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Abstract 

Simple probabilistic reinforcement learning is recognized as a striatum-based learning 

system, but in recent years, has also been associated with hippocampal involvement. The present 

study examined whether such involvement may be attributed to observation-based learning 

processes, running in parallel to striatum-based reinforcement learning. A computational model 

of observation-based learning (OL), mirroring classic models of reinforcement-based learning 

(RL), was constructed and applied to the neuroimaging dataset of Palombo, Hayes, Reid, & 

Verfaellie (2019). Hippocampal contributions to value-based learning: Converging evidence 

from fMRI and amnesia. Cognitive, Affective & Behavioral Neuroscience, 19(3), 523–536. 

Results suggested that observation-based learning processes may indeed take place 

concomitantly to reinforcement learning and involve activation of the hippocampus and central 

orbitofrontal cortex (cOFC). However, rather than independent mechanisms running in parallel, 

the brain correlates of the OL and RL prediction errors indicated collaboration between systems, 

with direct implication of the hippocampus in computations of the discrepancy between the 

expected and actual reinforcing values of actions. These findings are consistent with previous 

accounts of a role for the hippocampus in encoding the strength of observed stimulus-outcome 

associations, with updating of such associations through striatal reinforcement-based 

computations. Additionally, enhanced negative RL prediction error signaling was found in the 

anterior insula with greater use of OL over RL processes. This result may suggest an additional 

mode of collaboration between the OL and RL systems, implicating the error monitoring 

network.  
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Hippocampal Contribution to Probabilistic Feedback Learning: 

Modeling Observation- and Reinforcement-based Processes 

 

The basal ganglia and hippocampal memory systems are traditionally viewed as separate, 

with the basal ganglia (and in particular the ventral striatum) enabling trial and error 

reinforcement-based learning and the hippocampus facilitating efficient and flexible learning of 

single instance events (Knowlton et al., 1996; Squire, 2004). Recent studies have uncovered 

interactions between these systems (Gold, 2004; Packard & Goodman, 2013; White & 

McDonald, 2002), with the hippocampus proposed to contribute enhanced flexibility and 

efficiency to striatum-based probabilistic reinforcement learning (Gershman & Daw, 2017). Such 

collaboration has been especially evident in tasks that involve multi-step sequential decisions, in 

which the hippocampus is thought to facilitate learning of an internal model of the task, through 

simulation of the possible sequences of states and rewards that may follow any chosen action 

(i.e., model-based learning) (e.g., Bornstein & Daw, 2012, 2013; Wang et al., 2020). It has also 

been evidenced in reinforcement learning tasks involving contingencies that drift over time, with 

suggestion that the hippocampus may contribute to decisions through sampling of previous 

outcomes (e.g., Bornstein et al., 2017).   

Hippocampal involvement in reinforcement learning has also been demonstrated in 

simpler probabilistic learning tasks involving non-sequential states and constant contingency 

rates, notably when reinforcement-based feedback was delayed by a few seconds (Foerde et al., 

2013; Foerde & Shohamy, 2011) or when learning involved acquisition of value-based 

representations (Dickerson et al., 2011; Dickerson & Delgado, 2015; Palombo et al., 2019, 

2021). The mechanism by which the hippocampus contributes to probabilistic reinforcement 

learning in these simpler tasks remains to be elucidated.  
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In a number of studies, hippocampal activation has been demonstrated to correlate with 

the trial-by-trial reinforcement learning prediction error (e.g., Davidow et al., 2016; Dickerson et 

al., 2011; Foerde & Shohamy, 2011; supplemental materials in Schonberg et al., 2010), 

suggesting a role for the hippocampus in computing the discrepancy between actual and 

expected reinforcing outcomes. These findings, however, rather than supporting a direct 

contribution of the hippocampus to striatal learning, could be attributed to another learning 

pathway relying on observation-based processes. Indeed, in most probabilistic reinforcement 

learning tasks, observation-based learning can be present concomitantly with reinforcement-

based learning. That is, the feedback provided at the end of each trial can simultaneously serve to 

validate the selected action (e.g., selecting the red flower to go with the blue butterfly in Foerde 

& Shohamy (2011); selecting the “greater than five” button to go with the circle shape in 

Dickerson & Delgado (2015)) and to validate the observed stimulus association that results from 

the action (e.g., the blue butterfly-red flower association; or the circle shape-“greater than five” 

association). In other words, the prediction error in these tasks may simultaneously qualify as a 

reinforcement-based and as an observation-based signal. Thus, if reinforcement and observation-

based processes take place conjointly during probabilistic feedback learning, it is possible that 

striatal activation relates to prediction error via the former process, and hippocampal activation 

relates to prediction error via the latter process.   

Past research has implicated the hippocampus in the construction of episodic predictions 

(Buckner, 2010; Johnson et al., 2007; Schacter et al., 2007) and in signaling novelty or surprise 

when these predictions are violated (c.f. mnemonic prediction error or mismatch detection; e.g., 

Bein et al., 2020; Chen et al., 2015; Duncan et al., 2012; Hindy et al., 2019; Kumaran & 

Maguire, 2006; Sinclair et al., 2021). Much of this evidence involves representations that pertain 

to deterministic information, visuospatial maps, or single episodic events, for which the role of 
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the hippocampus has been well established (Burgess et al., 2002; Cohen & Eichenbaum, 1993; 

Eichenbaum, 2000; Squire et al., 1993). In the current study, we explore the role of the 

hippocampus in progressive learning based on the gradual acquisition of probabilistic 

contingencies, a domain usually attributed to the striatum. Although that literature is less 

extensive, some studies have implicated the hippocampus in the coding of observed events that 

are uncertain or probabilistic (Harrison et al., 2006). For example, hippocampal involvement has 

been demonstrated when learning about temporal regularities of observed events (Schapiro et al., 

2012; Turk-Browne et al., 2009) and when forming associative perceptual predictions (Kok & 

Turk-Browne, 2018). Further, in tasks requiring probabilistic learning, hippocampal activation 

has been demonstrated to scale with the strength of stimulus-outcome probabilistic associations 

independent of choice (Boorman et al., 2016) and with a form of observation-based prediction 

error, scaled with respect to contextual expectation (Bunzeck et al., 2010).  

Evidence for hippocampal involvement in reinforcement learning on the one hand and in 

encoding the association among observed events more broadly, raises the possibility that the role 

of the hippocampus in simple probabilistic feedback learning tasks may reflect observation-

based learning processes, running in parallel to reinforcement-based learning. To examine this 

possibility, we developed a computational model of observation-based learning and applied it, 

along with a model of classic reinforcement learning, to the neuroimaging dataset of Palombo et 

al. (2019). The probabilistic feedback learning task of Palombo et al. was selected for its unique 

feature of providing reinforcement-based and observation-based feedback that are simultaneous 

and yet distinct and uncorrelated. In that task, participants learned the status of a series of visual 

stimuli, depicted as stick figures distinguished by different colored patterns, that won money 

with predetermined probabilistic contingencies. On each trial, participants judged whether they 

believed that a stimulus figure would win by making yes/no responses and received subsequent 
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feedback consisting of the winning outcome for the stimulus figure on that trial (i.e., “the man 

won $1.00” or “the man didn’t win money”). Feedback is therefore directly relevant to the 

observed winning outcome associated with a stimulus figure, independent of choice; however, it 

also indirectly provides information about the accuracy of the response. In whole brain and 

region of interest general linear model analyses, Palombo et al. (2019) reported bilateral 

activation of the anterior hippocampus as well as of the nucleus accumbens, a key area of the 

ventral striatum. Here, we aim to further characterize the nature of the observed hippocampal 

involvement by using computational modeling.  

