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Abstract – We consider the dynamic snapping instability of elastic beams and shells. Using
the Kirchhoff rod and Föppl-von Kármán plate equations, we study the stability, deformation
modes, and snap-through dynamics of an elastic arch with clamped boundaries and subject to a
concentrated load. For parameters typical of everyday and technological applications of snapping,
we show that the stretchability of the arch plays a critical role in determining not only the post-
buckling mode of deformation but also the timescale of snapping and the frequency of the arch’s
vibrations about its final equilibrium state. We show that the growth rate of the snap-through
instability and its subsequent ringing frequency can both be interpreted physically as the result
of a sound wave in the material propagating over a distance comparable to the length of the arch.
Finally, we extend our analysis of the ringing frequency of indented arches to understand the
“pop” heard when everted shell structures snap-through to their stable state. Remarkably, we
find that not only are the scaling laws for the ringing frequencies in these two scenarios identical
but also the respective prefactors are numerically close; this allows us to develop a master curve
for the frequency of ringing in snapping beams and shells.

Copyright c© EPLA, 2014

Introduction. – Arched structures have been used in
architecture for over four thousand years [1], and the sta-
bility of these bistable structures has captivated scientists
for over a century [2,3]. The use of arches in engineering
environments has traditionally placed a substantial focus
on predicting the onset of loss of stability, and the subse-
quent unstable modes of deformation [4–9]. More recently,
the potential utility of controlling structural stability loss
to take advantage of the rapid transition between two sta-
ble shapes has been the focus of study. Not only can
a large deformation be achieved quickly, but frequently
with little energetic cost. Nature has long made use of
such elastic instabilities for functionality, with the carniv-
orous waterwheel plant [10] and Venus flytrap [11,12] us-
ing their elaborate snapping leaves to rapidly capture their
prey. Meanwhile, snapping shells have captivated children
for decades in the form of bimetallic “jumping” disks [13]
and rubber toy “poppers” [14,15] that, having first been
turned “inside-out” leap from a table with an audible pop
as they return to their stable state (see fig. 1). These
same principles have recently been used in the develop-

(a)E-mail: dpholmes@vt.edu

Fig. 1: Snap-through of a commercially available child’s popper
(E ≈ 25MPa and ρ ≈ 1200 kg/m3) from a flat surface (see the
supplementary movie sample-video1.avi).

ment of switches within MEMS devices [16,17], biomedi-
cal valves [18], switchable optical devices [19], responsive
hydrogels [20], and aerospace engineering [21,22].

Traditionally, studies of snapping have focussed on the
conditions under which a shell or deformed beam can re-
main in equilibrium [11,23]. Previous work on dynamic
buckling tends to focus on how the critical load to in-
duce snapping depends on the dynamics of loading [24,25].
However, in the design of advanced materials an under-
standing of the dynamics of snapping itself is necessary to
make full use of the snapping transition. In this letter,
we study the dynamics of snapping using a combination
of experiments and theoretical calculations.
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Fig. 2: (Colour on-line) Snap-through of a two-dimensional arch loaded along a line (see the supplementary movie
sample-video2.avi). (a) Experimental set-up showing a Polyvinylsiloxane (PVS) arch with both ends clamped and loaded
at its apex by a razor blade. (i) and (ii) show the asymmetric deformation mode of a deep arch and the subsequent snap-
through to the inverted stable configuration. (I) and (II) show a shallow arch going through a flat mode of deformation and
snapping. Force-displacement plots for arches that remain symmetric throughout (b) and first deform symmetrically but then
asymmetrically (c). (d) Maximum force fc as a function of end-end compression d for stretchability S1 = 1.912 × 10−4.

Experiments. – Motivated by the “snap-through” of a
popper shown in fig. 1, we first study the snapping dynam-
ics of a much simpler system: a two-dimensional elastic
arch subject to a point load. We consider a shallow arch
loaded by a point at its apex, and demonstrate the im-
portance of the beam’s “stretchability” on both the form
of deformation and the snapping dynamics. In contrast
to recent work that has focused on snapping induced by a
fixed load [25,26], we consider the limit of “displacement
control”.

