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Direct and non-invasive measurement of the pressure distribution in test sections
of a micro-channel is a challenging, if not an impossible, task. Here, we present
an analytical method for extracting the pressure distribution in a deformable micro-
channel under flow. Our method is based on a measurement of the channel deflection
profile as a function of applied hydrostatic pressure; this initial measurement generates
‘constitutive curves’ for the deformable channel. The deflection profile under flow
is then matched to the constitutive curves, providing the hydrodynamic pressure
distribution. The method is validated by measurements on planar microfluidic channels
against analytic and numerical models. The accuracy here is independent of the nature
of the wall deformations and is not degraded even in the limit of large deflections,
ζmax/2h0 = O(1), with ζmax and 2h0 being the maximum deflection and the unperturbed
height of the channel, respectively. We discuss possible applications of the method in
characterizing micro-flows, including those in biological systems.
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1. Introduction

Since the early experiment of Poiseuille (Sutera & Skalak 1993) more than two
centuries ago, the craft of measuring flow fields in tubes and pipes has been perfected.
Even so, the resolution limits of these exquisite experimental probes, such as the Pitot
tube (McKeon 2007) or the hot-wire anemometer (Bruun 1995), are quickly being
approached, given recent advances in micron- and nanometre-scale technologies. One
frequently encounters micro- (Stone, Stroock & Ajdari 2004; Popel & Johnson 2005)
and nano-flows (Schoch, Han & Renaud 2008), which come with smaller length scales
(Lissandrello, Yakhot & Ekinci 2012) and shorter time scales (Ekinci, Karabacak &
Yakhot 2008) than can be resolved by the commonly available probes. For instance, in
a pressure-driven micro-flow, one must insert micron-scale pressure transducers in test
sections in order to determine the local pressure drops (Kohl et al. 2005; Akbarian,
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Faivre & Stone 2006; Srivastava & Burns 2007; Hardy et al. 2009; Orth, Schonbrun
& Crozier 2011; Song & Psaltis 2011). As the size of a probe becomes comparable to
or even bigger than the flow scale itself, measurement of the distribution of flow fields
becomes problematic.

Although the tools of macroscopic fluid mechanics may not easily be scaled down,
the materials and techniques of microfluidics offer unique measurement approaches.
Most micro-channels in lab-on-chip systems, for instance, are made up of flexible
materials (Whitesides & Stroock 2001; Gervais et al. 2006). This provides the
possibility of probing a flow by monitoring the response of the confining micro-
channel to the flow. In other words, the local (position-dependent) deflection ζ of the
deformable walls of a micro-channel may enable the accurate determination of the
pressure field (or the velocity field) under flow. The challenge in this approach, of
course, is characterizing the interactions between a deformable body and a flow (Hosoi
& Mahadevan 2004; Shelley, Vanderberghe & Zhang 2005; Holmes et al. 2013). This
is not a simple task, especially in the limit of large deflections. To accurately predict
a flow bounded by a deformable wall, one needs to determine the hydrodynamic
fields as well as the wall deformations consistently. This requires solving coupled
fluid–structure equations (Pedley & Lou 1998; Heil & Jensen 2003), often in situations
where constitutive relations or parameters describing fluid–structure interactions are
not available. Even if these relations and parameters are known, numerical approaches
are often expensive.

To make the above discussion more concrete, let us consider a steady pressure-
driven flow between an infinite rigid plate at y = 0 and a deformable wall at
y = 2h0 + ζ(x), where ζ(x) is the local deflection of the deformable wall due to
the local pressure p(x) as shown in figure 1(a). The equations for incompressible
steady flow (∂xu+ ∂yv = 0),

u∂xu+ v∂yu=−∂xp+ ν(∂x
2 + ∂y

2)u, (1.1a)

u∂xv + v∂yv =−∂yp+ ν(∂x
2 + ∂y

2)v, (1.1b)

are to be solved subject to boundary conditions u|B = v|B = 0. All the variables in
(1.1) have their usual meanings (see figure 1a), with ν being the kinematic viscosity.
In general, solutions to these equations, accounting for inlet and outlet effects, are
impossibly difficult. However, if the channel is long such that (2h0 + ζmax)/l� 1,
where ζmax is the maximum deflection and l is the length of the channel, we can write
the local solution for the average velocity ū(x) as