 

Modeling Observation- and Reinforcement-based Probabilistic Feedback Learning 

Classic models of reinforcement learning (RL) focus on computing the expected 

reinforcing values 𝑉𝑉(𝑠𝑠,𝑎𝑎) of all possible actions 𝑎𝑎 in a specific context or state s (Rescorla & 

Wagner, 1972; Sutton & Barto, 2018). As the participant gains experience through trial and 

error, the reinforcing values of these state-action pairs are updated using a delta rule: 

  𝑉𝑉(𝑠𝑠, 𝑎𝑎) ← 𝑉𝑉(𝑠𝑠,𝑎𝑎) + 𝛼𝛼𝑅𝑅𝑅𝑅�𝑟𝑟 − 𝑉𝑉(𝑠𝑠,𝑎𝑎)�,      (1) 

where 𝑟𝑟 is the reinforcement outcome equal to 1 if the participant’s choice was reinforced on that 

trial and to 0 if it was not reinforced, the term 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 = �𝑟𝑟 − 𝑉𝑉(𝑠𝑠, 𝑎𝑎)� is the reinforcement 

prediction error, and 𝛼𝛼𝑅𝑅𝑅𝑅 is the updating parameter, which represents the extent to which 

feedback is used to update the expected values of options. The probability of choosing an action 

a given a specific state s may then be computed as a function of the reinforcing values of the 

state-action pairs using a softmax rule to account for non-systematic behavior: 

,     (2) 
𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅(𝑎𝑎 𝑠𝑠⁄ ) =

𝑒𝑒𝛽𝛽𝑅𝑅𝑅𝑅V(𝑠𝑠,𝑎𝑎)

∑ 𝑒𝑒𝛽𝛽𝑅𝑅𝑅𝑅V(𝑠𝑠,𝑎𝑎′)
𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠
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where βRL is the exploit-explore parameter, with larger βRL corresponding to more systematic 

choice of the option with greater expected reinforcing value, and smaller βRL corresponding to 

more random choice behavior.  

Mirroring classic RL modeling, a model of observation-based probabilistic feedback 

learning (OL) is proposed here, that focuses on computing the expected probabilities of events 

Pev(s), given a specific context or state s, independent of participants’ actions. As the participant 

gains information through observation of probabilistic events, the expected probabilities of those 

events are updated using a delta rule, similar to that of the RL model: 

  𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠) ← 𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠) + 𝛼𝛼𝑂𝑂𝑅𝑅�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠)�,      (3) 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 represents the outcome of the event on that trial (e.g., set to 1 if the event led to one 

type of outcome or to 0 otherwise), the term 𝑃𝑃𝑃𝑃𝑂𝑂𝑅𝑅 = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠)� represents the prediction 

error in terms of observed occurrence of that outcome, and 𝛼𝛼𝑂𝑂𝑅𝑅 is the updating parameter. In OL 

modeling, responses can also be modeled, but their goals must be directly related to the 

observation of the outcome event – for example, selecting which event is most likely to occur. 

Similar to RL modeling, the probability of a response given presentation of a specific state s is 

computed with a softmax rule to account for non-systematic behavior, but with a denominator 

covering all possible outcome events rather than all possible actions: 

,   (4) 

where βOL represents the exploit-explore parameter, with larger βOL corresponding to more 

systematic selection of the option with greater expected probability of occurrence, and smaller 

βOL corresponding to more random choice behavior. 

 

 

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑂𝑂𝑅𝑅(𝑟𝑟𝑒𝑒𝑠𝑠𝑟𝑟𝑃𝑃𝑒𝑒𝑠𝑠𝑒𝑒 = 𝑒𝑒𝑒𝑒 𝑠𝑠⁄ ) =
𝑒𝑒𝛽𝛽𝑂𝑂𝑅𝑅𝑃𝑃𝑒𝑒𝑒𝑒(𝑠𝑠)

∑ 𝑒𝑒𝛽𝛽𝑂𝑂𝑅𝑅𝑃𝑃𝑒𝑒𝑒𝑒′(𝑠𝑠)
𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑝𝑝𝑒𝑒𝑝𝑝𝑎𝑎𝑎𝑎𝑠𝑠
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This Study 

The present study aims to determine whether hippocampal involvement during 

probabilistic feedback learning may reflect the activity of observation-based learning processes, 

running in parallel to striatal reinforcement-learning. To test this hypothesis, we examined 

within- and between-individual differences in the relative use of one learning process over the 

other via comparison of overall model fit. We hypothesized that preferential use of observation-

based over reinforcement-based learning would be associated with greater activation of the 

hippocampus; and that preferential use of reinforcement-based over observation-based learning 

would be associated with greater activation of the striatum. Here, as in Palombo et al. (2019), we 

focus on the nucleus accumbens, a key structure of the ventral striatum that integrates dopamine 

and limbic inputs and motor effector outputs  (Floresco, 2007; Mogenson et al., 1980) and has 

intrinsic connectivity with the hippocampus (Kahn & Shohamy, 2013).  The brain correlates of 

the OL and RL prediction errors were also examined to shed light on the updating mechanisms 

underlying both learning processes – that is, to determine the brain regions involved in 

computing discrepancies between expected and actual events, defined in terms of event 

occurrence in OL and action reinforcement in RL. We hypothesized that the OL prediction error 

would correlate with hippocampal activity, and that the RL prediction error would correlate with 

striatal activity. 

 

 
Method 

Dataset 

The current study makes use of the Palombo et al. (2019) dataset, collected on 30 healthy 

right-handed college students (15 male, 15 female) as they performed a probabilistic feedback 

learning task while undergoing functional neuroimaging in an MRI scanner. The participants had 
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a mean age of 19.6 years (SD = 1.0) and mean education of 13.2 years (SD = 1.1). They had no 

prior history of major psychiatric or neurological condition. The sample size of Palombo et al. 

(2019) was gauged adequate for the computational modeling needs of the present study, based on 

previous RL computational modeling work that used a similar or smaller sample size (n’s 

between 17 and 30) and reported significant brain correlates of the model, notably in the 

hippocampal region (Dickerson et al., 2011; Foerde & Shohamy, 2011; Schonberg et al., 2010). 

Paradigm. During the task, participants were presented with stimulus figures, one at a 

time, along with the written question “Does the man win money?”. They responded by pressing 

the “Yes” or “No” buttons on an MRI-compatible button box. Decision screen duration was 

fixed (2,134 ms) and was followed first by a short display of the stimulus figure alone (400 ms) 

and then by the outcome screen (1,067 ms), which revealed “the man wins $1.00” along with a 

picture of a dollar bill, or “the man does not win money” along with an opaque gray rectangle 

labeled with “$0.00” (see Figure 1). Trials were separated by a fixation cross, with jittered 

duration (M = 2,801 ms; range: 667–9,203 ms). The task required learning the winning status of 

two sets of six experimental stimuli, depicted as stick figures with different fractal visual 

patterns. Each set comprised three stimulus figures associated with winning outcomes 75% of the 

time, and three with not-winning outcomes 75% of the time. Control trials were included 

involving two additional stimulus figures in each set. These trials were identical to experimental 

trials, but without the learning component, with correct response displayed on the stimulus figure 

during the decision screen (“Yes” or “No”) and yielding winning or not-winning outcome 100% 

of the time. The two sets of stimuli were presented over the course of four runs, two consecutive 

runs per set. Each run comprised 48 experimental trials and 16 control trials, with 8 presentations 

of each stimulus figure randomly interspersed. The presentation order of the runs was quasi-

randomized for each participant, and the assignment of winning status to the stimulus figures 
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was counterbalanced across participants. (See Palombo et al. (2019) for a more detailed 

description of the procedures.) 