Figure 2(a) illustrates the setup considered here: a
clamped beam of length L, thickness h, and width b is
compressed by an axial displacement ΔL so that it buck-
les into an arch. An imposed displacement is then applied
as a line load to the mid-point between the two clamped
ends1. The initial height of the apex before indentation
is w0. Qualitatively speaking, we observe that for shal-
low arches, the beam remains symmetric about its center

1Polyvinylsiloxane (PVS, Elite 22, Zhermack
TM

, E =
789.49 kPa) beams were prepared with stretchability S1 = 1.912 ×
10−4 and S2 = 9.706×10−4 . The ends of the beam were clamped by
embedding them within crosslinked polydimethylsiloxane (PDMS)

(Dow corning Sylgard 184
TM

). The indentation was performed in
an Instron 5848 Microtester and the force was measured by Interface
ULC 0.5N load cell.

throughout the loading (fig. 2(a)I), while deep arches tran-
sition from a symmetric to an asymmetric shape well be-
fore snap-through occurs (fig. 2(a)i). In both cases, once
the neutral axis of the beam is displaced to the mid-point
of the clamped edges, global stability is lost, and the beam
undergoes rapid snap-buckling to an inverted arch. To un-
derstand these observations, we begin by considering the
motion before snapping, which we assume is quasi-static,
before moving on to study the dynamics of snapping and
ringing.

We model the shape of the deformed beam using both
the Kirchhoff equations for elastic rods and the Föppl-von
Kármán (FvK) equations [27]. In the following discus-
sion, we shall present the results of the FvK theory since
this more easily allows for the identification of the impor-
tant parameters and the calculation of asymptotic results.
However, numerical results from the Kirchhoff theory are
used in comparisons with experiment since these account
correctly for the effect of large displacements.

FvK model. – In the case of small transverse displace-
ment, the profile of the arch is denoted by w(x, t), which
satisfies the dimensionless dynamic beam equation [27]

∂2w

∂t2
+

∂4w

∂x4
+ τ2

∂2w

∂x2
= fδ(x), −1/2 < x < 1/2. (1)
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Here, τ2 = TL2/B is the dimensionless compressive force
(with T the dimensional axial load applied), B is the bend-
ing modulus B = Eh3b/12 (with E the Young modu-
lus), ρs is the density of the material and f = FL2/B
is the dimensionless indentation force applied at the cen-
ter of the beam. Time is non-dimensionalized by t∗ =
L2

√
12ρshb/Eh3b = 2

√
3L2/ch, with c =

√
E/ρs the

sound speed within the material.
The out-of-plane deflection w is coupled to the in-plane

horizontal displacement u by Hooke’s law relating the
compressive stress to the higher-order von Kármán strain.
In dimensionless terms, this reads

− Sτ2 =
∂u

∂x
+

1

2

(
∂w

∂x

)2

, (2)

where

S =
B

EhL2b
=

h2

12L2

is the “stretchability” of the beam and is a measure of
the relative importance of bending and stretching ener-
gies. The importance of stretchability has been discussed
previously for vibrations about equilibrium within the
Kirchhoff formalism [28] and in the context of wrinkling
plates [29], though the analytical results and experiments
presented here are, to our knowledge, new.
The clamped boundary conditions at the two ends of

the arch are given by w(±1/2) = w′(±1/2) = 0 while
the horizontal compression is imposed by the condition
u(±1/2) = ∓d/2, where d = ΔL/L is the dimensionless
end-shortening.

Quasi-static evolution. – To study the deformation
prior to snapping we assume that loading occurs quasi-
statically and consider time-independent solutions of (1),
i.e. we neglect the ∂2

tw term. It is possible to solve the
quasi-static equation for the shape of the indented beam
analytically, the unknown indentation force f being deter-
mined in terms of w0 as part of the solution (for details,
see ref. [30]).
Our analysis reveals that the form of deformation de-

pends on the value of d/S. First, if d/S < 4π2, the
compressed, unbuckled beam is stable; neither buckling
nor snapping occur as the in-plane compression does not
induce Euler buckling in the beam. This can be under-
stood in physical terms as follows: a compression ΔL
corresponds to a strain d, a stress Ed or a compres-
sive force Ehbd on the beam. However, the buckling
load for a beam with clamped edges is well known to be
F = 4π2B/L2 = 4π2SEhb; hence when d < 4π2S buck-
ling cannot occur. In what follows the quantity d− 4π2S
frequently occurs and should be interpreted physically as
the end-end compression that remains after some of the
applied confinement of the beam has been accommodated
by compressing the beam in response to the buckling load.
If 4π2 < d/S < τ2max ≈ 80.76 (with τmax ≈ 8.99

