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A polymer film draping over a point of contact will wrinkle due to the strain imposed by the underlying

substrate. The wrinkle wavelength is dictated by a balance of material properties and geometry; most

directly the thickness of the draping film. At a critical strain, the stress in the film will localize, causing

hundreds of wrinkles to collapse into several discrete folds. In this Letter, we examine the deformation of

an axisymmetric sheet and quantify the force required to generate a fold. We observe that the energy of

formation for a single fold scales nearly linearly with the film thickness. The onset of folding, in terms of a

critical force or displacement, scales as the thickness to the four-ninth power, which we predict from the

energy balance of the system. The folds increase the tension in the remainder of the film causing the radial

stress to increase, thereby decreasing the wavelength of the remaining wrinkles.
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The wrinkling of soft films commonly exhibits itself
everyday in examples ranging from draping fabrics to
wrinkled skin. This phenomenon occurs because elastic
films bend more easily than they stretch, allowing them to
buckle out of plane into wrinkles under applied strain [1].
While wrinkles are smooth undulations that distribute
strain evenly, folds are sharp strain localizations of applied
strain. Superficially, a wrinkle and a fold appear very
similar, but their differences have a profound impact on
properties of the deformed media. For a crumpled sheet of
paper, a network of folds, not wrinkles, develops and
focuses energy in a manner that significantly increases
the stiffness of the deformed material [2]. In biological
systems, the process of folding is critical to morphogene-
sis, defining such features as the neural folds in early
embryonic development [3]. Wrinkling and folding have
garnered much interest recently in patterning [4–6], func-
tional materials [7,8], developable cone dynamics [9],
draping [10], crumpling [11–13], and snapping [14,15],
yet a fundamental understanding of the relation between
the two structures is lacking.

Recently, Pocivavsek and Cerda [16] demonstrated the
transition from wrinkling to folding under simple uniaxial
compression. Under different geometries, the stresses
within the film cannot be neglected as they will in turn
cause variations in the film’s elastic response. In this Letter,
we examine the wrinkle-to-fold transition of a sheet under
axisymmetric conditions, which are commonly found in
nature (e.g., ciliary body of the eye [3]). We demonstrate
that while folds localize strain and lead to a global mini-
mization of energy, the axisymmetry introduces dramatic
variations in the stress field of the film thereby impacting
the general morphology of the material. These large mor-
phological differences will have an important significance
in understanding the growth of soft tissues [17]. In addi-
tion, we quantify this transition in terms of both force and
displacement; thereby, measuring the energy of fold for-

mation by the simple act of lifting an elastic sheet from the
surface of water [Figs. 1(a) and 1(b)].
When a strain, ", is applied to a thin elastic sheet of

thickness h with a Young’s modulus E and Poisson’s ratio
�, the sheet remains flat while the strain is less than a
critical strain, "c, where multiple equilibrium states are
possible. An increase in strain above "c causes the sheet to
buckle and bend out of plane into an energetically favor-
able wrinkled geometry. Cerda and Mahadevan [1] showed
that by minimizing the total elastic energy, the wrinkle

wavelength and amplitude scale as �� ðD=KÞ1=4 and A�
�"1=2, respectively, where K represents the resistance to

FIG. 1 (color online). (a) Wrinkles on a thin film floating on
water lifted by a spherical probe (inset: image via optical
profilometry). (b) As the vertical displacement of the probe
increases the wrinkles localize into sharp folds. (c) Schematic
of the experimental setup, where (i) depicts the axisymmetric
thin film floating on water; (ii) the formation of wrinkles as the
probe displaces the film vertically, and (iii) the critical displace-
ment at which wrinkles collapse into folds.
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stretching, D ¼ �Eh3=12, and �E ¼ E=ð1� �2Þ [1,16].
Further strain confining the thin sheet causes the amplitude
of wrinkles to increase, concentrating the elastic energy in
the strongly bent regions [2]. As the strain increases and
amplitude grows, a transition occurs to lower the global
energy through strain localization, or folding. These trans-
formations, specifically the nonlinear deformations of thin
axisymmetric films, are the focus of this Letter.

For our experiments, a thin polymer film, either poly-
dimethylsiloxane (PDMS) (Sylgard 184TM) or polystyrene
(PS) (Aldrich), is prepared via spin-coating a polymer
solution onto a clean silicon wafer. A circular film of radius
L ¼ 17:5 mm is floated off the wafer onto the surface of
water. A nanopositioner is used to lift a spherical probe of
radius a ¼ 500 �m by a displacement � into contact with
the center of the film, while a load cell records the force, P,
required to deform the film [Fig. 1(c)].

