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Gaussian fluctuations (or Gaussian noise) appear in almost all measurements in physics. Here, a

concise and self-contained introduction to thermal Gaussian noise is presented. Our analysis in

the frequency domain centers on thermal fluctuations of the position of a particle bound in a

one-dimensional harmonic potential, which in this case is a microcantilever immersed in a bath of

room-temperature gas. Position fluctuations of the microcantilever, detected by the optical beam

deflection technique, are then fed into a lock-in amplifier to measure the probability distribution and

spectral properties of the fluctuations. The lock-in amplifier measurement is designed to emphasize

the frequency-domain properties of Gaussian noise. The discussion here can be complementary to a

discussion of Gaussian fluctuations in the time domain. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4873694]

I. INTRODUCTION

When a small particle is immersed in a liquid, it displays
an irregular and random motion. This phenomenon, called
“Brownian motion,”1 is caused by the thermal fluctuations in
a system with a large number of degrees of freedom. The
Brownian particle is incessantly bombarded by the liquid
molecules, each of which has a small amount of thermal
energy � kBT, with kB being the Boltzmann constant and T
being the absolute temperature. Similar are the random oscil-
lations of a cantilever in a bath of fluid2 or the fluctuating
voltage across a resistor,3 both under thermal equilibrium.
Although these thermal phenomena are easily observable,3,4

a deeper understanding of them requires delving into the
theory of random processes and realizing the central impor-
tance of the Gaussian distribution in the formulation of ther-
mal fluctuations.

The reason for using the Gaussian distribution for describ-
ing thermal phenomena is that thermal fluctuations come
from a large number of almost independent events.5 The
Gaussian law of errors5 states that, if the error in an observ-
able is due to the accumulation of a large number of small
uncertainties, the error follows a Gaussian distribution.6

Returning to the Brownian particle, we realize that at any
given instant, the particle is buffeted by an enormous number
of molecules. The net force on the particle comes from the
resultant of these molecular buffeting forces and fluctuates at
a time scale much faster than the particle can respond.
Hence, the force can be considered to be Gaussian distrib-
uted around a zero mean at each instant. Furthermore, if the
thermal force is Gaussian, the response of any linear system
under the action of this thermal force (the Brownian particle
or the cantilever) will also be Gaussian.5

Much recent attention has been directed to the study of
thermal fluctuations in the undergraduate laboratory. Several
papers have explored thermal fluctuations in electrical circuit
elements, extracting the Boltzmann constant from the meas-
urements of electrical quantities.3,7–9 More recently, the

exquisite displacement sensitivity of optical techniques com-
bined with the small spring constants of microcantilevers has
brought thermal fluctuations in mechanical systems within
reach.4 In particular, Shusteff et al.4 used interferometry to
calibrate the displacement fluctuations of a microcantilever
and determined the Boltzmann constant from thermal me-
chanical fluctuations. The purpose of this manuscript is to
complement the existing educational literature on fluctua-
tions and measurement techniques. While we also study the
thermal fluctuations of a microcantilever, our experimental
focus is not on the determination of the Boltzmann constant.
Instead, our lock-in amplifier experiments are designed to
emphasize the Gaussian nature of the thermal fluctuations.
Furthermore, we focus on some important concepts in basic
measurement science, such as frequency mixing, lock-in am-
plifier operation, noise and spectral measurements. The
topics are complementary to the current emphasis in the
undergraduate laboratory on automated data acquisition and
digital signal processing (e.g., digital filtering and Fourier
transforming). Finally, the experiment described here is
straightforward to set up or can be based upon an existing
atomic force microscope (AFM) apparatus.10