the solution of τmax/2 = tan(τmax/2)), the arch remains
symmetrical as it deforms, ultimately returning to the

compressed flat state w = 0 (at which point snapping is
observed experimentally).
For d/S > τ2max ≈ 80.76, an asymmetric mode appears,

in addition to the symmetric mode, once the indentation
reaches a critical value or, equivalently, a critical force.
Detailed calculations [30] show that this asymmetric mode
is energetically favourable whenever it exists. In the asym-
metric mode, the force-displacement relation is linear,
f = −207.75w0, and the compressive force τ remains con-
stant at τ = τmax ≈ 8.99. The FvK analysis also shows
that the critical indentation force is given by

f (c) = −207.75w
(c)
0 = −129.53(d− 80.76S)1/2. (3)

While the theory could be tested by comparing theo-
retical and experimental beam shapes, a more rigorous
test is to compare the force-displacement relationship pre-
dicted theoretically with that measured experimentally for
each of the three regimes discussed above. In experiments,
we have used beams with two different stretchabilities:
S1 = 1.912 × 10−4 and S2 = 9.706 × 10−4. The regime
of buckled beams with small compression (4π2 < d/S <
τ2max ≈ 80.76) is somewhat difficult to explore experimen-
tally since the weight of the beam becomes important in
this case. Therefore, to explore the force-displacement
relation for arches in this regime we use the beam with rel-
atively high stretchability (S2 = 9.706× 10−4); the force-
displacement plot in this case is shown in fig. 2(b). For the
regime of large compression, d/S > τ2max ≈ 80.76, no such
restriction applies; a comparison of theory and experiment
in this regime, for two different values of d/S, is shown in
fig. 2(c).
Note that finite stretchability plays a crucial role in the

picture outlined above. First, if stretchability is neglected,
S = 0, then the family of beam shapes that return to a flat,
compressed beam at w0 = 0 (observed when d < τ2maxS)
cannot occur. Second, even when d/S > τ2max the crit-
ical transition force between symmetric and asymmetric
deformations predicted in (3) is sensitive to the amount
of stretchability, as is also seen experimentally (fig 2(d)).
It is in only in the high arch regime that stretchability
becomes negligible [26].
One final result from the study of the quasi-static in-

dentation of an arch visible in fig. 2(b), (c) is vital for our
study of snapping: regardless of which deformation mode
occurs, i.e. independently of the precise value of d/S, the
indentation force and w0 vanish together. This is also sim-
ilar to what is observed in the confinement of a buckled
arch in a shrinking box [31,32]. If 4π2 < d/S < τ2max, the
solution at this point is the flat compressed beam, while for
d/S > τ2max, the beam has the form of the antisymmetric,
mode-2 Euler buckling. In both cases, if the indentation
were to continue, symmetry dictates that the indentation
force would have to become negative. In the absence of any
adhesion between indentor and arch, this is not possible
and so no equilibrium solution is possible —contact must
be lost and the beam must then “snap-through” to the
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stable state, the inverted arch. This explains the exper-
imental observation that snap-through occurs when the
neutral axis of the beam is displaced to the mid-point of
the clamped edges.

Dynamics of snapping and ringing. – To under-
stand the timescale of the snap-through, we perform a
linear stability analysis of the beam at the point at which
contact with the indentor is lost. We set f = 0 in eq. (1)
and look for solutions of the form w(x, t) = wα(x) +
εwp(x)e

σt, where wα(x) is the shape at the point of snap-
ping (α = 0, 2 depending on whether snapping occurs from
the flat or asymmetric modes). We also perturb the com-
pressive force, τ = τα + ετpe

σt. At leading order in ε we
obtain an eigenvalue problem for the growth rate σ with
eigenfunction wp(x) satisfying

d4wp

dx4
+ τ2p

d2wp

dx2
+ σ2wp = −2τατp

d2wα

dx2
, (4)∫ 1/2

−1/2

dwα

dx

dwp

dx
dx = −2Sτατp, (5)

along with boundary conditions wp(±1/2) = w′
p(±1/2) =

0. The eigenproblem (4),(5) can be reduced to the solution
of a transcendental equation for σ. Here, we summarize
the results of this analysis giving details in the supplemen-
tary information [30].
For 4π2 < d/S < τ2max, for which the arch snaps from

the compressed flat mode (α = 0), analytical insight may
be obtained by considering compressions just large enough
to obtain buckling, i.e. (d/S)1/2 � τ0 = 2π. In this limit
we find