After the scan, a test phase was carried out, in which on each trial two stimulus figures 

from the experimental trials were presented side by side, and participants had to decide which of 

the two was most likely to win. This phase comprised 36 trials, 18 trials in which the two 

stimulus figures were from the same learning set and 18 trials in which they were from different 

learning sets. Performance on each trial was coded as 1 for correct and 0 for incorrect.  

Participants were paid $60 for their participation in the study. There was no additional 

monetary payment contingent upon participant responses. The rewards available to participants 

during the task were therefore experienced through two types of intrinsic events: (1) the 

observation of a stimulus figure winning $1 and (2) the experience of being correct when 

guessing an outcome.  

Brain Imaging Acquisition & Preprocessing. Images were acquired on a 3.0 Tesla 

Siemens Prisma scanner with a 64-channel head coil. Sequences included a T1-weighted 

magnetization-prepared rapid gradient-echo (MP-RAGE) sequence (sagittal plane acquisition, 

TR = 2,530 ms, TE = 3.35 ms, TI = 1,100 ms, flip angle = 7°, sections = 176, slice thickness = 1 

mm, matrix = 2562, FOV = 256 mm, voxel size = 1 mm3), four functional scans with acquisition 

parallel to the anterior–posterior commissural plane (multiband = 6; TR = 1,067 ms, TE = 34.80 

ms, flip angle = 65°, slices = 72, slice thickness = 2 mm, FOV = 208, matrix = 1042, voxel size = 

2 mm3, volumes = 388, phase encoding = anterior–posterior), and a brief functional scan with 

the same parameters but posterior–anterior encoding direction for correction of distortions. 

Functional imaging data processing was carried out using tools from the FMRIB Software 

Library v6.0 (FSL) (Smith et al., 2004). Preprocessing included motion correction (using 

MCFLIRT), susceptibility field correction (applytopup), skull stripping (BET), and bias-field 
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correction (FAST). Pre-statistic processing included spatial smoothing (Gaussian kernel of 

FWHM 5mm), grand-mean intensity normalization, removal of additional motion artifacts (ICA-

AROMA), and high-pass temporal filtering (Gaussian weighted least squares straight line fitting, 

sigma = 30 s). Within subject registration was carried out to the T1-weighted structural image 

using FLIRT, and between-subject registration to the MNI152 standard-space template using 

FNIRT. (See Palombo et al. (2019) for additional details).  

Computational Modeling 

The classic RL model and novel OL model described in the introduction were applied to 

the Palombo et al. task. The RL model included six possible states, s, corresponding to the 

presentation of the six stimulus figures, and two possible actions, a, corresponding to “Yes” or 

“No” responses. The expected reinforcing value of each response given presentation of a specific 

stimulus figure, 𝑉𝑉(𝑠𝑠,𝑎𝑎), was initially set to 0.5 and updated during subsequent trials t+1 

whenever that response was chosen with the following delta rule (Sutton & Barto, 2018):  

�𝑉𝑉
(𝑠𝑠,𝑎𝑎)0 = 0.5                                                         

𝑉𝑉(𝑠𝑠,𝑎𝑎)𝑎𝑎+1 = 𝑉𝑉(𝑠𝑠, 𝑎𝑎)𝑎𝑎 + 𝛼𝛼𝑅𝑅𝑅𝑅(𝑟𝑟𝑎𝑎+1 − 𝑉𝑉(𝑠𝑠, 𝑎𝑎)𝑎𝑎)
       (5) 

where 𝛼𝛼𝑅𝑅𝑅𝑅 is the updating parameter, which represents the extent to which feedback is used to 

update the expected values of options, varying between 0 (no updating) and 1 (extreme updating 

to the value of the previous trial); and 𝑟𝑟𝑎𝑎+1 is the reinforcement outcome at trial t+1, set to 1 if the 

participant’s choice was correct on that trial (i.e., if the participant answered “Yes” and the 

stimulus figure won or if they answered “No” and the stimulus figure did not win) and to 0 if it 

was not correct. The probability of selecting the “Yes” response at trial t+1 given the presentation 

of a specific stimulus figure s was computed using a softmax rule to account for non-systematic 

behavior: 



Patt et al. 2022 – HIPPOCAMPAL CONTRIBUTION TO PROBABILISTIC FEEDBACK LEARNING – Author Manuscript    12 

,  (6) 

where βRL is the exploit-explore parameter, with larger βRL corresponding to more systematic 

choice of the option with greater expected value, and smaller βRL to more random choice 

behavior.  

In the OL model, instead of tracking values for state-action pairs, the probability Pev(s) 

that a stimulus figure s will win was modeled, independent of participant response. The 

probability of winning for each stimulus figure was initially set to 0.5 and updated during 

subsequent trials t+1 using a delta rule similar to that of the RL model: 

�𝑃𝑃𝑝𝑝𝑒𝑒
(𝑠𝑠)0 = 0.5                                                               

𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠)𝑎𝑎+1 = 𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠)𝑎𝑎 + 𝛼𝛼𝑂𝑂𝑅𝑅(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎+1 − 𝑃𝑃𝑝𝑝𝑒𝑒(𝑠𝑠)𝑎𝑎)
       (7) 

where 𝛼𝛼𝑂𝑂𝑅𝑅 is the updating parameter, and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎+1 represents the outcome of the event on trial 

t+1, set to 1 if the stimulus figure won (i.e., picture of a dollar bill) or to 0 if it did not win (i.e., 

gray rectangle labeled with “$0.00”). To account for non-systematic behavior, the probability of 

selecting the “Yes” response at trial t+1 given the presentation of a specific stimulus figure s was 

computed with the following softmax rule: 

,  (8) 

where βOL is the exploit-explore parameter, and P𝑝𝑝𝑒𝑒(𝑠𝑠)𝑎𝑎 and 1 − P𝑝𝑝𝑒𝑒(𝑠𝑠)𝑎𝑎 are the expected 

probability that the stimulus figure will win or not win, respectively, computed from information 

collected up to the previous trial.. 

The RL and OL models, each comprising a pair of 𝛼𝛼 and 𝛽𝛽 parameters, were fit to the 

Palombo et al. dataset. Parameters were estimated for each model, each participant, and each set 

of stimuli separately with Bayesian inference, using an implementation of the affine invariant 

ensemble Markov Chain Monte Carlo sampler of Goodman & Weare (2010) proposed by 

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅(𝑎𝑎 = "𝑌𝑌𝑒𝑒𝑠𝑠" 𝑠𝑠⁄ )𝑎𝑎+1 =
𝑒𝑒𝛽𝛽𝑅𝑅𝑅𝑅V(𝑠𝑠,𝑎𝑎="Yes")𝑡𝑡

𝑒𝑒𝛽𝛽𝑅𝑅𝑅𝑅V(𝑠𝑠,𝑎𝑎="Yes")𝑡𝑡 + 𝑒𝑒𝛽𝛽𝑅𝑅𝑅𝑅V(𝑠𝑠,𝑎𝑎="No")𝑡𝑡
 

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑂𝑂𝑅𝑅(𝑎𝑎 = "𝑌𝑌𝑒𝑒𝑠𝑠" 𝑠𝑠⁄ )𝑎𝑎+1 =
𝑒𝑒𝛽𝛽𝑂𝑂𝑅𝑅P𝑒𝑒𝑒𝑒(𝑠𝑠)𝑡𝑡