The outline of the article is as follows. In Sec. II, we
analyze the Brownian motion of a particle bound in a
harmonic potential. We derive transparent expressions for
the displacement fluctuations of the particle in the frequency
domain, starting with certain physical assumptions for the
thermal drive force. In Sec. III, we consider how these fluc-
tuations can be detected by a lock-in amplifier. In Sec. IV,
we turn to a simple experiment that investigates the
Gaussian nature of the thermal fluctuations of a Brownian
particle in a harmonic potential immersed in a gas. An AFM
microcantilever in atmosphere serves as our harmonically
bound Brownian particle. The thermal fluctuations of the
microcantilever are detected by the optical beam deflection
technique and analyzed using a lock-in amplifier.11 Finally,
we provide conclusions in Sec. V.
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II. THE MICROCANTILEVER: A BROWNIAN

PARTICLE IN A HARMONIC POTENTIAL

A. Equation of motion

A microcantilever oscillating in its fundamental normal
mode can be modeled as a particle in a one-dimensional
harmonic potential, like a particle on a spring, as shown in
Fig. 1(a). The particle has mass m, with a harmonic restoring
force given by �jz ¼ �mX0

2z. Here, z is the position of the
particle, and j ¼ mX0

2 is the spring constant.
The microcantilever immersed in a bath of fluid (gas) in

thermal equilibrium can thus be treated as a Brownian parti-
cle in a harmonic potential. The gas exerts on the microcanti-
lever a force F(t) that has a rapidly fluctuating component
R(t) and a slowly varying component proportional to the in-
stantaneous velocity _z of the particle.12 The force is therefore
separated as12 FðtÞ ¼ �mc _z þ RðtÞ where c is called the
dissipation constant. Because both �mc _z and R(t) originate
from the surrounding gas, they are linked through the
fluctuation-dissipation theorem.13 In summary, we write

m€z þ mc _z þ mX0
2z ¼ RðtÞ; (1)

as the equation of motion describing the fluctuations of the
microcantilever in a gas under thermal equilibrium.

The system under study here is a lightly damped harmonic
oscillator. In a lightly damped system the resonance fre-
quency will remain, for all practical purposes, identical to
the undamped resonance frequency X0/2p. Light damping
can be characterized in terms of the quality factor of reso-
nance Q, which is defined as Q¼X0/c. For Q� 10, the
damped resonance frequency deviates from X0/2p by less
than 1%, so the light damping approximation becomes very
accurate. The gas damping here indeed provides light damp-
ing with Q� 100. Driven by a random thermal force, a
lightly-damped harmonic oscillator will undergo oscillations
(when observed in the time domain).14 These “random oscil-
lations” with frequency X0/2p tend to persist, on the average,
for a number of Q cycles. The oscillations therefore remain
coherent for a time interval� 2pQ/X0, providing a correla-
tion time for the system dynamics.

B. Thermal force

The fluctuating component of the thermal force R(t)
results from numerous gas molecule impacts so that the

Gaussian property holds by the central limit theorem. We
first introduce ensemble averaging. Ensemble averages are
taken over identically prepared systems existing in different
states at a fixed instant in time.15 To take ensemble averages,
we use the probability distribution PðR; tÞ dR, which quanti-
fies the probability that R(t) lies in the interval R � RðtÞ
� Rþ dR at time t. It follows that

hRðtÞi �
ð1

�1

RPðR; tÞ dR; (2)

hR2ðtÞi �
ð1

�1

R2 PðR; tÞ dR; (3)

and so on. While R(t) itself is random, qualitatively it
remains the same over time. It can be deduced that PðRÞ dR
does not depend on time and is given by5

PðRÞ dR ¼ e�R2=2rR
2

rR

ffiffiffiffiffiffi
2p
p dR; (4)

where rR
2 is the variance. Thus, rR is the standard deviation,

which quantifies the root mean square (r.m.s.) fluctuation
amplitude of R(t). In the special case when PðR; tÞ ¼ PðRÞ,
the random Gaussian physical quantity is called stationary.
For a stationary random variable such as R(t), long time
averages and ensemble averages provide the same outcome.
This is because, in a long time interval, the fluid bath giving
rise to R(t) is expected to sample all possible states. Finally,
we expect hRðtÞi ¼ 0 and hR2ðtÞi ¼ hR2ðtþ sÞi ¼ rR