σ ≈ 4π3/2

√
3

[(
d

S
)1/2

− 2π

]1/2

. (6)

For snap-through from the asymmetric mode (α = 2) there
is a single eigenvalue of the system, σ ≈ 24.113, that is in-
dependent of the end-shortening d and stretchability S.
Thus, if we fix S and increase d starting from d = 4π2S,
the growth rate increases monotonically from zero until
d = τ2maxS, at which point the growth rate plateaus and
snap-through happens from the asymmetric mode. Nu-
merical solutions of the Kirchhoff equations confirm a sim-
ilar picture, though for d/S > τ2max there is, in fact, a small
dependence of σ on d/S, consistent with values reported
in a related problem [26].
Experimentally, we tracked the motion of the center of

the beam with a high-speed camera (Photron FASTCAM
APX RS, @3000 fps) and performed image analysis with
imageJ and custom MATLAB scripts to study the change
in displacement with time. Figure 3 shows that as the
center point reaches the base of the arch it rapidly moves
from point A to point B, corresponding to the “snap-
through”. The beam then vibrates like an under-damped
oscillator about the “inverted” symmetrical shape before
coming to rest. In the inset of fig. 3 we plot the ab-
solute value of the central deflection between points A

 

 

A

B

Fig. 3: (Colour on-line) Dynamics of arch snap-through. Main
figure: experimentally measured displacement of the central
point as the arch snaps and vibrates. Inset: semilog plot of
displacement vs. time, showing the growth rate σ and vibration
frequency ω after snapping.

and B; this plot shows that |w0| grows approximately
exponentially with time so that a growth rate can be
measured. We non-dimensionalize the experimentally ob-
tained growth rate using the timescale t∗ ∼ L2/ch that
arises naturally from the dynamic beam equation; fig. 4
shows that the timescale of the snap-through observed ex-
perimentally agrees well with theoretical predictions. In
particular, the growth rate σ is strongly dependent on
the degree of confinement for 4π2 < d/S < τ2max, as pre-
dicted by eq. (6), but once d/S crosses the critical value
d/S = τ2max ≈ 80.76, confinement plays a negligible role
and σ ≈ 24.113.
Having snapped away from its unstable configuration,

the beam approaches the inverted arch state, which is a
stable equilibrium. Since there is little dissipation in our
system, the beam oscillates about this state. To under-
stand the “ringing” frequency ω =

√−σ2 of this vibra-
tion we perform a linear stability analysis as before, but
now with wα = w1, the stable, first Euler buckling mode.
Here, we again see a transition in the form of oscillation
based on the quantity d/S. Starting at the critical value
d/S = 4π2, as d/S is increased the ringing frequency of
the lowest mode of oscillation increases. The FvK model
predicts that

ω ≈ 23/2π

31/2

(
d

S − 4π2

)1/2

(7)

for d/S � 4π2. The Kirchhoff model confirms this result
for d/S ≈ 4π2 and shows that ω continues to increase up
to ω ≈ 42.38 when d/S = 122.4. For d/S > 122.4, the
frequency of the lowest mode is fixed at ω ≈ 42.38, in-
dependent of d/S. We also see a transition in the form

24001-p4
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Fig. 4: (Colour on-line) Variation of growth rate σ with
rescaled lateral confinement, d/S . Inset: the “ringing” fre-
quency ω as a function of d/S . The results of numerical sim-
ulations (solid curves) and experiments (points) are in good
agreement with one another and with the prediction of the
FvK model (6), (7) (dashed curves) for d/S ≈ 4π2.

of oscillation. For d/S < 122.4, the mode of oscillation
with the lowest frequency corresponds to a vertical os-
cillation, whereas for d/S > 122.4 the mode with lowest
frequency also has a significant horizontal component. To
compare this picture with experimental data the Fourier
transform of the displacement data was taken to measure
the frequency of the vibrations after snapping; fig. 4, in-
set, shows good agreement between the experiments and

theory. The post-snap ringing timescale of the beam (t
(b)
r )

for d/S > 122.4 is governed by the geometry and material
properties of the arch:

t(b)r = (2π/ω)t∗ ≈ 0.148t∗ ≈ 0.513L2/ch. (8)

