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Above average sea surface temperatures provided fuel for Sandy
(Oct. 21, 2012, difference from Oct. average of 1971-2000)

Source: NOAA NCDC 4



Low Arctic summer sea ice
possibly tied to “blocking high” over Greenland



Storm surges take place in a context of sea-
level change

Photo: New York Times
(lan. 14.2014)
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The coastal impacts, vulnerability and
adaptation knowledge chain
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Underlying understanding of sea-level, ice sheet and flood
event physics




Roadmap

What controls global and local sea-level change?

How can we use our understanding of sea-level
physics to interpret records of past and present
changes, and what do they tell us for the future?

How can we synthesize multiple lines of knowledge
to assess sea-level change risks!?

What are the implications of sea-level change risk for
flood risk?

How might we manage with it?
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Factors controlling global
and local sea-level change



Dominant factors in global sea level rise:
|. Thermal Expansion
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Dominant factors in global sea level rise:
ll. Glacier and ice sheet melt

Total Hazard

Non-polar glaciers and ice caps 026 £ 0.1 m
Greenland & Antarctic glaciers and ice caps 046 £ 0.17 m
Greenland lce Sheet / m
West Antarctic Ice Sheet 5m
East Antarctic lce Sheet 52 m

Maps by P. Fretwell (British Antarctic Survey)
I Lemke et al. (2007); Bamber et al. (2001); Lythe et al. (2001)



Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics

0; The sea is higher off
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Yin et al. (2009)
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Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects
* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics
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Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics

Static-Equilibrium Fingerprints of
Greenland and WAIS melting, per meter GSL rise

West Antarctica Greenland

Mitrovica et al. (201 1) |5



Global Sea Level change
is not the same as local sea level change

* Ocean dynamic effects

* Mass redistribution effects: Gravitational, elastic and rotational

* Natural and groundwater withdrawal-related sediment compaction
* Long term: Isostasy and tectonics

Sea-level rise due to GIA (mm/y)

Mitrovica et al., 2001



Effects of GIA and compaction in eastern North
America

Long-term linear sea level anomaly rate (mm/y)

Compare to 20th century GSL rise of
~1.7 mmly (~7”/century)

~2.5 mm/y
(10”/century)

~3.0 mm/y
(12”/century)

~3.9 mmly
(15”/century)

~4.3 mmly
(17”/century)

280 285 290 295 300 305

Kopp (2013) |7



Records of past and present
changes



Battery Tide Gauge, Battery Park, New York City

Photo: New York Times (Jan. 14, 2014)
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Sediment cores from New Jersey salt marshes

20
Photo courtesy B. Horton
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Kemp & Horton (2013) estimates of the contribution of
historical sea-level rise to flooding at the Battery

tide storm surge storm tide Sand
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For the last 2 My, the Earth has oscillated
between glacials and interglacials
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(a) The global benthic oxygen isotope stack of Lisiecki and Raymo (2005), which is a convolved record of global ice volume change and benthic temperature change, (b)
summertime insolation at 65°N latitude (Berger and Loutre, 1991), and some paleoclimatic proxies that might be related to ice sheet changes — (c) the deuterium-derived
temperature record from Dome C in East Antarctica (Joulez et al, 2007), and (d) alkenone-derived sea surface temperature records from ODP 1090 from Agulhas Ridge in the

South Atlantic (red: Marinez-Garcia et al., 2009) and ODP 982 from the Rockall Plateau in the North Atlantic (blue: Lawrence et al., 2009). Y



The Last Interglacial stage had Holocene-like pCO-
but higher eccentricity
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The Last Interglacial was slightly warmer than today
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Figure 1T Temperature anomalies (relative to AD 1961-1990) in 263 Last Interglacial ice, marine and terrestrial sequences. The location of
the Antarctic Circumpolar Current (ACC) and the Agulhas Current are shown. Sites suggesting local early warming are shown with bold circles. This
figure is available in colour online at www.interscience.wiley.com/journals/jgs