2 for all
t and s.16

Considering the force R(t) for a long time T and taking it
to be periodic with period T , we can expand R(t) in terms of
a Fourier series as5

RðtÞ ¼
X1
n¼1

An cos xntþ Bn sin xnt; (5)

where the Fourier frequency fn ¼ xn=ð2pÞ ¼ n=T . The
n¼ 0 term is not included because a time-average of the
force over a long interval should vanish. The coefficients An

and Bn are all assumed to be independent (uncorrelated) ran-
dom Gaussian variables with average values of zero. One
can find the probability that An and Bn are in certain ranges
dAn and dBn as17

QnðAn;BnÞ dAn dBn ¼
e� An

2þBn
2ð Þ=2rRn

2

rRn

ffiffiffiffiffiffi
2p
p dAn dBn; (6)

valid for all n. It can be shown by integrating Eq. (6)
that hAni ¼ hBni ¼ hAnBni ¼ 0, hAkAmi ¼ hBkBmi ¼ hAkBmi
¼ 0 if k 6¼m, and hAn

2i ¼ hBn
2i ¼ rRn

2. The probability dis-
tribution functions Qn can intuitively be understood to result
from the Gaussian law of errors. If all An and Bn are
Gaussian variables, their linear combination in Eq. (5), R(t),
will also be a Gaussian variable. A joint probability distribu-
tion can be obtained for all the Fourier coefficients (A1,
A2,…; B1, B2,…) from the individual probability distribu-
tions as

QðA1;A2;…; B1;B2;…Þ ¼
Y1
n¼1

QnðAn;BnÞ: (7)

Fig. 1. (a) A microcantilever oscillating at a frequency close to its funda-

mental resonance frequency can be modeled as a harmonically-bound parti-

cle with mass m. The stiffness of the spring is j. (b) Block diagram of a

lock-in amplifier. The input signal z(t) is separated into two channels and

mixed with sinusoidal reference signals. After mixing, both channels are

low-pass filtered, resulting in the so-called in-phase X(t) and quadrature-

phase Y(t) components of z(t).
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C. Particle displacement

To solve the equation of motion shown in Eq. (1), z(t) is
expanded in terms of its Fourier components as

zðtÞ ¼
X1
n¼1

Xn cos xntþ Yn sin xnt; (8)

where Xn and Yn can be determined uniquely from Eq. (1) in
terms of the Fourier components of the force An and Bn as18

Xn ¼
1

m

ðX0
2 � xn

2ÞAn � cxnBn

X0
2 � xn

2ð Þ2 þ c2xn
2

(9)

and

Yn ¼
1

m

cxnAn þ ðX0
2 � xn

2ÞBn

X0
2 � xn

2ð Þ2 þ c2xn
2
: (10)

Because An and Bn are both Gaussian variables, so are Xn

and Yn with a probability distribution WnðXn; YnÞ, similar in
form to Eq. (6).

D. Spectral density

The concept of spectral density is perhaps most easily
understood in terms of a fluctuating electrical quantity, as in
the noise voltage across a resistor. The average noise power
dissipated in the resistor is proportional to the (ensemble or
time) average of the square of the voltage. The spectral den-
sity is then the distribution of this power in frequency.19

Similarly, the average of the square of the physical quantities
we deal with, R(t) and z(t), can be related to the power or the
energy of these particular quantities [as will be seen in
Eq. (15)]. To start our discussion, we square and take aver-
ages of both sides of Eq. (5) and due to the independence of
the individual Gaussian variables we obtain

hR2ðtÞi ¼
X1
n¼1

hAn
2ihcos2 xnti þ hBn

2ihsin2 xnti: (11)

Furthermore, we expect that hcos2 xnti ¼ hsin2 xnti ¼ 1=2
and hAn

2i ¼ hBn
2i. Given that the left hand side of Eq. (11)

is rR
2, we write

rR
2 ¼

X1
n¼1

hAn
2i þ hBn

2i
2

¼
X1
n¼1

rRn

2: (12)