In this geometry, a biaxial stress develops in the thin film
upon lifting. To determine the relationship between the
centrally applied force, P, and the deflection of the floating
film of radius L, we assume that the foundation, i.e., water,
will conform to the deflection of the film and will follow
the general form of a symmetrically bent circular plate at
small displacement away from the plate’s edge [18]:
r4�r ¼ 0. Therefore, the deflection is described by �r ¼
�þ �r2 þ ðP=8�DÞr2 logr, where the last term accounts
for the stress distribution around the single load [18]. Since
the radius of the plate is finite, we describe the total strain
energy in the system as the summation of the bent plate
energy and the energy of deformation for the foundation,
which is proportional to the effective elastic stiffness, �g,
where � is the fluid density and g is the acceleration due to
gravity [19]. The total strain energy is minimized for stable
equilibrium, therefore we can determine the general con-
stants, � ¼ 8P=�kL2 and � ¼ P=4�D, that provide the
relationship between P and the displacement at the center
of the film, �, where k ¼ �g [20]. Furthermore, the stress
distribution can be determined from the moments or shear
force distribution, determined from the plate deflection
profile such that

	w
rr � �g�

�
L

h

�
2
: (1)

By adapting the scaling predictions from Cerda and
Mahadevan [1] to a radial geometry [21–23], the number
of wrinkles, N, is given by

N �
�
	rra

2

�Eh2

�
1=4 � C�

�E�1=4h�1; (2)

where C� is a prefactor defined by ð�g�L2a2Þ1=4. The
number of wrinkles for PS and PDMS films with thick-
nesses ranging from h ¼ 50 nm to h ¼ 13:6 �m was

measured. A plot of N vs C�
�E�1=4h�1 from Eq. (2) is

given in Fig. 2, and is in very good agreement with Eq. (2).
The dashed line represents a slope of unity [24].

Similarly, N is weakly dependent on displacement as
shown in a representative plot in Fig. 3, until a critical

displacement, �c, is reached as wrinkles collapse into the
first fold. The transformation from wrinkle to fold is driven
by the increase in wrinkle amplitude with increasing �,
associated with increasing azimuthal compression (Fig. 4).
Pocivavsek and Cerda [16] observed a wrinkle-to-fold
transition at �=�� 0:3 for uniaxially compressed films.
Since it is more energetically favorable for the film to bend
rather than stretch, we can assume that as � increases the
area of the deformed film must be conserved. Therefore,
we approximate the azimuthal compression by assuming
the shape of the deformed film is an inextensible cone, such

FIG. 2 (color online). A plot of the number of wrinkles, N,
versus film thickness, h�1, normalized by material and geomet-
ric properties C�E

�1=4. In our experiments, C� ¼ 0:005 Pa1=4 m
with a ¼ 0:5 mm, � ¼ 1 mm, L ¼ 17:5 mm, and �g ¼
9:8 kPa=m. Images of wrinkles were obtained by optical mi-
croscopy. The dotted line is the predicted scaling of unity from
Eq. (2).

FIG. 3 (color online). Number of wrinkles, N, versus displace-
ment, �, along with images of wrinkles obtained through optical
microscopy for a 91 nm thick polystyrene film.
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that �
 ¼ 2�Lð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=LÞ2p Þ. Using Eq. (2), and the

observation of Pocivavsek and Cerda, the critical � for the
wrinkle-to-fold transition should scale as:

�c �
�
EL4

�g

�
1=9

h4=9: (3)

This scaling prediction is consistent with our experimental
observations [Fig. 5(c)].

The force to deflect the plate can be determined from the
deflection of profile of the circular plate at r ¼ 0:

P ¼ �

8
�g�L2: (4)

A representative force versus displacement curve is plotted
in Fig. 5(a) [25]. P increases with � as the film is deformed

axisymmetrically until �c is reached. Accordingly, Pc �
h4=9 [Fig. 5(c)], based on Eq. (3). At the critical displace-
ment, an instantaneous decrease in P is recorded, and the
total energy of the deformed film is minimized through the
collapse of several wrinkles into a fold, where strain is
localized in a region of maximum curvature [Fig. 3(c)].

Reversing � to zero, or unloading, after the first fold
occurs, demonstrates the development of a hysteretic loop
with a change in energy associated with the wrinkle-to-fold
transition. [Figure 5(a)]. A representative example of this
tendency is given for a 375 nm film in Fig. 5(a) where a
fold occurs at a �c � 2 mm. A large increase in force is
measured at �u � 0:5 mm which corresponds to the film
unfolding and returning to its original, planar geometry.
The stiffness of the film is always increased upon lowering
it back to its original state, leading to a negative intercept
for loading. The slope after fold formation will be propor-
tional to the increase in radial tension from folding. The

observation of tensile forces at positive displacements is
associated with the stretching of the folded ridge, which is
formed with minimal length at �c. Thus, decreasing � from
�c after fold formation requires stretching of the folded
ridge. Accordingly, the force after folding is described as