ū(x)≈ 1
12η

[2h0 + ζ (p(x))]2∂xp. (1.2)

Here, η is the dynamic viscosity, and ζ(x) = ζ (p(x)) is a local constitutive relation,
which determines the dependence of the wall deflection ζ(x) on p(x). No particular
form for this dependence (e.g. elastic) is assumed a priori. In order to find the
flow rate and the wall stresses, we need accurate information on p(x), ζ(x), and the
constitutive relation ζ(x) = ζ(p(x)). If the flow rate is given, the problem becomes
somewhat simplified, but still remains rather complex to be handled numerically or
analytically.

In this paper, we describe a method to close (1.1) in a deformable channel using
independent static measurements of ζ = ζ(p). Using this method, we extract the

734 R1-2



Non-invasive pressure measurements

(a) (b)

x
z

y

0
5

10
15

–0.5

0
0.5

z (
m

m
)

x (mm)
0 5 10 15

–20

0

20

40

3.6 kPa

100 Pa

1.6 kPa

50 kPa

20 kPa

10 kPa

Chip

Bottom wall

ShimChannelz

y

(d)

(e) (f)

(c)

x

y

100

101

102

102 103 104 105 103 104 105

100

101

102

FIGURE 1. (a) A one-dimensional channel with a deformable top wall. (b) The two-dimensional
deflection ζ2d(x, z) of S1 (t = 200 nm, 2h0 = 175 µm) under hydrostatic pressure of p = 2.3 kPa
as measured optically. The inset shows a cross-sectional view of the channel. Clamps hold the
chip (with the thin membrane at the centre) and the bottom wall together. The two walls are
separated by a precision shim; an O-ring (black ovals) seals the channel. (c) Cross-sectional
line scans from the image in (b) showing the parabolic z-profile of the deformable wall under
pressure. (d) The one-dimensional (average) wall deflection ζ(x) at several different pressures
for the same sample. The indicated values are gauge pressure values. These are the local
constitutive curves. (e) The peak deflection ζp of the PDMS deformable walls as a function of
pressure p. (f ) ζp of the SiN deformable walls as a function of p; the dashed lines are the p1/3

asymptotes. Note that the ζp and the p axes do not cover the same ranges in (e) and (f ). Error
bars are smaller than the symbols.

pressure distribution in a planar channel flow and validate our measurements against
the analytic approximation in (1.2) for a long channel. Our method does not depend
upon the particulars of the local constitutive relation ζ(x)= ζ(p(x)). In other words, it
remains independent of the nature of the wall response, providing accurate results for
buckled walls and elastically stretching walls alike.
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Sample Material Wall Unperturbed Re Max. defl. Max. flow rate
thickness height ζmax Qmax

t (µm) 2h0 (µm) (µm) (ml min−1)

S1 SiN 0.2 175 70–1200 33 70
S2 SiN 1 180 100–1200 20 70
S3 SiN 1 97 250–1300 37 70
S4 PDMS 200 244 200–800 86 50
S5 PDMS 605 155 200–900 25 50

TABLE 1. Parameters of the channels (first four columns), the range of Reynolds numbers
(Re), and the maximum channel deflection ζmax attained under the maximum flow rate Qmax.
Re is found by averaging Rex = 2Q/ν[w+ 2h(x)] over the channel.