Thus, we can express the spectral density SR(f) as

SRðf Þ df � rRn

2; (13)

for f� fn and df� fn � fn�1. The driving force in this approx-
imation has a white (constant and frequency-independent)
thermal spectrum SR(f)¼ 4mckBT.15

Typically, SR(f) is not a directly measurable quantity. On
the other hand, the spectral density Sz(f) and the r.m.s fluctu-
ations of the position of the particle are two well-defined and
measurable quantities. This can be found using the response
function of the particle under R(t) as15

Szðf Þ ¼
1

m

4ckBT

4p2f 2 � X0
2ð Þ2 þ c24p2f 2

: (14)

In the experiments below, we will be integrating Sz(f) in a
frequency band Df around a center frequency fr; this provides
the variance in the particle position z(t) coming only from
the Fourier components of z(t) with frequencies in that par-
ticular frequency band. We will also refer to this quantity as
zrms

2. Thus, zrms is the standard deviation, but in a limited
frequency band. To clarify, we write

zrms
2 ¼

ðfrþDf=2

fr�Df=2

Szðf Þ df : (15)

Returning to Eq. (12), we realize that

zrms
2 �

X
n

hXn
2i þ hYn

2i
2

¼
X

n

rzn
2; (16)

where the summation contains only the frequencies that
satisfy fr � Df=2 � xn=2p � fr þ Df=2. If all terms
(n¼ 1,…,1) are included, the variance converges to the
equipartition result

Ð1
0

Szðf Þdf ¼ kBT=j, where j is the stiff-
ness of the spring shown in Fig. 1(a).

III. LOCK-IN AMPLIFIER MEASUREMENT OF A

GAUSSIAN RANDOM VARIABLE

With the above expressions in hand, we turn to lock-in
detection of the thermal fluctuations of the particle position
z(t). First, we convert z(t) to a voltage by means of an optical
transducer, resulting in a voltage proportional to z(t):
VsðtÞ ¼ RzðtÞ, where R represents a constant gain. In addi-
tion, some voltage noise Vn(t) is inevitably added to the sig-
nal. In order to keep our expressions simple, we assume that
the transducer is noiseless and that all gains are adjusted
such that we obtain an overall unity gain. Thus, z(t) becomes
a voltage signal with the correct units.

Most lock-in amplifiers combine analog and digital elec-
tronics. Here, we present an analysis based on the simplified
block diagram11 shown in Fig. 1(b). The input signal is split
into two channels and is “mixed” with two sinusoidal refer-
ence signals, Arcosxrt and Arsinxrt. The mixer is assumed
to be an ideal multiplier and hence multiplies the input signal
by a sinusoid with a variable frequency fr¼xr/2p deter-
mined by the user. The amplitude Ar of the reference is
adjusted to Ar ¼

ffiffiffi
2
p

such that we retain the unity gain.
Given the form of z(t) in Eq. (8), the mixers output sinusoids
at angular frequencies xn � xr and xnþxr, and the low
pass filter rejects the high-frequency sinusoids. At the two
output channels of the lock-in, we obtain

XðtÞ ¼
X

n

Xnffiffiffi
2
p cosðxn � xrÞtþ

Ynffiffiffi
2
p sinðxn � xrÞt (17)

and

YðtÞ¼
X

n

� Xnffiffiffi
2
p sinðxn�xrÞtþ

Ynffiffiffi
2
p cosðxn�xrÞt: (18)

As in Eq. (16), the summation above is not over all n because
of the filtering. To see the implications of the filtering, we
first assume that the filter is so sharp that only one Fourier
component at xr¼xn is present at the output. Then we
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obtain XðtÞ ¼ Xr=
ffiffiffi
2
p

and YðtÞ ¼ Yr=
ffiffiffi
2
p

, where the subscript
r now indicates the Fourier component at frequency xr/2p.