Ringing of spherical shells. – The audible pop
that accompanies the snapping of toys, such as jumping
discs [15] and the popper shown in fig. 1, can be attributed
to the ringing frequency. It is therefore natural to compare
the ringing timescale (8) with that for a spherical cap. The
analogue of the beam length for a spherical cap is the base
diameter, which we therefore denote by Lbase. For an elas-
tic spherical cap with radius of curvature R and thickness
h, the analogue of the FvK equation (1) is the dynamic
Donnell-Mushtari-Vlasov equation [33], which reads, in di-
mensional terms

ρsh
∂2w

∂t2
+B∇4w +

Eh

R2
w = 0, 0 ≤ r ≤ Lbase/2, (9)

where B = Eh3/12(1 − ν2) is the appropriate bending
stiffness (with Poisson ratio ν), r is the radial coordi-
nate, and we shall assume axisymmetry in what follows.

Fig. 5: (Colour on-line) The ringing timescale measured exper-
imentally, tr, scales with the timescale t∗ as predicted by our
analysis for arches, t

(b)
r ≈ 0.148t∗ and for hemispherical shells

t
(s)
r ≈ 0.133t∗.

Once a popper has leapt from a table, its edges are free
and so the appropriate boundary conditions for (9) are
∇2w|r=Lbase/2 = d/dr(∇2w)|r=Lbase/2 = 0. Performing
a linear stability analysis along similar lines to those for
the snapping beam (see supplementary information [30]
for more details) we obtain the snapping timescale

t(s)r =
π

2

√
1− ν2

λ2
t∗

(
1 +

3

4

1− ν2

λ4

Lbase
4

h2R2

)−1/2

, (10)

where λ ≈ 3.196 is an eigenvalue that is found numerically
from a solvability condition.
For the majority of the shells of interest here, the term in

parentheses in (10) is approximately unity and we find, as-

suming ν ≈ 1/2, that t
(s)
r ≈ 0.133t∗. Remarkably, we find

that this result is within 10% of the corresponding result
for the ringing frequency of arched beams in (8). Given the
quantitative robustness of the ringing timescale, it is nat-
ural to measure its value in a wide range of experiments
combining the snapping shells that motivated our study
with the carefully controlled snapping beams. For spher-
ical shells (commercially available toy poppers, bimetal-
lic disks and sections of squash balls) we measure with a
microphone the audible “pop” sound that they make dur-
ing snapping and extract the dimensional frequency, ω/t∗
from this. The lengthscale used to estimate t∗ is the un-
compressed length L for arches and Lbase (the diameter
of the spherical cap base) for hemispherical shells. Fig-
ure 5 shows plots of the experimentally measured ringing
timescale, tr, as a function of the characteristic timescale
t∗; this confirms that the prediction of the linear sta-
bility analysis for both beams and shells is in excellent
agreement with experiments.

Conclusions. – We have studied the dynamic snap-
ping of beams and shells. By first analyzing the
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quasi-static deformation of a point-loaded beam, we es-
tablished the key role of stretchability in the small end-
end compression regime, and showed that for 4π2S < d <
80.76S the static deformation and dynamic snapping are
fully symmetric, a regime that ceases to exist in the in-
extensible limit S → 0. However, we emphasize that this
is not a generic feature of such systems; the loading also
plays a crucial role since when indenting with a flat wall,
the arch remains symmetric throughout the deformation
independent of the stretchability [31,32].
Interestingly, our analysis and experiments showed that

stretchability of the beam also plays a key role in deter-
mining the timescales that govern both snap-through and
ringing. More generally, we found that the characteristic
timescale in each case ∼ L2/ch, which may be interpreted
physically as the timescale for the beam to “feel” its ends
using sound waves of speed c, augmented by a geometric
factor L/h. The augmenting factor, L/h ∼ S−1/2, so that
for a given stretchability S it is the time taken to “feel” the
beam ends that limits the dynamics of motion. For shells,
we showed that the timescale of ringing scales in the same
way with the shell’s properties and, moreover, with a very
similar prefactor. This allowed us to present a univer-
sal description for the audible “pop” that is a distinctive
feature of snapping both in everyday toys and laboratory
experiments.
While our results have demonstrated that the ringing

of arches and shells are quantitatively similar, many open
questions remain to properly understand the dynamics of
snapping structures. A particularly interesting open ques-
tion concerns the effect of finite stretchability in determin-
ing the snapping growth rate for shells and whether such
effects manifest themselves in terms of the symmetry (or
asymmetry) of the snapping mode, as we have seen for
snapping beams.
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