2. Experimental system

To test these ideas, we have fabricated planar micro-channels with deformable walls
and measured the deformations of these micro-channels using optical techniques under
different conditions, following the work of Gervais et al. (2006). Figure 1(b) is a
rendering of one of our micro-channels under pressure. The inset shows how the
channel is formed: a rigid bottom wall and a deformable top wall are held together
by clamps, and the channel is sealed by a gasket. The in-plane linear dimensions of
the channels are l×w= 15.5 mm× 1.7 mm. The distance 2h0 between the undeflected
top wall and the rigid bottom wall is set by a precision metal shim (in the range
100 µm. 2h0 6 250 µm); optical interferometry is employed to independently confirm
the 2h0 values. Different materials with varying thicknesses t are used to make the
deformable walls. In three of the channels studied here, the deformable walls are
ultrathin silicon nitride (SiN) membranes fabricated on a thick silicon handle chip
(t ≈ 500 µm). In the other channels, the compliant walls are made up of thicker
elastomer (PDMS) layers. Various parameters of all the micro-channels used in this
study are given in table 1.

After the micro-channels are formed, they are connected to a standard microfluidic
circuit equipped with pressure gauges. In the hydrostatic measurements, the outlet of
the micro-channel is blocked, and a water column is used to apply the desired pressure.
In flow measurements, a syringe pump is inserted into the circuit to provide the flow.

3. Results and discussion

3.1. Hydrostatic loading

First, the channels are characterized under hydrostatic loading. In these experiments
the inlet port is connected to a water column with the outlet clogged, and hydrostatic
pressure p is applied on the channel by raising the water column. The resulting
position-dependent deflection field ζ2d(x, z) of the compliant wall is measured using
white-light interferometry (Deck & de Groot 1994) at each pressure. In figure 1(b),
ζ2d(x, z) of the deformable top wall of sample S1 (t = 200 nm and 2h0 = 175 µm;
table 1 first row) at p= 2.3 kPa is shown. Cross-sections along the x and z axes taken
from this profile are shown in figure 1(c). Because the cross-sections are parabolic in
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the z-direction, we define an average or one-dimensional wall deflection ζ(x) as

ζ(x)= 1
w

∫ +w/2

−w/2
ζ2d(x, z) dz≈ 2

3
ζ2d(x, z= 0). (3.1)

Here, ζ2d(x, z= 0) is the maximum value of the parabolic cross-section, and the factor
2/3 comes from the integration. Similarly defined ζ(x) will allow us to perform a one-
dimensional analysis in the hydrodynamic case. In figure 1(d), we plot ζ(x) for the
same channel at several different hydrostatic pressures, 100 Pa 6 p 6 50 kPa. These
are the position-dependent (local) constitutive curves. Because of the clamping stresses,
the deformable wall is initially in a buckled state. At low p, the wall deformation
remains in the negative-y direction. As p is increased, the wall response becomes
elastic, and the wall stretches like a membrane. Also, a small asymmetry is noticeable
in ζ(x), caused by the deformation of the silicon chip during clamping. Figures 1(e)
and 1(f ) show the peak deflection ζp, which typically occurs at (x, z) ≈ (l/2, 0), as a
function of p for the elastomer (PDMS) and SiN walls, respectively. Each deformable
wall in figure 1(e, f ) has a constitutive ζp versus p curve, determining the behaviour
of the entire wall. The thin nitride walls shown in figure 1(f ) obey the well-known
elastic shell model at high p, ζp ∼ p1/3 (Small & Nix 1992). The elastomer walls in
figure 1(e) follow a different power law from the SiN ones, presumably because they
are much thicker and bending dominates their deformation. There is no noticeable
universality in the ζp versus p data, i.e. the nature of the wall response and thus the
constitutive relations are material and geometry (thickness) dependent. Our flow results
below, however, remain independent of the wall response.

