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Here we apply nanomechanical resonators to the study of oscillatory fluid dynamics. A high-resonance-
frequency nanomechanical resonator generates a rapidly oscillating flow in a surrounding gaseous
environment; the nature of the flow is studied through the flow-resonator interaction. Over the broad
frequency and pressure range explored, we observe signs of a transition from Newtonian to non-
Newtonian flow at !� � 1, where � is a properly defined fluid relaxation time. The obtained experimental
data appear to be in close quantitative agreement with a theory that predicts a purely elastic fluid response
as !�! 1.
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The Navier-Stokes equations based upon the Newtonian
approximation have been remarkably successful over the
centuries in formulating solutions for relevant flow prob-
lems both in bulk and near solid walls [1]. The Newtonian
approximation breaks down, however, when the particulate
nature of the fluid becomes significant to the flow. The
Knudsen number Kn � �=L is one parameter which is
commonly used to settle whether the Newtonian approxi-
mation can be applied to a medium or not. Here one
compares the mean free path � in the medium to an ill-
defined characteristic length L. A second defining parame-
ter, especially for oscillatory flow, is the Weissenberg
number Wi � �=T, which compares the characteristic
time scale T of the flow with the relaxation time � in the
medium. As �=T � !� is varied—for instance, by varying
the flow frequency ! or the relaxation time �—the nature
of the flow changes drastically.

Recent developments in nanometer-scale engineering
have created a vibrant subfield of fluid dynamics called
nanofluidics [2]. Most nanofluidics work is concerned with
flow in nanoscale channels and remains strictly in the
Newtonian regime. In contrast, emerging nanometer-scale
mechanical resonators [3,4], with frequencies already ex-
tended into the microwaves [5,6], offer an uncharted pa-
rameter space for studying nanofluidics. For a high-
frequency nanomechanical resonator with resonance fre-
quency !=2�, one can tune !� over a wide range—in
fact, possibly reaching the limits of the Newtonian ap-
proximation in a given liquid or gas. This not only allows
experimental probing of a flow regime that was inacces-
sible by past experiments [7,8] but also presents the unique
prospect of designing nanodevices for key technological
applications.

To complement the recent theoretical interest in high-
frequency nanofluidics [2,9–11], we experimentally
studied the interaction of high-frequency nanomechanical
resonators with a gaseous environment. The gaseous envi-
ronment presents an ideal fluid for these studies, where one
can effectively tune � by changing the pressure p. On the
other hand, varying the resonator dimensions changes the

mechanical resonance frequency !=2�. When combined,
the two experimental parameters allow !� to be varied
over several orders of magnitude effectively.

In order to cover a broad frequency range, we fabricated
silicon doubly clamped beam resonators with varying di-
mensions w� h� l displayed in Table I using standard
techniques [12]. To further extend the frequency range, we
employed fundamental and first harmonic modes of two
commercial silicon atomic force microscope (AFM) canti-
levers (Table I). For the measurements, we used a pressure-
controlled optical characterization chamber connected to a
high purity N2 source. We actuated the out-of-plane modes
of the resonators electrostatically and measured the dis-
placements optically [12]. All measurements were per-
formed under linear drive; moreover, the results remained
independent of the rms displacement amplitudes of
�0:1 nm as confirmed by Michelson interferometry.
Figure 1 depicts the typical resonant response of a nano-
mechanical resonator as the background N2 pressure in the
chamber is increased. The frequency shift is due to the

TABLE I. Device parameters, transition pressure p�Wi � 1�,
and the approximate lower pressure limit pmin for accurate
measurements for the devices used in the study. 1st harmonic
mode was also employed for some AFM cantilevers.

w� h� l
(�m)

!0=2�
(MHz)

Q0 p�Wi � 1�
(Torr)

pmin

(Torr)

53� 2� 460 (1st harmonic) 0.078 8321 1.0 0.05
36� 3:6� 125 (fundamental) 0.31 8861 3.0 0.05
36� 3:6� 125 (1st harmonic) 1.97 3522 17.5 0.06