𝑒𝑒𝛽𝛽𝑂𝑂𝑅𝑅P𝑒𝑒𝑒𝑒(𝑠𝑠)𝑡𝑡 + 𝑒𝑒𝛽𝛽𝑂𝑂𝑅𝑅(1−P𝑒𝑒𝑒𝑒(𝑠𝑠)𝑡𝑡) 
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Foreman-Mackey et al. (2013) and computed in MatlabTM by Grinsted (2015). Flat priors were 

used for the two models, spanning the intervals [0-1] and [0-20] for the α and β parameters, 

respectively. Final estimates of parameters were selected as the maximum of the posterior 

distributions and were used to compute prediction error trial series for each participant, each set 

of stimuli, and each model. Model evidence was calculated as the marginal likelihood – i.e., the 

likelihood of the data evaluated for each possible pair of α and β parameters, weighted by the 

prior, and integrated over the entire parameter space (e.g., Friel & Pettitt, 2008). This calculation 

was carried out using the MatlabTM integral2 function. The OL versus RL model comparison 

was then quantified by calculating a Bayes factor for each participant and each stimulus set as 

the quotient of the OL and RL marginal likelihoods. Natural logarithm of the Bayes Factor 

(logBF) was calculated and signed so that positive logBF would correspond to a superior fit of 

the OL model and negative logBF to a superior fit of the RL model. Model comparison was also 

carried out for the OL and RL models separately compared to a one-parameter random response 

model. This model allowed for response bias, using a parameter varying between 0 and 1 to 

model participant’s probability of responding yes to all trials regardless of the stimuli presented. 

Natural logarithm of the Bayes Factor was used to evaluate the fit of the OL and RL models 

separately compared to this basic model. 

We also contemplated another method for comparing the OL and RL models, based on 

the construction of one large dual-process model (for similar modeling see Collins & Frank 

(2012)). This model comprised five parameters: the two RL model parameters (𝛼𝛼𝑅𝑅𝑅𝑅 and 𝛽𝛽𝑅𝑅𝑅𝑅), the 

two OL parameters (𝛼𝛼𝑂𝑂𝑅𝑅 and 𝛽𝛽𝑂𝑂𝑅𝑅), and a weight parameter (w) representing the probability that 

behavior may be governed by RL (w=0) or by OL (w=1). Using this latter parameter for 

comparison of the OL and RL model was deemed to have limited reliability, both because of the 

complexity of the model and the general challenge posed by parameter recovery in 
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computational modeling (Wilson & Collins, 2019). The computation of Bayes factors, which is 

more robust because it involves integrating likelihood over the entire parameter space, was 

therefore used instead.  

To explore whether differential use of one form of learning over the other had an impact 

on overall retention, logistic mixed effect modeling was carried out with post-scan memory 

performance as dependent variable, logBF as fixed effect, and participant as random effect, 

allowing for different random intercepts for each participant. Because the computation of logBF 

was carried out separately for each set, only the post-scan performance data that involved within-

set choices was analyzed (i.e., 9 trials per set and per participant). Significance of the fixed effect 

of logBF was evaluated with a t-test using Satterthwaite’s method, as implemented using the R 

lme4-package (Bates et al., 2015). 

Finally, to assess learning progression over the course of the task, the OL and RL 

computational models were run again separately for run 1 and run 2 of each stimulus set. For 

each run, the following measures were computed: logBF, the average absolute value of the 

prediction errors, and the average response accuracy (defined as the proportion of responses 

corresponding to the majority status of a stimulus figure – e.g., responding “Yes, the man will 

win money” for a stimulus figure that wins money on 75% of the trials). A 2 x 2 within-subject 

ANOVA was carried out on each of these measures, including run and stimulus set as 

independent variables. Reflecting progressive learning, we expected an increase in response 

accurary and a decrease in absolute prediction error across runs. Comparison of logBF across 

stimulus set and run was carried out in an exploratory manner to examine the possibility of a 

shift in type of learning over the course of the task. Because these ancillary analyses are based on 

measures computed from only 48 trials (instead of 96 for the full stimulus set), their results 

should be interpreted with caution. 
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Brain Imaging analyses  

The pre-processed and pre-registered Blood Oxygen Level-Dependent (BOLD) activity 

time series of Palombo et al. were analyzed in a three-level whole brain analysis using FILM 

(FMRIB's Improved Linear Model) (Woolrich et al., 2001). 

At the first level of analysis, General Linear Modeling (GLM) was carried out on each 

run and each participant. The GLM model comprised regressors for the mean brain activity 

during the experimental trials, control trials, and trials of no interest (i.e., inaccurate control trials 

and trials with no or late responses). The key contrast of interest compared brain activation 

during the experimental and control trials. Two parametric modulators that modeled the mean 

centered OL and RL prediction errors (PEOL and PERL) were also included. To verify lack of 

correlation across trials between these modulators, linear mixed modeling was carried out that 

used participant as a random variable, PEOL as the dependent variable, and PERL as fixed and 

random effects. Verification of the lack of correlation between PEOL and PERL (see Results) 

enabled their simultaneous inclusion into the GLM model. All trial regressors were modeled 

using trial onset times convolved with a double gamma hemodynamic response function, with 

duration comprising the entire trial, including decision and feedback phases (3.6 s). As noted in 

Palombo et al.(2019), separating decision and feedback would have required inclusion of a 

jittered delay between the two phases in the experimental design, which had been deemed 

undesirable. At the second level of analysis, the contrasts of interest (i.e., the mean activity 

during the experimental compared to the control trials and the parametric modulators) were 

combined for run 1 and 2 to compute the signal corresponding to the first stimulus set, and for 

run 3 and 4 to compute the signal corresponding to the second stimulus set for each participant.   

At the third level, brain correlates of the differential fit of the OL versus RL model were 

explored by analyzing intra- and inter-individual variability in logBF and in whole brain 
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functional signal. Mean trial activation in experimental versus control trials obtained for each 

participant and each stimulus set was modeled using a fixed effect GLM with thirty-one 

regressors: one regressor for modeling variability in logBF, and thirty regressors for modeling 

mean brain activation in each participant (for similar models, see “Experimental Designs - 

Repeated measures” in the FSLwiki user guide, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM). Two 

contrasts were computed, examining the mean trial activation in experimental versus control 

trials (contrast 1), and its correlation with logBF (contrast 2).  The same model was used to 

determine the brain correlates of the OL and RL prediction errors, using second level contrasts as 

input. The third-level contrasts consisted of the mean prediction errors and their correlation with 

logBF. For all contrasts, the cluster-defining (or voxel-wise) threshold was set to z = 3.09 (p 

= .001) and the corrected cluster significance threshold to p = .05 (Eklund et al., 2016). 