Values for X(t) and Y(t) are sampled at times t¼ s, 2s,
3s,…, Ns for large N (s is the sampling time). Such sampling
generates an ensemble for the Fourier components Xr and Yr,
from which averages and standard deviations can be calcu-
lated. Equations (5) and (8) indicate that the Fourier compo-
nents are to be found considering the random signal for a
time T . If s is large enough, such that s � T , then the
Fourier components measured as such can be assumed to
come from identical systems but existing in different states,
i.e., a statistical ensemble. Selecting s longer than all the cor-
relation times present in the system should ensure this prop-
erty. For the harmonically bound microcantilever, s should
be greater than the ring-down (or decay) times of both the
microcantilever and the low-pass filter. Thus, the set Xr; Yrf g
¼ XðsÞ; YðsÞ; Xð2sÞ; Yð2sÞ; …; XðNsÞ; YðNsÞ
� �

created by
sampling X(t) and Y(t) properly can be treated as an ensem-
ble for the random variables Xr and Yr.

When the above-described sample set from X(t) and Y(t) is
plotted in the xy-plane, the data points will gradually fill the
plane. With a total of N samples, the number of points within
DxDy of (x, y) will be given by NWrðx; yÞDxDy, whereWr is
a Gaussian probability distribution similar to Eq. (6). The
standard deviation of the sample set can be linked to the
r.m.s. position fluctuations and the spectral density as

zrms
2 � SzðfrÞDf � hXr

2i þ hYr
2i

2
; (19)

where Df is the filter bandwidth.
It is not hard to extend the above argument to a mixed

down signal with several Fourier components coming from a
larger lock-in filter bandwidth Df. In Eqs. (17) and (18), the
sums can be thought to contain just a few Fourier compo-
nents, the frequencies of which satisfy

xr

2p
� Df

2
�

xn

2p
�

xr

2p
þ Df

2
: (20)

Because Xn and Yn are random and xn � xr provides differ-
ent angular velocities for each n in the plane, X(t) and Y(t)
will random-walk in the plane with all their statistical prop-
erties remaining the same as above. To make this statement
more concrete we look at zrms and Sz(fr). Squaring and aver-
aging the sample set from X(t), for instance, we obtain

hXðtÞ2i �
X

n

Xn
2

2

� �
hcos2 xn � xrð Þti

þ
X

n

Yn
2

2

� �
hsin2 xn � xrð Þti: (21)

Considering the independence of the Fourier components
and the time averages of sinusoidals, we get

hXðtÞ2i �
X

n

hXn
2i þ hYn

2i
4

; (22)

eventually leading to

zrms
2 � hXðtÞ2iþ hYðtÞ2i � SzðfrÞDf �

X
n

hXn
2iþ hYn

2i
2

;

(23)

with the same few Fourier components under the
summation.

IV. EXPERIMENT

We now turn to a description of the experiment. We mea-
sure the thermal oscillations of a commercially available
AFM microcantilever (MicroMasch HQ:CSC17) in air under
atmospheric pressure at room temperature. The microcantile-
ver has linear dimensions h� w� l ¼ 2 lm� 50 lm
�450 lm, as shown in Fig. 1(a), and has a fundamental flex-
ural resonance at X0/2p� 14.12 kHz with a quality factor of
Q� 63. Because w	 h, the flexural deflections in the funda-
mental resonance are along the thickness dimension h as
shown in Fig. 1(a).

A. Optical beam deflection set up

The experimental set up is illustrated in Fig. 2. The micro-
cantilever is glued to a rotation stage, which is fixed onto an
xyz-positioning stage. A diode laser (Thorlabs Model
S1FC635) with a wavelength of k¼ 635 nm is used, and the
optical power level in the experiment remains below 0.8 mW.
The light from the diode laser is first collimated and then
passed through a converging lens (125-mm focal length) to
focus the light down to a 40-lm diameter optical spot. A
CCD camera is used for aligning the optical spot onto the tip
of the microcantilever. The spot reflects from the tip of the
cantilever onto a single-element amplified photodetector
(Thorlabs Model PDA8A). A knife edge is placed in front of
the photodetector to block half of the light reflecting from the
cantilever surface. Because of the knife edge, as the cantilever
moves the power on the photodetector varies proportionally
to the displacement of the cantilever tip;20 this allows for
monitoring the thermal oscillations of the cantilever with
good displacement sensitivity. The optical alignment can be
further verified by observing the diffraction pattern of the
reflected light, produced by the microcantilever.