* NH warming due to more intense summer insolation,
amplified by ice sheet feedbacks (3-5°C in Arctic)

* SH warming perhaps due to ocean teleconnections and/

or long SH summer
26



Fossil coral reefs from the Bahamas

27 Chen et al. (1991


http://www.mnstate.edu/leonard/G390BPHOTOS.html

Raised beaches in southern England

28



Mean global sea level reconstructed
for the Last Interglacial
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Exceedance Probability

How fast did sea level change within the LIG!?
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Kopp et al. (2013)



Exceedance Probability

How fast did sea level change within the LIG!?
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Pliocene global sea-level, three million years ago (last time CO, was
comparable to today), peaked about 50-80 feet higher than today

Orangeburg Scarp, James River, Virginia
Photo: Harry Dowsett (USGS) via Science
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With Last Interglacial sea levels (25 feet):

This won’t happen over night — but
could be the legacy we leave our
descendants centuries hence.

Source: New York Times (Nov. 24, 2012) 32



Future sea-level changes

33



It’s still difficult for physical models to capture some key
dynamics of ice sheet behavior.

Larsen B Ice Shelf
31 Jan. 2002

~40 km

http://earthobservatory.nasa.gov/IOTD/view.php?id=2288
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http://earthobservatory.nasa.gov/IOTD/view.php?id=2288

It’s still difficult for physical models to capture some key
dynamics of ice sheet behavior.

Larsen B Ice Shelf

| 7 Feb. 2002

~40 km

http://earthobservatory.nasa.gov/IOTD/view.php?id=2288
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http://earthobservatory.nasa.gov/IOTD/view.php?id=2288

It’s still difficult for physical models to capture some key
dynamics of ice sheet behavior.

Larsen B Ice Shelf

23 Feb. 2002

~40 km

http://earthobservatory.nasa.gov/IOTD/view.php?id=2288

36


http://earthobservatory.nasa.gov/IOTD/view.php?id=2288

It’s still difficult for physical models to capture some key
dynamics of ice sheet behavior.

Larsen B Ice Shelf

5 Mar. 2002

~40 km

http://earthobservatory.nasa.gov/IOTD/view.php?id=2288
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http://earthobservatory.nasa.gov/IOTD/view.php?id=2288

It’s still difficult for physical models to capture some key
dynamics of ice sheet behavior.

Larsen B Ice Shelf

/ Mar. 2002

~40 km

http://earthobservatory.nasa.gov/IOTD/view.php?id=2288
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http://earthobservatory.nasa.gov/IOTD/view.php?id=2288

One alternative approach:
Semi-empirical models look at past relationship between temperature, GSL
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Projected SLR (90% probability range):
70-140 cm (28”-55") by 2100 under no policy
50-100 cm (207-39”) by 2100 under aggressive policy

But: current semi-empirical models project global (not local) changes and are calibrated against
either short record or regional sea-level reconstructions, both from a time period when thermal
expansion (and, regionally, ocean dynamics) dominated sea-level change

Schaeffer et al. (2012) 39



Since we can’t yet rely on physical models, we need to synthesize
multiple lines of knowledge

[ IPCC AR5 \ {Land water
storage

lce sheet
BA13 melt
expert elicitation
GIC SMB model GIC melt
)

CMIP5 Oceanographic\
GCMs )

Static-equilibirum Local
model sea level

&

Non-climatic
background

processes
Tide gauge
data

Gaussian process
model

L

40
Kobp et al. (in review



Reconciliation of IPCC and expert elicitation
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Note that IPCC provides only likely (67%) ranges — it does not attempt to estimate the tails
of the ice sheet distribution.We accept the ARS likely range and use BA expert elicitation to

capture relationship between likely range and tails.
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Different sites have different sensitivities to climatically-driven sea-

level change

Median scale factor: RCP 8.5, 2100
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Different sites also have different background rates of non-climatic
sea level change