To further test the hypothesis that superior fit of the OL model over the RL model 

involves increased hippocampal activation and decreased ventral striatal activation, linear mixed 

modeling was conducted with participant as random factor on brain signal (experimental trials – 

control trials) averaged over the right and left hippocampus and over the right and left nucleus 

accumbens. Regions of interest were defined using lateralized masks based on the Harvard-

Oxford structural atlas (e.g., Desikan et al., 2006) with a threshold of 50%. For both analyses, the 

model used participant as a random factor and was defined as follows: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑖𝑖 =  𝛽𝛽0𝑝𝑝 + 𝛽𝛽1𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑒𝑒𝑒𝑒𝑖𝑖 + 𝛽𝛽2𝐵𝐵𝑟𝑟𝑎𝑎𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝐵𝐵𝑒𝑒 + 𝛽𝛽3𝑆𝑆𝑃𝑃𝑙𝑙𝐵𝐵𝑙𝑙,        (5) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑖𝑖  represents brain activation averaged over lateralized regions of the hippocampus or 

nucleus accumbens for participant i and stimulus set j, 𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑒𝑒𝑒𝑒𝑖𝑖 represents the stimulus set 

with possible values 1 or 2 corresponding to administration order, and 𝐵𝐵𝑟𝑟𝑎𝑎𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝐵𝐵𝑒𝑒 represents left 

or right brain lateralization (left used as reference). The model included fixed and random 

intercepts, 𝛽𝛽0𝑝𝑝, and fixed effect regression coefficients 𝛽𝛽1 , 𝛽𝛽2, and 𝛽𝛽3. Model fit was carried out 
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using maximum likelihood as implemented in the lme4 package (Bates et al., 2015) of R (R Core 

Team, 2019). Model fit was tested against a null model that was similar but did not include the 

effect of logBF, and against a more complex model that also included a logBF × BrainSide 

interaction.  Model fit was evaluated using the Akaike’s Information Criterion (AIC) (Akaike, 

1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978). R2 effect size was estimated 

using the method developed by Nakagawa & Schielzeth (2013), implemented with the 

piecewiseSEM R package. Model comparison was carried out using a Likelihood Ratio Test with 

χ2-distribution. Significance of the fixed effects was evaluated with a t-test using Satterthwaite’s 

method, as implemented using the R lme4-package (Bates et al., 2015). 

 

 

Results 

Differential use of OL and RL  

Modeling. Log-Bayes factors that compared the OL and RL models separately to the 

random response model with bias were significantly greater than 0 (OL vs. random: logBF = 

5.85, SD = 7.79, t(29) = 4.11, p < .001; RL vs. random: logBF = 5.87, SD = 7.60, t(29) = 4.23, p 

< .001), with effect size suggesting “decisively better fit” (Jeffreys, 1961) of each learning model 

compared to the no learning model. The log-Bayes factors computed to compare the OL and RL 

models to each other were not significantly different from zero (Set 1: logBF = -0.025, SD = 

2.25, t(29) = -0.06, p = 0.952; Set 2: logBF = -0.017, SD = 1.27, t(29) = -0.07, p = 0.942), 

indicating an equivalent overall fit of the OL and RL models (Figure 2). Interestingly, logBF 

signs and values displayed considerable within-subject variability across stimulus sets, as 

indicated by a change in the sign of logBF in 43% of participants and by a non-significant 

Spearman rank correlation of logBF values across sets (ρ = 0.063, p = 0.739). These findings 
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suggest that a participant who differentially used one learning process when presented with the 

first stimulus set did not necessarily display that same pattern when presented with the second 

set.  Within the distribution of logBF of Set 1, there were two outlier data points with values that 

were more than two standard deviations from the mean. They were removed from all subsequent 

calculations so that they would not disproportionally impact correlational findings. Analysis of 

post-scan performance data using logistic mixed effect modeling did not reveal any significant 

effect of logBF (β = -0.037, SE = 0.104, z = -0.358, p =.721), suggesting equivalently effective 

memory for stimulus-outcome contingencies regardless of differential preference for the 

observation- versus reinforcement-based learning strategy. 

Results of the ancillary analyses carried out on run 1 and run 2 of each stimulus set 

confirmed that learning indeed took place over the course of the task: results of the within-

subject ANOVA on response accurary indicated the presence of a main effect of run (F(1,29) = 

5.22, p = 0.030, η2 = 0.152), with accuracy increasing modestly between run 1 (M = 0.611, SD = 

0.080) and run 2 (M = 0.643 , SD = 0.099). The fact that response accuracy did not reach 0.75 

during the second run suggests that most participants were still learning and that the task was 

reasonably difficult, likely due to a combination of the large number of stimulus figures (six per 

set), the complexity of the visual fractal patterns that distinguished them, and their small number 

of presentations (eigh per run). There was no significant effect of stimulus set on response 

accuracy (F(1,29) = 3.89, p = 0.058, η2 = 0.118) and no stimulus set x run interaction (F(1,29) = 

0.88, p = 0.356, η2 = 0.029). The results of the within-subject ANOVA on logBF indicated no 

significant main effect of run (F(1,29) = 0.030, p = 0.863, η2 = 0.001), stimulus set (F(1,29) = 

0.013, p = 0.911, η2 < 0.001), or stimulus set x run interaction (F(1,29) = 0.534, p = 0.471, η2 = 

0.018), providing no evidence for a systematic shift in type of learning across runs. 
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Brain Correlates. As expected, results of the GLM examining whole brain correlates of 

intra- and inter-individual variability in logBF revealed increased activation in the hippocampus 

(left) with more positive logBF (i.e., better fit of the OL model over the RL model; see green 

area in Figure 3). logBF was also found to positively correlate with activation in one other brain 

area, the left central orbitofrontal cortex (cOFC). Against expectation, logBF (i.e., better fit of 

the RL model over the OL model) did not negatively correlate with increased striatal activation 

but correlated instead with activation in the bilateral occipital poles (see purple area in Figure 3).  

Contrasts corresponding to areas of general mean activation (orange) and deactivation 

(blue-green) during the learning trials compared to the control trials are presented for additional 

information in Figure 4. Areas of relative activation included the bilateral caudate nucleus, 

thalamus, midbrain, frontal pole, an area at the junction of the frontal orbital cortex, insular 

cortex and frontal operculum, the middle frontal gyrus, an area at the junction of the superior 

parietal lobule and angular gyrus, the dorsal posterior precuneus, and a large area encompassing 

the temporal fusiform cortex, occipital fusiform cortex, and occipital pole. Areas of relative 

deactivation implicated the bilateral hippocampus, the central orbital prefrontal cortex, the 

middle and posterior sections of the dorsal cingulate gyrus, the ventral precuneus, an area at the 

junction of the frontal pole, subcallosal cortex, and paracingulate gyrus, another area at the 

junction of the precentral gyrus and superior parietal lobule, and a large area covering the insular 

cortex, central opercular cortex, anterior middle temporal gyrus, anterior and posterior superior 

temporal gyrus, angular gyrus, supramarginal gyrus, and superior division of the lateral occipital 

cortex. Interestingly, positive correlates of logBF were located in areas of relative mean 

deactivation, and negative correlates of logBF in areas of relative mean activation. 

Consistent with the whole brain findings, linear mixed modeling of the brain activation 

averaged over the hippocampus ROI as a function of StimulusSet, BrainSide, and logBF revealed 
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a model fit (AIC = 285.5, BIC = 302.0, R2 = 0.59) that was significantly better than the same 

model without logBF (AIC = 295.4, BIC = 309.1, R2 = 0.49, χ2(1) = 11.9, p < .001). There was a 

significant fixed effect of logBF (β = 0.216, SE = 0.060, t(107.7) = 3.60, p <.001), indicating 

increased hippocampal activation with increasingly better fit of the OL model compared to the 

RL model (Figure 5). The fixed effect of BrainSide was also significant, suggesting overall 

greater activation in the right hippocampus (β = 0.251, SE = 0.117, t(86.1) = 2.15, p = 0.035). 

The effect of StimulusSet was not significant (β = 0.187, SE = 0.119, t(87.5) = 1.58, p = 0.117). 

Examination of a model that also included a logBF × BrainSide interaction did not yield 

significantly better fit (AIC = 285.7, BIC = 304.9, R2 = 0.60, χ2(1) = 1.84, p = 0.175) and the 

interaction term was not significant (β = -0.126, SE = 0.093, t(86.1) = -1.36, p = 0.176). Thus, 

although the whole brain GLM analysis evidenced brain correlates of logBF only in the left 

hippocampus, the linear mixed modeling analysis suggests the presence of a similar but 

subthreshold signal also in the right hippocampus. 

