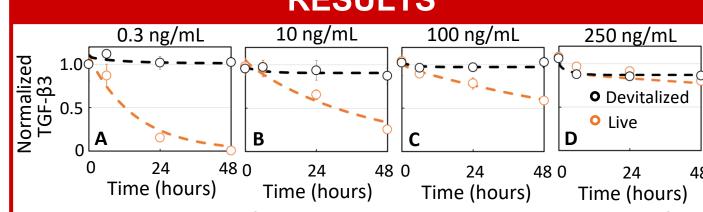
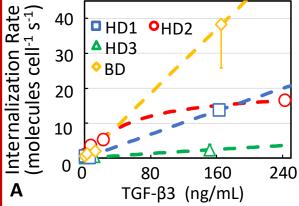
BOSTON UNIVERSITY

Patient-specific Internalization Rates Mediate TGF-β Delivery in Cartilage Tissue Engineering

Sedat Dogru ¹, Kirk Pierce¹, Tianbai. Wang², Michael. B. Albro ^{1,2}
¹Boston University, Department of Mechanical Engineering
²Division of Material Science & Engineering


INTRODUCTION

- Autologous cell implantation (ACI) is a promising cartilage tissue engineering (TE) strategy to treat osteoarthritis (OA). Primary chondrocytes from patients are seeded in scaffolds and used to generate neocartilage in OA defect sites [1].
- Transforming growth factor-β (TGF-β) is a prominent mediator of TE cartilage growth due to its efficacy in accelerating extracellular matrix (ECM) synthesis [2].
- For TE protocols where neocartilage is initially cultivated *in vitro*, TGF-β is supplemented in the culture medium. For protocols where neocartilage is directly implanted in the *in vivo* defect site, TGF-β can be directly loaded into and controlled-released scaffolds.
- Recently, we have demonstrated that a uniquely high rate of cell-receptor mediated internalization kinetics of TGF-β can dramatically influence its delivery to TE cartilage from immature bovine chondrocytes, yielding severe concentration gradients when delivered in media or short residence times when delivered via scaffold loading.
- However, TGF-β internalization rate measurements and assessments of its effect on delivery to cartilage has not been performed for clinical human cell populations.
- In the current investigation, we perform novel characterizations of:
 1) the dose dependent internalization rate of TGF-β in TE constructs generated from human cell populations, 2) the influence of internalization rates on TGF-β uptake into constructs during in vitro media-supplementation, and 3) the influence of internalization rates on TGF-β residence time after loading in affinity scaffold-based constructs in vivo.


METHODS

- Human chondrocytes were isolated from the femoral condyles of three autopsy human donors (HD; age/sex; HD1: 36/ , HS2: 60/ , HS3: 60/ ; NDRI procured) or immature bovine donor (BD), passaged [5], and cast in agarose scaffolds (Ø2x1mm) at 30 M cells/mL.
- Internalization rate: TE Constructs from each of the BD and HDs (live and devitalized) were exposed to a TGF- β 3 bath dose, C_F , of 0.3, 3, 10, or 150 ng/mL in chondrogenic medium. For each dose, the transient decrease in C_F for live constructs (from cell internalization) was monitored via ELISA (TGF- β 3 Duoset, R&D Systems) and subsequently curve-fit with a FE model (FEBio solver) to extract the TGF- β 3 internalization rate constant, R_{TGF} [6]. TGF- β 6 internalization rates were computed as the product of R_{TGF} 1 x C_F 1 and curve-fit for using the Michaelis-Menten relation: R_{TGF} 1 x C_F 1 = V_{max} 1 /(V_{M} 1 + V_{F} 1).
- In vitro TGF-β uptake model: For each donor, predictions of the uptake of media supplemented TGF-β (10ng/mL) into constructs (Ø5x2mm) were generated using our recently validated FE model [5,6], while incorporating the acquired donor-specific Michaelis-Menten TGF-β internalization constants and previously characterized agarose scaffold binding properties [3].
- In vivo TGF-β retention model: For each donor, predictions of the retention of scaffold-loaded TGF-β (100ng/mL) in heparin-affinity scaffold-based constructs (Ø5x2mm) were generated using the donor-specific Michaelis-Menten TGF-β internalization constants and heparin scaffold-TGF-β binding properties (K_D=2.3µg/mL, Nt=250µg/mL [7]).

RESULTS

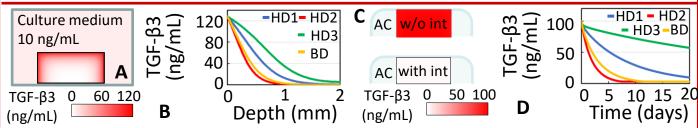


Fig 1: For all donors, TGF- β bath levels, C_F , decreased in the presence of live constructs due to cell internalization. As C_F increases, transient decreases become less pronounced. Dashed curves represent curve-fits for internalization rate constant extraction.

	В	Km (ng/mL)	Vmax (molecules cell ⁻¹ s ⁻¹)
	BD	1.0E+3	2.4E+3
	HD1	5.3E+3	4.6E+2
	HD2	5.4E+1	2.0E+1
)	HD3	1.4E+3	2.4E+1

Fig 2: (A) Donors exhibit varied dose-dependent TGF-beta internalization rates (B) and Michaelis-Menten parameters. Dashed curves represent curve-fit of Michaelis-Menten relation.

Fig 3: (**A-B**) Donors exhibit varied steady-state uptake distributions of media supplemented TGF- β (rached at ~48 h) (**C-D**) Donors exhibit varied retention of loaded TGF- β in affinity heparin scaffold. In the absence of internalization kinetics, loaded TGF- β exhibits only minor loss over 20 days.

This study demonstrates two important new findings:

- Human chondrocytes exhibit high rates of TGF-β internalization that substantially impact the uptake and retention of TGF-β in constructs, and
- Internalization rates vary considerably with human donor cell populations, giving rise to disparate TGF-β delivery outcomes.

The influence of TGF- β internalization rates on the delivery of TGF- β to constructs has important clinical implications for ACI platforms.

For in vitro delivery, the generation of steady-state gradients during TGF-β uptake can give rise to constructs with undesirable heterogeneities, increasing the likelihood of failure after implantation [6].

For in vivo delivery, the diminished residence time of TGF-β in scaffold-loaded constructs may give rise to insufficient biosynthetic enhancements. As such, novel TGF-β delivery platforms may be needed to overcome these challenges.

An important implication of this variability is that ACI outcomes may vary considerably between patients due to variability in TGF-β internalization rates and ensuing limitations in TGF-β delivery

CONCLUSIONS

The work suggests that novel platforms may be needed to overcome cell-internalization-induced TGF- β delivery limitations to patient TE constructs and that these platforms may need to be patient-specific to account to TGF- β internalization variability.

REFERENCES

[1] Huang BJ+ 2016 Biomaterials; 98:1-22. [2] Madry H+ 2013 Tis Eng PartB; 20.2: 106-125. [3] Albro MB+ 2016 Biomaterials; 77:173-85. [4] Davidson ENB+ 2005 Arthritis res&ther; 7.6:R1338. [5] Cigan A.D.+ J Biomech; 49.9:1909-1917 [6] Dogru S+ 2019 SB3C; Abst no.129 [7] Jha AK+ 2015 J Cont Rel; 209:308-316.

ACKNOWLEDGEMENTS

The work was supported by NSF CMMI 1906469.