3.2. Flow measurements
Next, we perform flow measurements in each micro-channel. The results from all
five channels are shown in figure 2(a). In the experiments, we establish a constant
volumetric flow rate Q through each channel using a syringe pump and measure
the pressure drop between the inlet and outlet using a macroscopic transducer. We
prefer to plot Q as the independent variable because the experiments are performed
by varying Q and measuring the pressure drop. In all measurements, a small pressure
drop occurs in the rigid inlet and outlet regions of the channel. This is because of
the finite size of the connections to the macroscopic pressure transducers. Knowing
the geometry of the rigid regions, we determine the pressure drop in these regions
from flow simulations (see the Appendix for details). Subsequently, we subtract this
‘parasitic pressure drop’ from the measured pressure drop. In summary, 1pt in the
plots in figure 2(a) corresponds to the corrected pressure drop in the compliant section
of the channel as measured by a macroscopic transducer (hence, the subscript ‘t’).
Figure 2(b) shows the channel deflection ζ(x) at several different flow rates for
S1 (t = 200 nm and 2h0 = 175 µm). Returning to table 1, we now clarify that ζmax

corresponds to the maximum deflection of the channel at the highest applied flow rate.

3.3. Simple fits
Before we present our method for analysing the flow, we attempt to fit the
experimental 1pt versus Q data to the theory described above in (1.1)–(1.2). Because
our channels have a finite width w, the result in (1.2) must be modified slightly. The
simplest approach is to use a linear approximation for the local pressure drop based
on the hydraulic resistance per unit length, r(x), of the channel. In a long channel
at low Reynolds number, ∂xp ≈ Qr(x). The total pressure drop between the inlet
and outlet can then be found as ≈Q

∫ l
0 r(x) dx (Batchelor 1967). In our analysis, we
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FIGURE 2. (a) The pressure drop 1pt in the compliant sections of the micro-channels as a
function of flow rate Q. Error bars are smaller than the symbol sizes. The dashed lines show fits
based on the hydraulic resistance of the micro-channel. The inset shows a double logarithmic
plot of the same data. (b) The deflection profile ζ(x) of S1 (t = 200 nm, 2h0 = 175 µm) at
different Q. The profile is no longer uniform (cf. figure 1d) because of the position-dependent
pressure p(x) in the channel.

approximate our channel as a channel of rectangular cross-section of w× 2h(x), where
2h(x)= 2h0 + ζ(x). Then (Bruss 2008),

r(x)≈

 1

1− 0.63
(

2h(x)

w

)
 12η

w[2h(x)]3 . (3.2)
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FIGURE 3. Determining the pressure gradient inside a micro-channel from hydrostatic
measurements (S1, t = 200 nm, 2h0 = 175 µm). (a) The channel deflection profiles under two
flow rates (upper thick line, Q= 70 ml min−1; lower thick line, Q= 5 ml min−1) are overlaid on
top of the deflection profiles taken under different hydrostatic pressures (cf. figures 1d and 2b).
(b) The data points (�) correspond to the pressure distribution p(x) in the test section (shaded
region) for a flow rate of Q = 5 ml min−1. To obtain p(x), the pressure values at the intersection
points in (a) are plotted as a function of x. A nonlinearity is noticeable in p(x) at x ≈ 7.5 mm,
where the slope of the linear fit changes. (c) Similarly determined p(x) for Q = 70 ml min−1.
The black line is a simple linear fit. The red lines in (b) and (c) are the deflection profiles of the
channel at the given flow rates. The error bars in the data (�) are estimated to be smaller than
the symbol size. Also plotted (+) are results from simple flow simulations.

With the 2h(x) data available from optical measurements, we calculate r(x) and
integrate it along the length of the channel for all flow rates to find the pressure
drop. The calculated 1pt are shown in figure 2(a) as dashed lines. It is difficult to
determine the source of the disagreement between the data and the fits in some cases.
The flow in the inlet and outlet regions may still be contributing to the error, even after
subtraction. Another source of error may be the boundary between the compliant and
rigid regions of the channel.