Linear mixed modeling of the brain activation averaged over the nucleus accumbens with 

regressors StimulusSet, BrainSide, and logBF had a model fit (AIC = 351.4, BIC = 367.9, R2 = 

0.28) that was not better than the model without logBF (AIC = 349.6, BIC = 363.3, R2 = 0.28, 

χ2(1) = 0.21, p = 0.645). There was no significant fixed effect of logBF (β = 0.038, SE = 0.082, 

t(116.0) = 0.47, p = 0.642), BrainSide (β = 0.003, SE = 0.173, t(86.4) = 0.015, p = 0.988), or 

StimulusSet (β = -0.199, SE = 0.174, t(88.8) = -1.14, p = 0.256). Inclusion of the logBF × 

BrainSide interaction into the model did not yield better fit (AIC = 352.7, BIC = 372.0, R2 = 0.29, 

χ2(1) = 0.69, p = 0.408) and the interaction term was not significant (β = 0.114, SE = 0.138, 

t(86.4) = 0.83, p = 0.409). 
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Prediction errors associated with OL and RL  

Modeling. As expected, linear mixed modeling confirmed an absence of significant 

relation between the OL prediction error (PEOL) and RL prediction error (PERL) (β = -0.003, SE = 

0.030, t(29.9) = -0.104, p = 0.918) (see Figure 6). Of note, a significant positive relation is 

apparent in Figure 6 between the absolute values of the prediction errors, |PEOL| and |PERL| 

(linear mixed modeling: β = 0.505, SE = 0.012, t(122.6) = 41.5, p <.001). This relation is 

consistent with progressive learning occurring concomitantly in both models, with overall 

amount of surprise decreasing similarly over time. Indeed, the absolute values of the OL and RL 

prediction errors were both found to decrease significantly between run 1 and run 2 of each 

stimulus set. Results of the within-subject ANOVA on |PEOL| revealed a large main effect of run 

(M|PEOL1| = 0.465, M |PEOL2|=0.431, F(1,29) = 76.2, p < .001, η2 =.724), but no significant effect of 

stimulus set (F(1,29) = 1.04, p = .317, η2 =.035) or stimulus set x run interaction (F(1,29) = 

0.122, p = .730, η2 = .004). Similarly, results of the within-subject ANOVA on |PERL| revealed a 

large main effect of run (M|PERL1| = 0.477, M |PERL2| = 0.445, F(1,29) = 42.1, p < .001, η2 =.592), 

but no significant effects of stimulus set (F(1,29) = 1.03, p = .319, η2 =.034) or stimulus set x run 

interaction (F(1,29) = 3.55, p = .070, η2 = .109). 

Brain Correlates. Results of the GLM applied to the prediction error for the observation-

based model suggested positive correlates of the prediction error (PEOL+) – i.e., trials when the 

stimulus figure wins more than predicted through mental representation – that involved the 

occipito-temporal ventral stream pathway, including the bilateral temporal-occipital fusiform 

gyrus, occipital fusiform gyrus, inferior lateral occipital cortex, right lingual cortex, and right 

occipital pole (yellow area in Figure 7). To ensure that this brain activation correlate was not 

simply due to differences in visual display between the winning (dollar bill) and losing (dark box 

labeled with $0) stimulus figure outcomes, the analysis was repeated limited to trials with 
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winning outcomes. Although smaller, brain activation correlates of PEOL+ were found again in 

this analysis, overlapping with the previous findings (orange area in Figure 7). These results 

confirmed brain signals corresponding to a discrepancy between expectations and outcomes 

rather than to simple differences in visual input. There was no detected activation for negative 

correlates of the OL prediction error (PEOL-), corresponding to trials when the stimulus figure 

wins less than predicted.  There was also no detected area of enhanced PEOL+ or PEOL- signals 

with increasing or decreasing logBF.  

GLM results applied to the reinforcement-based prediction error suggested positive 

correlates of the RL prediction error (PERL+), corresponding to responses that were reinforced 

more than predicted by current mental computations of the options’ values, that involved the 

bilateral ventral striatum, including the nucleus accumbens and putamen, bilateral ventro-medial 

prefrontal cortex (vmPFC), bilateral anterior hippocampus, bilateral amygdala, and left posterior 

central gyrus (red area in Figure 8). Negative correlates of the RL prediction errors (PERL-), 

which correspond to responses that are reinforced less (or are more wrong) than mentally 

predicted, involved bilateral activation in the anterior insula (frontal orbital/frontal operculum), 

dorsal anterior cingulate cortex (superior frontal/paracingulate gyrus), middle frontal gyrus, 

middle temporal gyrus, angular gyrus, and thalamus (dark blue area in Figure 7). One area of 

enhanced PERL- signal with increased logBF was detected in the left anterior insula (pale blue 

area in Figure 8). There was no area of enhanced PERL+ signal with increased logBF and no area 

of enhanced PERL- signal with decreasing logBF.1   

______________________________________________________________________________________________________________ 

1 Two ancillary analyses were carried using either the unsigned OL prediction error |PEOL| or the 
unsigned RL prediction error |PERL| as parametric modulator. (Due to their high correlation, they 
were not included in the same analysis.) Using a voxel-wise threshold p = .001 and cluster-wise 
threshold p = .05, the results showed no area of significant mean |PEOL| or |PERL| activation and 
no area of enhanced |PEOL| or |PERL| activation with logBF. These findings are consistent with 
previous studies showing brain correlates for signed but not necessarily unsigned prediction 
errors in paradigms involving reward prediction (Ergo et al., 2020; Garrison et al., 2013). 
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Discussion 

The present study examined whether the role of the hippocampus demonstrated in some 

probabilistic reinforcement learning tasks may be attributed to observation-based learning 

processes. A computational model of observation-based learning (OL) was constructed, 

mirroring classic models of reinforcement-based learning (RL), and was applied to the 

neuroimaging dataset of Palombo et al. (2019). The processing of separate and possibly 

concomitant OL and RL learning mechanisms was supported by uncorrelated OL and RL 

prediction errors and by intra- and inter-individual variability in the preferential use of the OL 

versus RL model, with no model systematically winning over the other, neither in terms of 

overall model fit, nor in terms of relation with post-scan performance.  

As predicted, differential fit of the OL model over the RL model correlated with 

increased mean activity in the hippocampus. The latter finding is consistent with hippocampal 

implication in tasks involving observation-based learning with uncertain outcomes  (Boorman et 

al., 2016; Bunzeck et al., 2010; Kok & Turk-Browne, 2018; Schapiro et al., 2012; Turk-Browne 

et al., 2009), extending it to a simple probabilistic feedback learning task typically thought to 

reflect reinforcement learning. Of note, the hippocampus was found to be a zone of relative mean 

de-activation during probabilistic feedback learning trials compared to control trials. Such de-

activation has been noted before during reinforcement learning tasks (Poldrack et al., 2001). 

Thus, to be more precise, the greater use of observation-based learning processes corresponded 

to less de-activation of the hippocampus during learning trials and the differential use of 

reinforcement-based learning processes to more de-activation.  