0:50� 0:28� 17:1 10.4 1840 110 1.9
0:50� 0:28� 11:2 18.1 1530 200 2.9
0:93� 0:22� 9:9 22.8 1335 176 0.8
0:76� 0:22� 9:9 22.9 1200 216 1.2
0:23� 0:20� 9:6 24.2 415 280 2.77
0:50� 0:28� 9:1 27.1 909 290 2.6
0:32� 0:20� 7:7 33.2 780 320 15.8
0:50� 0:28� 5:9 45.7 1066 310 2.3
0:25� 0:20� 5:6 53.2 571 400 1.2
0:73� 0:23� 5:6 58.6 525 490 19.0
0:24� 0:20� 3:6 102.5 495 � � � 11.9
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mass loading from the boundary layer [13], while the
broadening results from the energy dissipation in the fluid.
The analysis can be simplified by using a one-dimensional
damped harmonic oscillator approximation [14] �x� � _x�
!2x � f=m, where f=m represents the force per unit
effective mass of the resonator. The quality factorQ, which
is a comparison of the stored energy to the dissipated
energy per cycle, is related to � as � � !=Q. Here we
extracted both the resonance frequency !=2� and Q using
nonlinear least squares fits to the Lorentzian response of
the resonator. In addition, for low Q (high pressure), we
verified the Lorentzian fit results through fits to the real and
imaginary components of the complex transmission [15].
Typical changes in! andQ of a nanomechanical resonator
during a pressure sweep are shown in the inset in Fig. 1.
Both ! and Q approach their respective intrinsic values,
!0 and Q0, at low pressure.

Before presenting further results, we must clarify the
nature of the fluidic energy dissipation. The motion of the
fluid with respect to the solid boundary creates a complex,
position-dependent shear stress on the resonator surface.
The inertial and dissipative components of the net shear
force are proportional to the displacement and the velocity,
respectively. For a single device, as the pressure is
changed, the fluidic dissipation can be quantified by either
the fluidic quality factor Qf given by Q	1

f � Q	1 	Q	1
0

or the fluidic dissipation �f � !=Qf. To compare differ-
ent devices with varying sizes and geometries, one needs to
further realize that the fluidic dissipation is proportional to
the effective surface area Seff , while the stored energy in
the resonator is proportional to the effective mass m [16].
With this naive assumption, we define a normalized fluidic
dissipation �n � �fm=Seff . The lower pressure limit pmin

for accurate Qf measurement is set by Q0: As one ap-
proaches pmin, the intrinsic losses in the resonator domi-
nate the measurement. The upper limit is 1000 Torr. Table I
displays pmin for each device along with Q0.

The normalized fluidic dissipations �n observed in three
different resonators are presented in Figs. 2(a)–2(c) as a
function of gas pressure. A change in the slope is notice-
able for the data in Figs. 2(a) and 2(b) at approximate
pressures of 1 and 300 Torr, respectively. The turn points
marked in the plots correspond to !� � 1 and are dis-
cussed in detail below. For the highest frequency beam at
102.5 MHz shown in Fig. 2(c), the turn point falls outside
the available pressure range, i.e., 1000 Torr. The molecular
flow model [10], which takes into account specular colli-
sions, fits our data only at the ideal gas limit at low
pressure. Note that a multiplicative constant of 0.9 was
used in all three to improve the fits. Viscous effects [17,18]
and squeeze-film effects [19,20], commonly observed in
microelectromechanical systems, did not introduce signifi-
cant damping for the small high-frequency devices up to
atmospheric pressure.

The solid lines in Fig. 2 are fits to a theory by Yakhot and
Colosqui [9] developed from the Boltzmann equation in

FIG. 2 (color online). Normalized fluidic dissipation �n as a function of pressure for (a) a cantilever with dimensions (w� h� l)
53� 2� 460 �m and nanomechanical doubly clamped beams with dimensions of (b) 230 nm� 200 nm� 9:6 �m and
(c) 240 nm� 200 nm� 3:6 �m. Resonance frequencies are as indicated, and the approximate turning points are marked with
arrows. The lines are fits to the molecular collision model [10] and Eq. (1) using � � 1850=p [9]. The molecular collision and the
Yakhot-Colosqui predictions were multiplied by 0.9 and 2.8, respectively, for all resonators. (d) Relaxation time � as a function of
pressure. The points were extracted from fluidic dissipation data sets, such as those shown in (a) and (b), of 13 resonators. The solid
line is a least-mean-squares fit and indicates that � � 1850=p.

FIG. 1 (color online). Resonance of a silicon doubly clamped
beam of width w � 500 nm, thickness h � 280 nm, and length
l � 11:2 �m at various N2 pressures in the chamber: p � 0:049,
5.4, 32, 100, 302, and 942 Torr. The inset shows the extracted
quality factor Q and normalized resonance frequency !=!0 of
the same device as a function of pressure. Here Q0 � 1530.
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the relaxation time approximation. After geometric nor-
malization and imposing the no-slip boundary condition,
this theory culminates in the expression
 

�n �
1

�1�!2�2�3=4

��������������
!��f

2

r �
�1�!�� cos

�
tan	1!�

2

�

	 �1	!�� sin
�
tan	1!�

2

��
: (1)

In Eq. (1), �n is expressed in terms of the viscosity �, the
density �f, the effective relaxation time � of the fluid, and
the frequency ! of the resonator. The only unavailable
parameter is the relaxation time �. In order to obtain the
fits, we assumed that � satisfied the empirical form � /
1=p [8,21]. The key prediction of the Yakhot-Colosqui [9]
theory is that the turn point in �n occurs when � � 1=!.
Thus, our experiments provided a direct and unique way to
extract � as a function of pressure p: Figure 2(d) displays
the experimentally extracted � from the transition points of
multiple resonators as a function of pressure. Through
linear fitting, one can obtain the expression � � 1850=p
(nanoseconds when p is Torr). The end result of this
exercise is the self-consistent fits in Figs. 2(a)–2(c). To
improve the fits, the results emerging from Eq. (1) with the
appropriate material properties and � were multiplied by
2.8. In general, all our data sets could be fit adequately
using Eq. (1) after multiplying by 2:8
 0:7.

