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Abstract

A prevailing view in cognitive neuroscience suggests that different forms of learning

are mediated by dissociable memory systems, with a mesolimbic (i.e., midbrain and

basal ganglia) system supporting incremental trial-and-error reinforcement learning

and a hippocampal-based system supporting episodic memory. Yet, growing evidence

suggests that the hippocampus may also be important for trial-and-error learning,

particularly value or reward-based learning. In the present report, we use a lesion-

based neuropsychological approach to clarify hippocampal contributions to such

learning. Six amnesic patients with medial temporal lobe damage and a group of

healthy controls were administered a simple value-based learning task involving

probabilistic trial-and-error acquisition of stimulus–response-outcome (reward or

none) contingencies modeled after Li et al. (Proceedings of the National Academy of

Sciences, 2011, 108(1), 55–60). As predicted, patients were significantly impaired on

the task, demonstrating reduced learning of the contingencies. Our results provide

further supportive evidence that the hippocampus' role in cognition extends beyond

episodic memory tasks and call for further refinement of theoretical models of hippo-

campal functioning.
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1 | INTRODUCTION

As we navigate a complex world, many of our actions are driven by

our desire to maximize reward or avoid punishment. But the environ-

ment is not fully predictable, and we often learn through trial and

error (over repeated experiences) what actions are most likely to yield

a more positive outcome, adjusting our behavior accordingly. When

deciding whether or not to pack an umbrella for a walk on a dark and

cloudy day, we estimate that it will likely rain.

The field of cognitive neuroscience has long been interested in the

neural substrates of such probabilistic reward learning, with a wealth of

evidence emphasizing the importance of the mesolimbic (i.e., midbrain

and basal ganglia) system (e.g., Knowlton, Mangels, & Squire, 1996;

Shohamy, Myers, Kalanithi, & Gluck, 2008). Yet, some neuroimaging

evidence suggests that the medial temporal lobe (MTL), particularly the

hippocampus, is also important for this form of learning (e.g., Dickerson,

Li, & Delgado, 2011; Li, Delgado, & Phelps, 2011; Palombo, Hayes,

Reid, & Verfaellie, 2019; Schonberg et al., 2010), with hippocampal

recruitment (alongside mesolimbic regions) demonstrated during proba-

bilistic learning, particularly when the task has a value or reward compo-

nent. Adding to this evidence, other human work examining field

potentials in the hippocampus shows maximal neural firing in this region

when rewards are uncertain (compared to certain), suggesting the hip-

pocampus may be important for computing a reward uncertainty signal

(Vanni-Mercier, Mauguière, Isnard, & Dreher, 2009). Animal studies also

implicate the hippocampus in probabilistic value learning, providing

additional converging evidence (e.g., Lee, Ghim, Kim, Lee, & Jung, 2012;

Seib, Espinueva, Floresco, & Snyder, 2020).

Hippocampal involvement in such learning is surprising when con-

sidering the classic memory systems view (Knowlton et al., 1996;
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Squire, 1987), which posits that the hippocampus is primarily involved

in episodic memory (memory for singular episodes) but not in incre-

mental learning (and vice versa for the striatum). However, hippocam-

pal involvement in probabilistic reward learning is less surprising from

an anatomical standpoint as studies show that the hippocampus is

interconnected with the nucleus accumbens and the ventral tegmen-

tal area, providing important functional input into this mesolimbic cir-

cuitry (e.g., Floresco, Todd, & Grace, 2001; Gasbarri, Packard,

Campana, & Pacitti, 1994; Groenewegen, der Zee, te Kortschot, &

Witter, 1987) and suggestive of functional synergy. These regions also

show functional coupling at rest in humans as measured through fMRI

(Kahn & Shohamy, 2013).

Neuropsychological studies also elucidate the functional signifi-

cance of prior observations of hippocampal fMRI engagement in

learning. To that end, in a recent study (Palombo et al., 2019) we

administered a novel probabilistic value-based learning task to a group

of amnesic patients with MTL lesions and controls. Here, participants

learned whether players, differentiated by patterned jumpsuits, win

money in a “game.” Patients were impaired in acquiring the value-

based contingencies of the task. Also relevant is an earlier study by

Hopkins, Myers, Shohamy, Grossman, and Gluck (2004), that showed

that amnesic patients could not learn ice cream preferences for

Mr. Potato Head characters (with feedback on correct trials provided

in the form of coins in a jar). Together, these findings provide evi-

dence that the hippocampus is necessary for probabilistic value or

reward-based learning in certain conditions.

