 124,719

Main Travel Time Results

65

*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1



Check: In-Patient Facilities Only

66

(1) (2) (3) (4) (5)

ANC Delivery Neonatal Post-Neonatal Child 1-5

Reference : < 1 km

1 km – 1.9 km 0.825*** 0.904* 1.044 1.034 1.049

(0.760 - 0.896) (0.808 - 1.012) (0.896 - 1.217) (0.879 - 1.218) (0.860 - 1.279)

2 km – 2.9 km 0.801*** 0.711*** 1.211*** 1.113 1.094

(0.742 - 0.865) (0.638 - 0.793) (1.054 - 1.392) (0.964 - 1.285) (0.913 - 1.310)

3 km – 4.9 km 0.736*** 0.619*** 1.314*** 1.048 1.193*

(0.673 - 0.805) (0.546 - 0.701) (1.134 - 1.523) (0.901 - 1.220) (0.988 - 1.441)

5 km – 9.9 km 0.699*** 0.543*** 1.175** 0.931 1.013

(0.640 - 0.763) (0.479 - 0.616) (1.022 - 1.351) (0.809 - 1.072) (0.847 - 1.212)

> 10 km 0.587*** 0.435*** 1.295*** 1.108 1.108

(0.538 - 0.640) (0.385 - 0.492) (1.132 - 1.481) (0.972 - 1.262) (0.941 - 1.305)

N 124,719 124,719 125,167 87,289 83,176
*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1



Check: Control School Distance

67

(1) (2) (3) (4) (5)

ANC Delivery Neonatal Post-Neonatal Child 1-5

Reference : < 1 km

1 km – 1.9 km 0.855*** 0.856*** 1.021 1.058 1.010

(0.782 - 0.935) (0.762 - 0.961) (0.866 - 1.203) (0.881 - 1.271) (0.811 - 1.260)

2 km – 2.9 km 0.845*** 0.707*** 1.163** 1.079 1.150

(0.776 - 0.920) (0.630 - 0.794) (1.000 - 1.353) (0.911 - 1.278) (0.938 - 1.409)

3 km – 4.9 km 0.774*** 0.603*** 1.273*** 1.043 1.191

(0.694 - 0.864) (0.521 - 0.698) (1.079 - 1.501) (0.874 - 1.243) (0.953 - 1.489)

5 km – 9.9 km 0.739*** 0.529*** 1.200** 0.993 1.034

(0.661 - 0.826) (0.456 - 0.614) (1.029 - 1.399) (0.846 - 1.166) (0.844 - 1.266)

> 10 km 0.571*** 0.416*** 1.240*** 1.091 1.108

(0.506 - 0.644) (0.356 - 0.485) (1.062 - 1.447) (0.942 - 1.265) (0.914 - 1.343)

N 95,108 95,108 95,300 66,071 62,972
*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1



Main Travel Time Results
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Interpretation of Results

• Stronger association for in-facility delivery than for ANC coverage

• Women can better plan ANC visits compared to when going to 

deliver

• ANC is repeated, but delivery is one-shot

• Reasons for null, insignificant findings in older children

• Seeking neonatal care not as easily anticipated as seeking 

care for older child, who is less susceptible

• Composition effects – which type of women use facilities?

• Women who plan ahead vs. women who do not plan

• But we see no differences for non-migrating mothers

• No qualitative differences between spatial and temporal distance

69



Approach

• Calculate the expected value of the true explanatory variable:

𝐸 𝑔 𝑥𝑖 |𝑚𝑖 = න
𝑋

𝑔 𝑥 𝑝 𝑥|𝑚𝑖 𝑑𝑥

• Set 𝑔 𝑥𝑖 = 𝐸 𝑔 𝑥𝑖 |𝑚𝑖 + 𝑢𝑖, where 𝑢𝑖 is an error term with 

mean 0 and is independent of 𝑥𝑖 and 𝑧𝑖
• Rewrite the estimating equation as:

𝑦𝑖 = 𝛼 + 𝛽𝐸 𝑔 𝑥𝑖 |𝑚𝑖 + 𝛾𝑧𝑖 + 𝜈𝑖
where 𝜈𝑖 = 𝛽𝑢𝑖 + 𝜀𝑖
• This yields unbiased estimates of 𝛼, 𝛽, 𝛾
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Calculating 𝐸 𝑔 𝑥𝑖 |𝑚𝑖

• Calculate the expected value of the true explanatory variable 

using Bayes’ Rule:

𝐸 𝑔 𝑥𝑖 |𝑚𝑖 = න
𝑋

𝑔 𝑥 𝑝 𝑥|𝑚𝑖 𝑑𝑥

= න
𝑋

𝑔 𝑥
𝑝 𝑚𝑖|𝑥 𝑝 𝑥

𝑋׬ 𝑝 𝑚𝑖|𝑥 𝑝 𝑥 𝑑𝑥
𝑑𝑥

where 𝑝 𝑚𝑖|𝑥 is the PDF of the error generation process and 

𝑝 𝑥 is the PDF of the true values of the data, 𝑥
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Calculating 𝐸 𝑔 𝑥𝑖 |𝑚𝑖

• In some cases, the integration needed to calculate the 

expectation is straightforward

• In some cases, there may not be an analytic solution

• Use numerical integration methods (sum over grid with interval 

𝑠 = 0,… , 𝑆 and mesh ℎ) to approximate the expectation

෍

𝑠=0

𝑆−1

𝑔 𝑥𝑠
𝑝 𝑚𝑖|𝑥𝑠 𝑝 𝑥𝑠 ℎ

σ𝑠=0
𝑆−1𝑝 𝑚𝑖|𝑥𝑠 𝑝 𝑥𝑠 ℎ

≈ න
𝑋

𝑔 𝑥
𝑝 𝑚𝑖|𝑥 𝑝 𝑥

𝑋׬ 𝑝 𝑚𝑖|𝑥 𝑝 𝑥 𝑑𝑥
𝑑𝑥
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A Possible Exception: Inversion

• Since we know the form of the measurement error, it may be possible 

to invert the distribution of perturbed data to generate the 

underlying distribution of the true data

• Distributions of the true and perturbed variables are linked by a non-

homogenous Fredholm integral equation of the first kind

• Solution of this equation is well-studied

• But the inverse problem is generally not well posed

• Cannot guarantee the existence or uniqueness of a solution

• So then we require data on the underlying distribution
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