3.4. Measurement of the pressure distribution
We now turn to the main point of this paper. Our method is illustrated in figure 3.
The curves in the background in figure 3(a) are the now-familiar ζ(x) curves of S1
(t = 200 nm and 2h0 = 175 µm) under different hydrostatic pressures (cf. figure 1d).
These serve as the constitutive curves. On top of these hydrostatic profiles, we overlay
two different hydrodynamic profiles (thicker lines) at flow rates of Q = 5 ml min−1

and Q = 70 ml min−1. The assumption here is that, under equilibrium, ζ(x) only
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depends upon p(x), providing us with the constitutive relation ζ(x) = ζ(p(x)). We
determine the positions where the dynamic profiles intersect with the static profiles
and read out the pressure values for each intersection position. In figure 3(b,c), we plot
these read-out pressure values using symbols (�) as a function of position for the two
different flow rates; solid (red) lines are the deflection profiles. Also plotted (+) are
results from simple flow simulations (see below for further discussion). In figure 3(b),
a noticeable deviation from a linear pressure distribution is present, as captured by
the two black line segments with different slopes. The p(x) in figure 3(c) can be
approximated well by a linear fit (black line) to within our resolution. In the region
near the boundaries (x= 0 mm and x= 15.7 mm), where significant pressure gradients
must be present, it is not possible to obtain pressure readings. Thus, the test section is
the shaded regions in figure 3(b,c) away from the boundaries. We confirm that similar
behaviour is observed in all measurements on different channels.

Finally, we show that what is found above is indeed the pressure distribution in
the channel. First, we turn to the simple flow simulation results (shown by +) in
figure 3(b,c). Here, we take a two-dimensional channel with two rigid walls, with the
top one having the experimentally measured profile ζ(x) and the bottom one being flat.
We prescribe the velocity u at the inlet based on the experimental Q value. We then
calculate the pressure distribution in the channel with the outlet pressure set to zero
(see the Appendix for more details). In figure 3(b), a small nonlinearity qualitatively
similar to that observed in the experiment is noticeable. Between the experiment and
the simulation, there is a small but constant pressure difference (∼300 Pa), which
probably mainly comes from the non-zero outlet pressure in the experiment. In
figure 3(c), we notice a constant pressure difference (∼500 Pa) between experiment
and simulation as well; in addition, there is a larger pressure difference towards the
inlet. The excess pressure observed in the experiment is probably the pressure that
is needed to keep the deformable wall stretched, as the deformability of the wall is
completely ignored in the simulation. The wall is stretched more towards the inlet,
hence the larger pressure difference. (We estimate that this tension is not present in the
buckled wall of figure 3b.) Overall, the agreement is quite satisfactory.

We can further validate the extracted pressure drop 1pe across the (entire)
deformable test section against the analytical approximation in (1.2). Our method
provides 1pe directly for each flow rate. We illustrate this in figure 3(b): we take the
high and low pressure values at the beginning and end of the test section, and calculate
the difference to find 1pe, i.e. 1pe = p(x ≈ 1.6 mm) − p(x ≈ 13 mm). Against this
1pe value, we plot QR, where R is the hydraulic resistance of the channel for only the
region where the pressure drop is determined, i.e. the hydraulic resistance of the test
section. For the data in figure 3(b), for instance, R= ∫ x≈13 mm

x≈1.6 mm r(x) dx, where r(x) is the
resistance per unit length given in (3.2). QR versus 1pe data for each channel and flow
rate are shown in figure 4. The error bars are due to the propagated uncertainties in the
measurements of 2h0 + ζ(x).
4. Conclusions and outlook

The agreement in figures 3 and 4 provides validation for our method and gives us
confidence that we can measure p(x) in deformable channels accurately. For the proof-
of-principle demonstration in this paper, we have applied our method to a flow which
can be approximated by the Poiseuille equation, i.e. (1.2) and (3.2). However, the
method should remain accurate independent of the nature of the flow (e.g. turbulent
flows, flows with nonlinear p(x) or separated flows) because p(x) simply comes from
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FIGURE 4. Calculated pressure drop QR in the test section as a function of the extracted
pressure drop 1pe. The symbols match with those used in figure 2(a). Representative error bars
are due to the uncertainties in 2h0 + ζ(x). The solid line is QR=1pe.

the wall response, as evidenced by the nonlinear p(x) resolvable in figure 3(b). It must
also be re-emphasized that the nature of the wall response is not of consequence as
long as the deflection is a continuous function – any function – of pressure, ζ = ζ(p).
All these suggest that the method can be applied universally as an accurate probe of
flows with micron, and even possibly sub-micron, length scales.