The fluidic dissipation in individual resonators shown in
Fig. 2 suggests that there, indeed, is a transition at!� � 1,
obtained by tuning �. Further support for this transition
comes from extended measurements in the frequency pa-
rameter space. Figure 3(a) shows �n from different reso-
nators spanning a huge frequency range. Here �n is plotted
against the resonator frequency !0 at four different pres-
sures [16], i.e., four different �. This comparison between
different devices with different sizes is possible only after
normalization of the dissipation by Seff=m [22]. The solid
lines in Fig. 3(a) are fits to Eq. (1) using � � 1850=p. The
points marked by arrows correspond to!� � 1. Again, we
have multiplied all of the fits by 2.8 as in Fig. 2. This
multiplicative constant probably arises from adapting the
theoretical expressions [9] for an infinite plate oscillating
in plane to the finite and rectangular resonators oscillating
out of plane. Our surface-to-volume normalization does
not give the absolute dissipation, while it appears to be
useful for comparing different devices. The elucidation of
finite size effects in complex geometries is the subject of
our ongoing computational research. Figure 3(b) shows all
of the data, �n=

��������������!��f
p , from all devices collapsed onto a

single curve, plotted against over four decades of the
dimensionless parameter Wi � !�. Each symbol type in
Fig. 3(b) corresponds to a separate resonator; Wi is ob-
tained by multiplying the resonator frequency by the cor-
responding � from � � 1850=p. The solid curve is
obtained from Eq. (1).

Also apparent in Fig. 1 is a small decrease in the
resonance frequency as the pressure is increased. The

observed decrease is primarily due to the mass of the fluid
mf that is being displaced in phase with the resonator:
�!=!0 � mf=2m [4]. Both the geometry and the fre-
quency of the moving surface are expected to play a role
in determiningmf and, thus, �!. In an effort to rule out the
geometry effects, we studied the frequency shift in four
beams of identical widths (w � 500 nm) and thicknesses
(h � 280 nm) but varying lengths and resonance frequen-
cies as a function of pressure (Fig. 4). Here the plotted
�!=!0 corresponds to the approximate fluid mass per unit
beam length. The arrows mark Wi � 1 for each beam, and
the dashed lines represent best line fits corresponding to
�! / p1=3. The molecular flow model [10], which is
appropriate at low pressure, does not predict any mass
loading and frequency shift. At high pressure, the Stokes
expression for an oscillating plate [1] can be used to obtain
an approximation for the boundary layer thickness � ��������������������

2�=�f!
q

. This, however, results in a pressure-

independent �!, given that typically �� 1–5 �m, and,
consequently, mf=m � �f�

2=�swh. The Yakhot-Colosqui

FIG. 3 (color online). (a) Normalized fluidic dissipation �n as
a function of the resonator frequency !0 for several resonators at
four different pressures. From top to bottom, � � 2:3, 4.6, 9.2,
and 18.5 ns. The lines are fits calculated using Eq. (1). Wi � 1
points are marked with an arrow for each pressure. (b) The
scaling of �n=

��������������!��f
p for all resonators with !�. Each symbol

corresponds to an individual resonator. All of the predictions
were multiplied by the same fitting factor of 2.8 (also see Fig. 2).
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theory [9] underestimates the magnitude of the observed
frequency shift. We expect to understand the nature of the
boundary layer in the near future by studying the scaling of
experimental frequency shifts in a wide range of geome-
tries and frequencies and through supporting computa-
tional analyses.

The transition observed in our experiments can be in-
terpreted in the most general terms as follows. The simple
linear relation between stress and rate of strain in a
Newtonian fluid breaks down at high frequencies. The
Boltzmannian theory developed by Yakhot and Colosqui
suggests that this result is independent of the nature of the
fluid. This transition at Wi � !� � 1 was described [9] as
a ‘‘viscoelastic to elastic’’ transition owing to the fact that
the waves generated in the fluid by the resonator motion do
not decay as !! 1. There also appears to be some
universality with respect to device geometry: In both canti-
levers and doubly clamped beams, the same naive geomet-
ric normalization resulted in a consistent analysis.