Background rate (mm/y)

l>6 | mm/y = 4”/century
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Kopp et al. (in review) 43 °



m GSL rise
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m GSL rise
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Uncertainty in projections is usually dominated by Antarctica, and in
some regions by ocean dynamics
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Implications for Flood Risk
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Impacts of sea-level rise scenarios on
' 66” SLR
Coastal . storm tide =8
flooding
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Coastal flooding

Areas submerged
with 9’ sea level rise
plus storm surge (=
Sandy today, I-in-10
year storm w/5’ sea-

level rise)

Below 9’ in New York

® $168 billion property

® 930 thousand people
(1/3 high social
vulnerability)

® 405 thousand housing
units

® 65 fire and EMS stations

® )8 hospitals

Climate Central (2013)
httb://sealevel.climatecentral.ors/
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http://sealevel.climatecentral.org/

What about Boston?

Boston:

Current 100-year flood

elevation: 5.5’ above
MHHW

(about 40,000 people in
Boston and Cambridge)

Climate Central (2012)

. 50
httb://sealevel.climatecentral.ors/


http://sealevel.climatecentral.org/

Expected events/year
2001 to 2030/2050/2100

Rethinking flood risk

Boston
100 . I I I I
107 - -
IN REVIEW -

IN REVIEW - SUBJECT TO REVISION SUBJECT TO
1072 - i REVISION
107 - . . . . -

1 1.2 4 1.6 1.8 Ranges indicate expected events

’
Flood height (m)

under different forcing pathways.

What matters is not just next year’s flood risk;
it’s the integrated flood risk over the lifetime of a project
and what the consequences of flooding are.

51
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Marion Power Station, Jersey City, NJ
Built by the Public Service Electric Co.in 1905
Retired as generating station in 1961;
Succeeded by Hudson Generating Station
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http://www.pjm.com/~/media/committees-groups/stakeholder-meetings/grid-2020-insights/20130417-distributed-technology-panel-3-calore.ashx

Some cautions

® Different approaches to estimate the sea-level rise probability
distribution will give somewhat different answers; ultimately, we
need better process models but aren’t there yet.

® Flood recurrence probabilities are based on historical data for
the Boston tide gauge; historical storms imperfectly sample the
true probability distribution, and the Boston tide gauge is not a
perfect substitute for the whole region.

® Modeling of the hydrodynamics of flood inundation and of

sediment transport is needed to more accurately characterize
flood risks.

Nonetheless: it’s clear that sea-level rise will dramatically reshape
flood risk over the course of this century.
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So what do we do?



seasideheightsnjonline.com

56

Do we rebuild
unchanged (and
assume the rest of
the country will
continue to
subsidize
indefinitely)?


http://www.seasideheightsnjonline.com

Do we harden?

Maeslantkering, the Netherlands

Photo by www.aerolin.nl 57



http://www.panoramio.com/photo/5820701

Do we raise (and
otherwise modify our
communities to be resilient
to occasional flooding)?

Bay Head, NJj

North]ersey.com >8



http://NorthJersey.com

Do we retreat
and raze?

Long Island Sound Study 59



http://longislandsoundstudy.net/2010/07/tidal-wetlands-restored/

How do we decide?

® TJechnocratically, e.g., through land use policy informed
by benefit-cost analysis!?

® Fconomically, e.g., with market tools such as
accurately-priced, long-term flood insurance!

® Democratically, e.g., through deliberative community
processes’?
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How do we decide?

® TJechnocratically, e.g., through land use policy informed
by benefit-cost analysis!?

® [Fconomically, e.g., with market tools such as
accurately-priced, long-term flood insurance!

® Democratically, e.g., through deliberative community
processes!

My answer: Yes, we do all three, informed by risk assessments
that reflect our best available knowledge.

The one thing we can’t do is wish (or legislate) sea-level rise away.
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