Although individual differences in mean hippocampal activation as a function of 

differential model fit support involvement of the hippocampus in OL, the mechanisms 

underlying that involvement remain unclear. Indeed, against expectations, trial-wise 
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hippocampal activation did not correlate with the trial-wise OL prediction error, suggesting that 

the mechanism of hippocampal involvement in OL is not the computation of discrepancy 

between expected and actual observed outcome. Although the present study was not designed to 

evaluate other potential mechanisms of involvement of the hippocampus in OL, we note that our 

results are compatible with the findings of Boorman et al. (2016), which implicate the 

hippocampus in computing the strength of stimulus-outcome probabilistic associations. Boorman 

et al. demonstrated such a role using “suppression blocks”, involving the presentation of stimuli 

in a pseudo-random order, hence “suppressing” the probabilistic contingencies that were learned 

in previous blocks. They found that hippocampal suppression varied as a function of stimulus-

outcome association strength derived via computational modeling during the learning trials. Also 

consistent with a mechanism similar to Boorman et al., another key region associated with 

differential fit of the OL over RL model was the central orbitofrontal cortex (cOFC). This region 

was also highlighted in Boorman et al. as critical to learning outcome type during probabilistic 

feedback learning. Specifically, whereas the hippocampus was shown to be involved in 

computing the strength of stimulus-outcome associations, the cOFC was implicated in updating 

these associations in a goal-directed manner. 

Hippocampal involvement was not limited to observation-based learning but was also 

evident in reinforcement-based learning through examination of the RL prediction error. 

Specifically, a significant relation was found between more positive RL prediction error (PERL+) 

and brain activation in an area centered on the bilateral anterior hippocampus and amygdala. 

This finding is consistent with previous reports of hippocampal activation correlating with the 

positive RL prediction error in simple probabilistic reinforcement learning tasks (Davidow et al., 

2016; Dickerson et al., 2011; Foerde & Shohamy, 2011; see also supplemental material in 

Schonberg et al., 2010). Other brain correlates of PERL+ included areas of dopamine projections 
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in the ventral striatum, consistent with well-established literature  (e.g., den Ouden et al., 2010; 

Jocham et al., 2011; McClure et al., 2003; O’Doherty et al., 2003; Seymour et al., 2004), and in 

the ventral prefrontal cortex (vmPFC), a brain region implicated in computing the subjective 

valuation of choices (Kable & Glimcher, 2009). The vmPFC has also been related to prediction 

error signals in macaques (Matsumoto et al., 2007) and with reinforcement prediction error when 

someone else makes the decisions (Burke et al., 2010).  

Although the PERL+ correlates confirmed direct implication of the hippocampus in the 

computation of discrepancy between actual and expected reinforcing outcomes, the specific 

hippocampal contribution to this computation remains to be elucidated, possibly involving 

interactions between OL and RL processes. As proposed by Boorman et al. (2016), 

reinforcement-based signal from the striatum may be fed into the hippocampus and contribute to 

updating computation of the strength of stimulus-outcome probabilistic associations. By this 

view, the RL prediction error signal in the hippocampus would serve as input to observation-

based learning. This proposal is compatible with recent findings that the strength of the RL 

prediction error in the ventral striatum predicts subsequent episodic memory retrieval accuracy 

(Calderon et al., 2021; Ergo et al., 2020), and with findings of a stronger relation between 

reinforcement learning and episodic memory performance with increased hippocampus-striatum 

functional connectivity (Davidow et al., 2016). It is also consistent with previous accounts of a 

collaboration between the mesolimbic dopamine system and the hippocampus, resulting in 

enhanced memory for events with motivational relevance (Shohamy & Adcock, 2010). 

A possible collaborative relation between the OL and RL systems could also be taking 

place in the reverse direction. The hippocampus has been suggested to have a role in mediating 

inferences and expectancies based on the probabilistic structure of observed events (Eichenbaum 

et al., 1999; Harrison et al., 2006). Thus, as in model-based learning (Gershman & Daw, 2017; 
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Johnson et al., 2007), the hippocampus could contribute through constructing OL-based 

predictive representations that are then fed into the ventral striatum RL system. This proposal is 

compatible with demonstrations that other types of hippocampal representations (i.e., 

conjunctive associations) can be fed into the striatal-based learning system (Ballard et al., 2019; 

Duncan et al., 2018), and  with findings of a relation between hippocampal activation and the 

accuracy of information learned via reinforcement-based feedback (Dickerson & Delgado, 

2015). 

In addition to the hippocampus, other brain areas may also be involved in a possible 

collaboration between the OL and RL systems, as suggested by examination of the negative 

brain correlates of the RL prediction error (PERL-). Consistent with previous literature (e.g., 

Garrison et al., 2013; Hauser et al., 2015; Meder et al., 2016; Pessiglione et al., 2006), PERL- 

implicated the error monitoring or salience network, especially the anterior insula and dorsal 

anterior cingulate, as well as areas in the middle frontal gyrus, middle temporal gyrus, angular 

gyrus, and thalamus. Interestingly, the PERL- signal in the left anterior insula was found to be 

amplified with differential use of OL over RL learning, suggesting that the more one uses 

observation-based learning processes, the stronger their neural signal in response to errors. 

Individual differences in people’s propensity to learn from their errors versus from reinforcing 

outcomes have previously been demonstrated (e.g., Frank et al., 2005). The current results 

suggest that those who learn more from their errors may also tend to differentially use 

observation-based learning strategies, and error monitoring may be a key mechanism enabling 

interactions between OL-based learning and action outcomes. 

Rather than reflecting collaboration between OL and RL, could the current results reflect 

a shift from one type of learning to the other over the course of the task? Such a view would 

accord with findings of a transition from early hippocampal involvement to later basal ganglia 
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involvement during feedback-based paired associate learning (Poldrack et al., 2001). Our 

behavioral findings provided no evidence of a shift from OL to RL (or vice versa), as logBF 

values did not differ across the two runs. However, average response accuracy in run 2 did not 

reach 0.75, and it is likely that participants were still learning during the second half of the task, 

perhaps lacking time for displaying such a shift. As mentioned before, the computations of 

logBF for each run separately were likely imprecise as they were based on data from 48 test 

trials, including only 8 presentations per stimulus figure. Further research is thus necessary to 

examine more decisively the presence of a systematic shift between OL and RL during 

probabilistic feedback learning, with a study design perhaps involving more trials and runs to 

learn the contingencies of each stimulus set.  

Contrary to our prediction, we did not find increased mean trial activity in the striatum 

with the greater use of RL over OL. This absence of finding is consistent with previous reports 

that ventral striatal activity does not necessarily correlate with mean trial activity during RL tasks 

but rather positively correlates with the RL prediction error (PERL+) (Jocham et al., 2011; 

McClure et al., 2003; O’Doherty et al., 2003; Schultz, 1998). This well-established ventral 

striatal correlate of the RL prediction error was also observed in the current study, but no signal 

enhancement was found with preferential use of RL over OL. These results may suggest that RL-

related activity in the striatum tends to be equivalent within and across participants, and 

variability primarily comes into play in the extent to which OL strategy is employed to augment 

a basic RL strategy. Of note, differential use of OL over RL (or vice-versa) during learning of 

the first stimulus set did not necessarily yield the same pattern during the second set. These 

findings argue against the presence of systematic differences in learning styles across individuals 

when they perform probabilistic feedback learning, but instead indicate that OL and RL are 

processes that are both readily available during this type of task. 
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Interestingly, although greater use of RL over OL was not associated with increased 

mean trial activation in the striatum, such a pattern was observed in the occipital poles. That is, 

one effective way to experience reinforcement in the current task may have involved holding in 

mind a mental image of one outcome (i.e., the dollar bill) for an effective match or non-match 

visual signal to be generated at outcome presentation. Support for this interpretation was 

provided by ancillary analyses where we examined the RL prediction errors separately for trials 

with winning and non-winning outcomes (see Figure 9). In these analyses, occipital pole 

activation was found to correlate with PERL+ but not PERL- during trials with winning outcomes, 

and with PERL- but not PERL+ during trials with non-winning outcomes. Activation in the 

occipital poles thus related to amount of discrepancy between actual and predicted outcome 

regardless of correct status whenever the “dollar bill” outcome was mentally expected, 

suggesting operation of a visual-perceptual prediction error similar to signals previously reported 

in the visual cortex and visual ventral stream (Alink et al., 2010; den Ouden et al., 2009; Turk-

Browne et al., 2009). These findings support the use of predictive mental visual imagery as a 

means to subserve RL processes in the current task; however, because post hoc, this 

interpretation must remain tentative.   