Our results may be related to prior studies on collapsible tubes (Carpenter & Pedley
2003; Heil & Jensen 2003). For our system in two dimensions, in the case of small
displacements, ζ/2h0� 1, one can write a ‘tube law’

p= p(ζ, ζ ′′)≈ aζ + bζ ′′, (4.1)

which relates the local gauge pressure p (the so-called transmural pressure) to the
channel deflection ζ and its axial derivative ζ ′′ = d2ζ/dx2. In analogous expressions
in the collapsible tube literature, the coefficient a is typically found by considering
the changes in the cross-sectional area; however, finding b, which determines the
effect of the axial tension on p, is typically not simple and is possible only for
certain tube geometries, e.g. for elliptic tubes (Whittaker et al. 2010). Several points
are noteworthy about our experiments. First, the axial tension term appears to be
unimportant here, i.e. p = p(ζ ). Second, the method remains accurate even when
ζ ∼ 2h0. Finally, a method similar to the one described here may be useful for
determining b experimentally for different geometries and large deformations.

We mention in passing that the friction drag in a channel with rigid walls separated
by a gap of 2h0 is larger than that in a deformable channel with the same unperturbed
gap. To see this, consider a one-dimensional flow with a flux q per unit width. The
stress at the rigid wall is τ = −η∂yu|wall = h0∂xp. But q = (2h0

3/3η)∂xp. Therefore,
τ = 3η2q/2h0

2. Given that q/h0
2 > q/(h0 + ζ/2)2, drag is reduced. We also note that

no evidence of transition to turbulence has been observed in our experiments even at
the largest Re≈ 1200.
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This non-invasive method can possibly find applications in characterizing
physiological flows. In blood flow in arteries (Ku 1997) and smaller vessels (Popel
& Johnson 2005), flow–structure interactions are critical in determining functionality
(Heil 1997; Heil & Jensen 2003; Grotberg & Jensen 2004). Using our method, for
example, one could extract the local pressure distribution in an arterial aneurysm,
where the arterial wall degrades and eventually ruptures due to the pressure and shear
forces during blood flow (Lasheras 2007).

The spatial resolution in a p(x) measurement depends upon the resolution in ζ , the
noise in the hydrostatic pressure measurement, and the magnitude of the response of
the wall. With our current imaging system, we can detect deflections with .20 nm
precision, and the r.m.s. noise in the hydrostatic pressure transducer is ∼10 Pa. By
collecting the constitutive curves in figure 3(a) at smaller pressure intervals, we
estimate that we can measure p(x) with ∼10 µm resolution in this particular channel.
This method can easily be scaled down to provide sub-micron resolution in a nano-
fluidic channel by employing a higher numerical aperture objective. It may also be
possible to extend the method to study time-dependent fluid–structure interactions
(Huang 2001; Bertram & Tscherry 2006) by collecting surface deformation maps
faster (Sampathkumar, Ekinci & Murray 2011). By optimizing the averaging time,
one should be able to collect high-speed high-resolution pressure measurements in
miniaturized channels. Such advances could open up many other interesting fluid
dynamics problems, especially in biological systems.
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Appendix

Pressure drops in the rigid inlet and outlet regions of the channels are deduced from
flow simulations in Comsol Multiphysics R© using the single-phase three-dimensional
steady laminar flow environment. A constant volumetric flow rate is applied at the
inlet port, and the pressure at the outlet port is kept at zero. All the channel walls
are assigned the no-slip boundary condition. We use quadrilateral mesh elements and
increase the mesh density until the results converge. The two-dimensional simulations
shown in figure 3(b,c) between the deformed top wall and the flat bottom wall are
carried out using the same single-phase steady laminar flow environment. The upper
compliant wall is replaced with a rigid wall, but the deformed wall shape is preserved
by importing the experimental profile into the simulation. At the inlet port, instead of
volumetric flow rate, the calculated flow velocity corresponding to the experimental
volumetric flow rate is used.
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