There is a relentless effort to develop nanomechanical
resonators operating in gaseous [23] and liquid environ-
ments [24]. Our results should impact the design of next-
generation nanomechanical resonators. Figure 3 suggests
that fluidic dissipation saturates at high frequencies. Take,
for instance, two doubly clamped beam resonators with
identical widths and thicknesses but different lengths, i.e.,
identical Seff=m �

1
w�

1
h but different frequencies such

that !1 <!2. If !1 <!2 < 1=�, the ratio of the quality
factors of the two resonators in fluid becomes Q2f=Q1f ����������������
!2=!1

p
. On the other hand, if !1 < 1=� < !2, then

Q2f=Q1f �!2

������������
�=!1

p
. Finally, for 1=� < !1 <!2,

Q2f=Q1f �!2=!1. Thus, a shorter, higher-frequency
resonator will always be more resilient in a given fluid,
but the degree of resilience depends upon the fluid �. Yet,
for two devices with identical frequencies, the smaller one
with the larger Seff=m will have the lower Qf. For the case

where both Seff=m and the device frequency increase, the
nature of the scaling determines the end result. Finally, the
surface roughness, especially for very small devices, is
expected to have an important role in the nanofluidics of
nanomechanical resonators [25].

We thank M. Paul, A. Vandelay, C. Colosqui, and
R. Bhiladvala for helpful conversations. We acknowledge
generous support from NSF through Grants No. CMS-
324416 and No. BES-216274.

*To whom all correspondence should be addressed.
ekinci@bu.edu

[1] L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Butterworth-Heinemann, Oxford, 1987), 2nd ed.

[2] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and
Nanoflows (Springer, New York, 2005), 1st ed.

[3] M. L. Roukes, Sci. Am. 285, No. 9, 48 (2001); H. G.
Craighead, Science 290, 1532 (2000).

[4] K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76,
061101 (2005).

[5] X. M. H. Huang et al., Nature (London) 421, 496 (2003).
[6] H. B. Peng et al., Phys. Rev. Lett. 97, 087203 (2006).
[7] J. T. Tough, W. D. McCormick, and J. G. Dash, Phys. Rev.

132, 2373 (1963); L. Bruschi and M. Santini, Rev. Sci.
Instrum. 46, 1560 (1975); P. I. Oden et al., Appl. Phys.
Lett. 68, 3814 (1996); Y. Xu et al., Appl. Phys. Lett. 88,
143513 (2006).

[8] M. Rodahl et al., Rev. Sci. Instrum. 66, 3924 (1995).
[9] V. Yakhot and C. Colosqui, arXiv:nlin/0609061v4; J. Fluid

Mech. (to be published).
[10] R. B. Bhiladvala and Z. J. Wang, Phys. Rev. E 69, 036307

(2004).
[11] M. R. Paul and M. C. Cross, Phys. Rev. Lett. 92, 235501

(2004).
[12] T. Kouh et al., Appl. Phys. Lett. 86, 013106 (2005).
[13] The virtual mass effect due to the potential flow around the

structure was determined to be negligible.
[14] A. Cleland, Foundations of Nanomechanics (Springer,

New York, 2003), 1st ed.
[15] P. J. Petersan and S. M. Anlage, J. Appl. Phys. 84, 3392

(1998).
[16] The typical mass loading in these experiments is small.

Thus, for all practical purposes, ! � !0.
[17] J. E. Sader, J. Appl. Phys. 84, 64 (1998).
[18] F. R. Blom et al., J. Vac. Sci. Technol. B 10, 19 (1992).
[19] J. L. T. Veijola, H. Kuisma, and T. Ryhanen, Sens.

Actuators A, Phys. 48, 239 (1995).
[20] J. J. Blech, J. Lubr. Technol. 105, 615 (1983).
[21] E. T. Watts, J. Krim, and A. Widom, Phys. Rev. B 41, 3466

(1990).
[22] Seff � 2l�w� h�; m � Clwh�; the value of C depends

upon the structure geometry and the mode shape. A
distributed force approximation for calculating C was
appropriate for our experimental conditions.

[23] M. Li, H. X. Tang, and M. L. Roukes, Nature
Nanotechnology 2, 114 (2007).

[24] S. S. Verbridge et al., Nano Lett. 6, 2109 (2006).
[25] G. Palasantzas, Appl. Phys. Lett. 90, 041914 (2007).

FIG. 4 (color online). Normalized frequency �!=!0 for
beams of identical widths w � 500 nm and thicknesses h �
280 nm but varying lengths and resonance frequencies. The
pressure for Wi � 1 is marked with an arrow. Dashed lines are
least-mean-squares fits to �! / p1=3.

PRL 98, 254505 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
22 JUNE 2007

254505-4