Because this optical transduction scheme is non-
interferometric, it is not easy to obtain the transduction gain
(the conversion factor for the displacement into Volts)

Fig. 2. Schematic of the experimental set up. Light from a diode laser is col-

limated and focused on the tip of a cantilever (C), which is placed on a rota-

tion stage (RS) on top of an xyz-stage. The reflected light from the cantilever

is directed onto a single-element amplified photodetector (PD). A knife edge

is placed in front of the photodetector to block half of the light reflecting

from the cantilever.
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directly, as was done in the work of Shusteff et al.4 Instead,
the gain is determined by measuring the thermal noise ampli-
tude and calibrating it against the equipartition theorem
result zrms

2 ¼ kBT=j, with the cantilever stiffness j calcu-
lated from elasticity considerations to be21 j ¼ Ewh3=ð4l3Þ,
where E is the Young’s modulus. For our cantilever we find
j� 0.2 N/m, thus giving an overall transducer gain of
1 lV/pm.

B. Electronics

The output of the photodetector is fed into a dual-phase
lock-in amplifier (Stanford Research Systems, SR 830). The
lock-in reference frequency fr and bandwidth Df are the two
variables of interest in our measurements, as well as the
number of samples N. In modern digital lock-in amplifiers,
one usually sets the filter time constant instead of Df. The
signal processor of the lock-in amplifier uses mathematical
algorithms for computing the averages. In most cases the fil-
ter time constant is of order 1/Df. One needs to consult the
lock-in amplifier manual to determine the value of Df from
the filter time constant.

For independent sampling, the sampling time s is set to be
larger than the relevant time scale in the system. The first rel-
evant time scale is determined by the decay time of the filter.
Usually, the decay time is of order the filter time constant of
�1/Df. (Again, the lock-in manual can be consulted for accu-
rate relationships between the decay time and Df.) The sec-
ond relevant time scale is the ring-down time of the
microcantilever: 2pQ/X0� 4 ms. In short, one needs to con-
sider all time scales and determine the sampling time s
accordingly.

In some of our measurements described below, fr is varied
while Df is kept constant. In others, fr is fixed and Df is var-
ied. In a typical experiment, once fr and Df are set, the X(t)
and Y(t) outputs from the two channels of the lock-in ampli-
fier are sampled by a computer via GPIB. The number N of
samples in the experiments varies between 100�N� 20000.

V. RESULTS

A. Data points in the plane

Figure 3 displays typical results from a lock-in noise
measurement. The data are the outputs of the two lock-in
channels, X(t) and Y(t), sampled every 50 ms and plotted in
the xy-plane as time increases. The arrow indicates the
beginning position of the random-walk of the data points.
Here, fr¼ 14.12 kHz and the filter bandwidth is
Df¼ 125 Hz.

B. Gaussian distributions

Figure 4(a) displays results from a measurement similar to
that shown in Fig. 3, with N¼ 10000 points collected. As
noted above, the probability of finding a point within Dx and
Dy of position (x, y) is expected to be Gaussian around zero.
Indeed, the normalized histograms in Figs. 4(b) and 4(c) of
the data sampled from the X(t) and the Y(t) outputs of the
lock-in, respectively, show the expected behavior; namely,
both sets have Gaussian distributions around zero mean. The
standard deviations are found from fits to the distributions.
The sum of the squares of the standard deviations corre-
sponds to the variance in z(t), or zrms

2, within the measure-
ment bandwidth, as discussed in Sec. II D.