Pf � ð1þ!ÞPþ P0, where ! / 	f
rr= �E and 	f

rr is the

radial stress after folding [18]. P0 is the intercept from
Fig. 5(a) associated with stretching [18]. The change in
energy, Uhys, is the difference between the energy for

lifting a wrinkled film, Uw � P�=2� �g�2L2, and the

energy for lifting a fold, Uf �
R�c

�u
Pfd�. Assuming that

the folded region is held together by adhesion forces during
unloading, the energy Uf will balance the energy to cause

adhesive failure, therefore Uf � �Lh, where � is the sur-

face tension of the film. Using �c from Eq. (3), the hys-
teresis energy becomes

Uhys � �Lh� CUh
8=9; (5)

where CU � ð�gÞ7=9L26=9E2=9. By measuring the hystere-
sis energy for a variety of film thicknesses we show that
Uhys scales in a nearly linear manner with film thickness in

Fig. 5(b), as predicted by Eq. (5).
The strain localization from the onset of a fold changes

the wrinkle wavelength of the remaining wrinkles on the
film. Before folding, but after the initial onset of wrinkling,
N is weakly dependent on displacement, as predicted by
Eq. (2) and shown in Fig. 3. At �c, the onset of the wrinkle-
to-fold transition, the wrinkle wavelength decreases. This

FIG. 4 (color online). Optical profilometry images with corre-
sponding profile plots show the change in wrinkle amplitude.
These images show the film with a constant wrinkle wavelength
(i), with a growth in wrinkle amplitude (ii), and finally with a
further increase in amplitude and decrease in number of wrinkles
before folding (iii).

FIG. 5. (a) Force, P, vs displacement, �, for a 375 nm thick PS
film. A fold develops at �c at which point the load decreases.
Lowering the film causes it to unfold at �u � 0:5 mm which
causes the load to rapidly increase. (b) Hystersis energy of single
fold formation, Uhys, vs film thickness, h with a linear scaling

from Eq. (5). (c) Plot of the critical force and critical displace-
ment for the wrinkle-to-fold transition, Pc and �c vs film
thickness, h. The dashed line represents a scaling of h4=9 from

Eq. (3). (d) Radial stress after folding, 	f
rr=	w

rr vs film thickness,
h with an empirical trend line of h�1.
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decrease in the wrinkle wavelength is different from the
wrinkle-to-fold transition under uniaxial deformations,
where only the wrinkle amplitude decreases upon folding.
Under axisymmetric conditions, the wrinkle wavelength
decreases, thus implying that the radial stress increases in
the surrounding material upon onset of strain localization.

According to Eq. (2), N � ð	rra
2= �Eh2Þ1=4. The presence

of the fold will increase the radial stress such that 	f
rr �

	w
rrðNf=NÞ4, whereNf is the new number of wrinkles. This

increase in stress is inversely dependent on the thickness of
the lifted film, as shown in Fig. 5(d), and can lead to stress
enhancements as great as a factor of 5. In many ways, this
increase in stress is counter intuitive since strain localiza-
tion is typically associated with energy increase only in the
folded region. This increase in the stress in the nonfolded
region, demonstrated in Fig. 3, is an important conse-
quence of the axisymmetry. The process of strain localiza-
tion, which lowers the global energy of a material system,
can lead to regions of increased stress beyond the folded
region itself. This impact on the surrounding stress field
and associated deformation changes (i.e., � decreases in
the nonfolded wrinkles) can impact the development of
cells and the general morphology of the morphogenetic
field [3].

Further confinement in the film via lifting eventually
causes the remaining wrinkles to collapse into folds
(Fig. 3). For a fixed probe size, the number of final folds
appears independent of film thickness and material prop-
erties. A fixed number of folds, 5� 1, was observed for
both PS and PDMS films across several orders of magni-
tude of film thickness.

In conclusion, we discussed the wrinkle-to-fold transi-
tion observed by lifting an elastic sheet floating on a
surface of water. The number of wrinkles is consistent
with existing theories at large film thickness (Fig. 2) while
the strain energy approximation accurately predicts a load
on the film independent of thickness [Eq. (4)]. These
experiments create opportunities for further theoretical
developments on the impact of folds in various film ge-
ometries. Specifically, a more robust understanding of the
stress state of the film, the energy associated with unfold-
ing, and the impact of singularities on wrinkle and fold
morphologies will help generalize this problem across a
variety of systems. Experimentally, it is important to fur-
ther explore the nonlinear properties of the wrinkle-to-fold
transition observed in uniaxial [16] and biaxial loading
conditions. Understanding the linear and nonlinear behav-
ior of thin films confined to soft or fluid substrates provides
critical insight towards their use in biological and synthetic
soft material environments.
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