In addition to examining hippocampal contributions to probabilistic feedback learning, an 

important contribution of the current study concerns the construction of the OL model, mirroring 

classic RL modeling and enabling direct examination of the brain correlates of the OL prediction 

error. In particular, the OL prediction error implicated regions along the occipito-temporal 

ventral stream pathway, and specifically including the bilateral temporal-occipital fusiform 

gyrus, occipital fusiform gyrus, inferior lateral occipital cortex, right lingual cortex, and right 

occipital pole. Similar results were found when restricting the dataset to observed winning 

outcomes (i.e., the dollar bill), confirming attribution to prediction error signaling rather to 
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simple differences in visual input across winning and non-winning outcomes. This pattern of 

brain activation is consistent with documented neural correlates of top-down “perceptual 

prediction errors”, where predictions concern the occurrence of perceptual stimuli. Specifically, 

perceptual prediction errors have been demonstrated to include neural structures along the 

ventral visual stream, from the primary visual cortex to the inferotemporal cortex and then 

hippocampus, with more upstream structures involved with increasing complexity of perceptual 

representations (see den Ouden et al., 2010 for a review). In the present work, the OL prediction 

error did not implicate the hippocampus and involved structures up to the fusiform gyrus. These 

results may suggest involvement of perceptual representations of moderate complexity in the 

current task, perhaps not complex enough to require hippocampal recruitment in terms of 

construction of perceptual representations. Interestingly, unlike for the RL prediction error, there 

was no separate area of brain activation that was negatively associated with the OL prediction 

error (PEOL-). This finding suggests the presence of a single network for coding discrepancy 

between actual and expected observed outcomes, with a continuum of activation signed in the 

direction of one particular outcome (i.e., the stimulus figure winning). Such a pattern is 

consistent with prior evidence in studies involving probabilistic outcomes of neural signals 

signed in the direction of increasing outcome level (e.g., monetary amounts or novelty in 

Bunzeck et al. 2010) or outcome goal (Boorman et al. 2016).  

Of note, the pattern of brain activation associated with the OL prediction error did not 

overlap with the neural correlates of the state prediction error described in model-based RL, 

which comprised the intraparietal sulcus and lateral prefrontal cortex (Gläscher et al., 2010). This 

study used a task conducive to model-based learning in which each decision yielded probabilistic 

transition between two situations (or states) and reinforcement was given at the last step of that 

series of states. The state prediction error in Gläscher et al. thus referred to the discrepancy 
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between modeled and observed situational outcomes. Although the prediction errors across the 

Gläscher et al. and present studies both involved observed outcomes, the identity and probability 

of these outcomes were dependent upon actions in Gläscher et al., but were independent from 

actions in the current task. This important difference across paradigms may explain the lack of 

overlap in the brain imaging correlates of the prediction errors.  

Conclusions 

The present study examined whether the role of the hippocampus in probabilistic 

reinforcement learning tasks may be attributed to observation-based processes. A computational 

model of observation-based learning (OL) was constructed, mirroring classic models of 

reinforcement-based learning (RL), and was applied to the neuroimaging dataset of Palombo et 

al. (2019). Consistent with our prediction, model fit suggested that observation-based learning 

processes may indeed take place concomitantly with reinforcement learning, with differential use 

of OL involving activation of the hippocampus as well as of the central orbitofrontal cortex 

(cOFC). However, contrary to predictions, striatal activation did not track with differential use of 

RL over OL. Further, hippocampal activation did not scale with the OL prediction error but 

scaled instead with the striatal RL prediction error. Taken together, these findings suggest a role 

for the hippocampus in probabilistic feedback learning, possibly through collaboration between 

the systems that mediate observation-based learning and reinforcement-based learning. In 

particular, the hippocampus may be involved in encoding the strength of observed stimulus-

outcome associations, with updating of these associations through striatal reinforcement-based 

computations.  
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Figures 

 
 

Figure 1: Illustration of an experimental and control trial from the Palombo et al. (2019) 
paradigm, depicting stimulus figures with winning status. Outcome probabilities are reversed for 
stimulus figures with no-win status. 
 
 

 
 

Figure 2: Distribution of logBF (i.e., the logarithm of the Bayesian Factor) obtained for stimulus 
sets 1 and 2. Positive logBF values correspond to a better fit of the OL model over the RL model, 
and negative logBF values to a better fit of the RL model over the OL model. 
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Figure 3: Whole brain correlates of intra- and inter-individual variability in logBF, with 
increased logBF indicated in green corresponding to a better fit of the OL model over the RL 
model, and decreased logBF indicated in purple corresponding to a better fit of the RL model 
over the OL model. [Voxel-wise threshold p<.001; cluster-wise threshold p<.05]. 

 

 

 

 

Figure 4: Areas of relative mean activation (orange) and deactivation (blue-green) during the 
learning trials compared to the control trials. [Voxel-wise threshold p<.001; cluster-wise 
threshold p<.05]. 
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Figure 5: Relation between logBF and brain activity averaged over the left and right 
hippocampus (learning trials minus control trials). Thin solid lines represent pairs of data points 
obtained for each participant (except for the two participants who had one outlier datapoint, in 
which case only a small cross is displayed). The thicker solid lines represent the linear mixed 
modeling results.  

 

 

 
 
 

Figure 6: Illustration of the relation between PEOL and PERL with data points presented for all 
participants and all trials. These data points are not independent and are presented here for 
illustrative purpose only (see linear mixed modeling statistics in the text). Results confirmed a 
lack of relation between the signed signals. A strong relation was however found between their 
absolute values, reflecting general effects of surprise and learning over time. 
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Figure 7: Whole brain positive correlates of the prediction error for the observation-based 
model (PEOL+), corresponding to trials when the stimulus figure wins more than predicted 
through mental representation, are shown in yellow. These areas involved the occipito-temporal 
ventral stream pathway, including the bilateral temporal-occipital fusiform gyrus, occipital 
fusiform gyrus, inferior lateral occipital cortex, right lingual cortex, and right occipital pole 
Areas in orange represent the same construct when the analysis was restricted to trials resulting 
in observed outcomes featuring a picture of a dollar sign. There was no detected activation 
correlating with more negative prediction error (PEOL-), corresponding to trials when the 
stimulus figure wins less than predicted. There was also no detected area of enhanced PEOL+ or 
PEOL- related activation with increasing or decreasing logBF. [Voxel-wise threshold p<.001; 
cluster-wise threshold p<.05]. 
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Figure 8: Whole brain positive correlates (PERL+, red) and negative correlates (PERL-, dark 
blue) of the RL prediction error, corresponding to trials that were reinforced more and less, 
respectively, than predicted through mental representation. Areas of increased PERL--related 
activation with increased logBF are shown in pale blue. There was no detected area of enhanced 
PERL+ related activation with increasing logBF and no detected area of enhanced PERL- related 
activation with decreasing logBF. [Voxel-wise threshold p<.001; cluster-wise threshold p<.05]. 
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Figure 9: Ancillary analyses examining the correlates of PERL+ and PERL- obtained when 
considering separately the observed outcomes featuring a picture of a dollar bill and the 
observed outcomes featuring a gray box labeled $0.00. [Voxel-wise threshold: p<.001 and 
p<.005, see legend; cluster-wise threshold: p<.05]. 
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