The accuracy of a lock-in noise measurement depends on
the number of samples in the data set considered. The more
samples one uses, the closer the histograms approach to per-
fect Gaussians. To demonstrate this effect, we find the error
dzrms in zrms in a fixed bandwidth of Df¼ 125 Hz (the stand-
ard deviation of the standard deviation of the Gaussians) as a
function of N. To find this error, we fit histograms with
different N to Gaussians and find the error in the standard
deviation from the fits. The results are shown in Fig. 4(d)
with the solid line being proportional to 1=

ffiffiffiffi
N
p

.5

Figure 4(e) shows the spectral density Sz(f) of the cantile-
ver position fluctuations as measured by the lock-in
amplifier. In this measurement, fr is varied in steps of 50 Hz
around the cantilever resonance frequency at a fixed band-
width of Df¼ 0.42 Hz. A sampling time greater than the filter
decay time is selected (s¼ 4 s). At each frequency, the stand-
ard deviation is found from histograms of the sampled data,
and the spectral density is calculated using Eq. (19) with
Df¼ 0.42 Hz. In Fig. 4(e), a sharp mechanical resonance
peak is clearly seen with X0/2p� 14.12 kHz and Q� 63,
which are found by fitting the data to Eq. (14) (solid line). In
the inset of Fig. 4(e), we show the sampled X(t) and Y(t) in
the xy-plane at fr¼ 13.40 and 14.12 kHz (off resonance
and on resonance). The larger scatter of the data points at
14.12 kHz is due to the larger zrms

2 at the resonance
frequency.

C. Measurement bandwidth

Here, we measure zrms
2 in Eq. (15) as a function of the

lock-in amplifier filter bandwidth Df. In the experiment, the
lock-in amplifier reference frequency and the microcantile-
ver resonance frequency are set to coincide: fr ¼ 14:12 kHz
� X0=2p. Then, Df is incremented and sample sets are col-
lected for each Df value (varied in the range 0:4 Hz � Df
� 4 000 Hz). The relation between the thermal peak, fr, and
Df is illustrated in the inset of Fig. 5. In other words, the
lock-in is used as an integrator for the variance. The data

Fig. 3. Typical lock-in measurement of the in-phase and quadrature-phase

components of the position of the microcantilever showing the random walk

of the data points in the xy-plane. Here, Y(t) is plotted against X(t). The

arrow indicates the beginning point of the measurement. The relevant exper-

imental parameters are: fr¼ 14.12 kHz, Df¼ 125 Hz, N¼ 40, and s¼ 50 ms.
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points in Fig. 5 are the results from these measurements.
Returning to Eqs. (14) and (15), we can analytically integrate
the expression and calculate the area under the resonance
curve. For this, we take the equation of the spectral density
in Fig. 4(e) with the experimentally determined X0/2p and Q
values, and integrate it as a function of Df. Prior to this, the
detection circuit noise of �0.9 pm2 for a 1-Hz bandwidth is
subtracted from the total measured noise. The solid line is
the result of this exercise. For a small bandwidth such that Df

 X0/2pQ, the noise power increases linearly with Df. Once
Df becomes larger than the linewidth X0/2pQ� 235 Hz, the

noise power slowly saturates to the expected thermal equi-
partition result of kBT/j� 2� 104 pm2.

VI. CONCLUDING REMARKS

The purpose of this article is to provide an introduction to
the physics and mathematics of Gaussian thermal noise in a
self-contained manner. The developed concepts are illus-
trated by an experiment that can be performed in the under-
graduate laboratory, perhaps by using an existing AFM set
up. Several different measurements, each covering different
aspects of Gaussian noise and its lock-in amplifier detection,
are discussed. The experiment can be improved by incorpo-
rating an optical interferometric measurement approach,
which would allow for a direct calibration of the microcanti-
lever position fluctuations against interference fringes. The
lock-in-based measurement approach can be adapted for
noise measurements in other systems, including electrical
circuits.
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