Basics of Network Analysis

Hiroki Sayama sayama@binghamton.edu

Graph = Network

- G(V, E): graph (network)
 - V: vertices (nodes), E: edges (links)

Links =

1<->2, 1<->3, 1<->5, 2<->3, 2<->4, 2<->5, 3<->4, 3<->5, 4<->5

(Nodes may have states; links may have directions and weights)

Representation of a network

Adjacency matrix:

A matrix with rows and columns labeled by nodes, where element a_{ij} shows the number of links going from node i to node j (becomes symmetric for undirected graph)

Adjacency list:

A list of links whose element "i->j" shows a link going from node i to node j (also represented as "i -> $\{j_1, j_2, j_3, ...\}$ ")

Exercise

Represent the following network in:

- Adjacency matrix
- Adjacency list

 A degree of node u, deg(u), is the number of links connected to u

• A graph in which there is a path between any pair of nodes

Connected components

Complete graph

 A graph in which any pair of nodes are connected (often written as K₁, K₂, ...)

0

Regular graph

 A graph in which all nodes have the same degree (often called k-regular graph with degree k)

Bipartite graph

 A graph whose nodes can be divided into two subsets so that no link connects nodes within the same subset

Directed graph

- Each link is directed
- Direction represents either order of relationship or accessibility between nodes

Weighted directed graph

- Most general version of graphs
- Both weight and direction is assigned to each link

E.g. traffic network

Measuring Topological Properties of Networks (1): Macroscopic Properties

Network density

- The ratio of # of actual links and # of possible links
 - For an undirected graph: d = |E| / (|V| (|V| - 1) / 2)
 - For a directed graph: d = |E| / (|V| (|V| - 1))

Characteristic path length

- In graph theory: Maximum of shortest path lengths between pairs of nodes (a.k.a. network diameter)
- In complex network science: <u>Average</u> shortest path lengths
- Characterizes how large the world being modeled is
 - A small length implies that the network is well connected globally 15

Clustering coefficient

- For each node:
 - Let n be the number of its neighbor nodes
 - Let m be the number of links among the k neighbors
 - Calculate c = m / (n choose 2)
 - Then $C = \langle c \rangle$ (the average of c)
- C indicates the average probability for two of one's friends to be friends too
 - A large C implies that the network is well connected locally to form a cluster 16

P(k) = Prob. (or #) of nodes with degree k

 Gives a rough profile of how the connectivity is distributed within the network

 $\Sigma_k P(k) = 1$ (or total # of nodes)

Power law degree distribution

• P(k) ~ k^{-γ}

P(k)

A few well-connected nodes, a lot of poorly connected nodes log P(k) log k Linear in log-log plot k -> No characteristic scale Scale-free network (Scale-free networks)

How it appears

Random

Scale-free

Degree Distributions of Real-World Complex Networks

A Barabási, R Albert Science 1999;286:509-512

Degree distribution of FB

- <u>http://www.facebook.com/note.php?note_id=1</u>
 <u>0150388519243859</u>
- <u>http://arxiv.org/abs/1111.4503</u>

Measuring Topological Properties of Networks (2): Centralities

Centrality measures ("B,C,D,E")

- Degree centrality
 - How many connections the node has
- Betweenness centrality
 - How many shortest paths go through the node
- Closeness centrality
 - How close the node is to other nodes
- Eigenvector centrality

Degree centrality

Simply, # of links attached to a node

$$C_D(v) = deg(v)$$

or sometimes defined as $C_{\rm D}(v) = \deg(v) / (N-1)$

Betweenness centrality

 Prob. for a node to be on shortest paths between two other nodes

 $C_{B}(v) = \sum_{s \neq v, t \neq v} \frac{\#sp(s, e, v)}{\#sp(s, e)}$

- s: start node, e: end node
- #sp(s,e,v): # of shortest paths from s to e that go though node v
- #sp(s,e): total # of shortest paths from s to e
- Easily generalizable to "group betweenness" 25

 Inverse of an average distance from a node to all the other nodes

$$C_{c}(v) = \frac{n-1}{\sum_{w\neq v} d(v,w)}$$

- d(v,w): length of the shortest path from v to w
- Its inverse is called "farness"
- \cdot Sometimes " Σ " is moved out of the fraction (it works for networks that are not strongly connected)
- NetworkX calculates closeness within each connected component

Eigenvector centrality

 Eigenvector of the largest eigenvalue of the adjacency matrix of a network

> $C_{\rm E}(v) = (v-th \ element \ of \ x)$ $Ax = \lambda x$

- λ : dominant eigenvalue
- \cdot x is often normalized (|x| = 1)

 Who is most central by degree, betweenness, closeness, eigenvector?

Which centrality to use?

- To find the most popular person
- To find the most efficient person to collect information from the entire organization
- To find the most powerful person to control information flow within an organization
- To find the most important person (?)

Measuring Topological Properties of Networks (3): Mesoscopic Properties

Degree correlation (assortativity)

 Pearson's correlation coefficient of node degrees across links

$$r = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- X: degree of start node (in / out)
- · Y: degree of end node (in / out)

Assortative/disassortative networks

Network	п	r	
Physics coauthorship (a) Biology coauthorship (a) Mathematics coauthorship (b)	52 909 1 520 251 253 339	0.363 0.127 0.120	Social networks are
Film actor collaborations (c) Company directors (d)	449 913 7 673	0.208 0.276	assortative
Internet (e) World-Wide Web (f) Protein interactions (g) Neural network (h) Marine food web (i) Freshwater food web (j)	10 697 269 504 2 115 307 134 92	-0.189 -0.065 -0.156 -0.163 -0.247 -0.276	Engineered / biological networks are disassortative
Random graph (u) Callaway <i>et al.</i> (v) Barabási and Albert (w)		$\begin{array}{c} 0\\ \delta/(1+2\delta)\\ 0\end{array}$	

(from Newman, M. E. J., Phys. Rev. Lett. 89: 208701, 2002)

- A connected component of a network obtained by repeatedly deleting all the nodes whose degree is less than k until no more such nodes exist
 - Helps identify where the core cluster is
 - All nodes of a k-core have at least degree k
 - The largest value of k for which a kcore exists is called "degeneracy" of the network

Exercise

 Find the k-core (with the largest k) of the following network

Coreness (core number)

- A node's coreness (core number) is c if it belongs to a c-core but not (c+1)-core
- Indicates how strongly the node is connected to the network
- Classifies nodes into several layers
 - Useful for visualization

Community

- A subgraph of a network within which nodes are connected to each other more densely than to the outside
 - Still defined vaguely...
 - Various detection algorithms proposed
 - K-clique percolation
 - Hierarchical clustering
 - Girvan-Newman algorithm
 - Modularity maximization (e.g., Louvain method)

Modularity

 A quantity that characterizes how good a given community structure is in dividing the network

$$Q = \frac{|E_{in}| - |E_{in-R}|}{|E|}$$

- $\cdot |E_{in}|$: # of links connecting nodes that belong to the same community
- $|E_{in-R}|$: Estimated $|E_{in}|$ if links were random

Community detection based on modularity

• The Louvain method

- Heuristic algorithm to construct communities that optimize modularity
 - Blondel et al. J. Stat. Mech. 2008 (10): P10008
- Python implementation by Thomas Aynaud available at:
 - <u>https://bitbucket.org/taynaud/python-</u> <u>louvain/</u>