Here, we try to further elucidate these conditions. In prior stud-

ies, the tasks used entailed complex cue or feedback structure, with

heavy demands placed on integration. For example, in our prior study,

we orthogonalized reward outcome and accuracy; in that task, the

feedback provided to the participant emphasized the outcome for the

player but was independent of whether the participant's choice was

correct. This design leaves open the possibility that the hippocampus

was necessary to resolve the ambiguity between player and partici-

pant outcome (i.e., integrate two sources of information, such as “I
was incorrect but the player won”). In a similar vein, it is possible that

in a prior study by Hopkins et al. (2004), the configural nature of the

cues contributed to the impairment, given the role of the hippocam-

pus in configural learning (Ballard, Wagner, & McClure, 2018; Duncan,

Doll, Daw, & Shohamy, 2018).

An important question, then, is whether the hippocampus is also

necessary for probabilistic reward learning when the task has simple fig-

ural demands and direct feedback structure. To answer this question,

we designed a task that closely mirrors a paradigm developed by Li

et al. (2011), wherein participants learn, probabilistically, the numeric

value of a simple stimulus to attain (hypothetical) reward (also see Dick-

erson et al., 2011). We administered the task to MTL patients and

healthy controls. Based on Li et al., who showed MTL activation in their

paradigm, we predicted that patients with amnesia would fail to learn

well the contingencies in this task, consistent with the hypothesis that

the MTL is necessary for incremental value-based learning.

Six amnesic patients with MTL lesions (one female, five males)

participated. Their neuropsychological profiles indicated severe mem-

ory impairment in the context of otherwise preserved cognition

(Table 1). Etiologies of memory impairment included hypoxic–ischemic

injury (n = 3), status epilepticus followed by left temporal lobectomy

(n = 1), and stroke (n = 2). Lesions for five of the six patients are pres-

ented in Figure 1, as either MRI or CT images. Due to medical contra-

indications, P04 could not be scanned, and his MTL pathology was

inferred based on etiology and neuropsychological profile. Of the

TABLE 1 Demographics and neuropsychological information for patients

Etiology

WAIS III WMS III Volume loss (%)

Age Edu VIQ WMI GM VD AD Hippocampal Subhippocampal

Patients

P1 Hypoxic–ischemic 70 12 88 75 52 56 55 N/A N/A

P2 Status epilepticus + left temporal

lobectomy

56 16 93 94 49 53 52 63 60a

P3 Hypoxic–ischemic 63 14 106 115 59 72 52 22 –

P4 Hypoxic–ischemic 67 17 131 126 86 78 86 N/A N/A

P5 Stroke 66 18 117 88 67 75 55 62 –

P6 Stroke 55 20 111 99 60 65 58 43 –

Mean 62.8 16.2 108 99.5 62.2 66.5 59.7

Controls

Mean 62.3 16.1 113

Abbreviations: AD, auditory delayed; Age, age in years; Edu, education in years; GM, general memory; N/A, not available; WAIS-III, Wechsler adult

intelligence scale-third edition; WMI, working memory index; WMS-III, Wechsler memory scale-third edition; VD, visual delayed; VIQ, verbal intelligence

quotient.
aVolume loss in left anterior parahippocampal gyrus (i.e., entorhinal cortex, medial portion of the temporal pole, and the medial portion of perirhinal cortex;

see Kan, Giovanello, Schnyer, Makris, & Verfaellie, 2007, for methodology).

Note that scores on the WAIS III and the WMS III are standardized scores (mean of 100; SD of 15).
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patients with available scans, two patients (P03, P05), had lesions

restricted to the hippocampus, one patient's (P06) hippocampal lesion

extended into the amygdala, whereas two patients had lesions includ-

ing MTL cortices (P01, P02), with further extension into lateral tempo-

ral cortices in P02. As shown in Table 1, volumetric data for the

hippocampus and MTL cortices was available for four of the six

patients (P02, P03, P05, P06) using methodology reported elsewhere

(see Kan et al., 2007).

Fourteen healthy control participants (four females, 10 males)

matched to the patient group in age (M = 62.29, SD = 6.60), education

(M = 16.07, SD = 2.59), and verbal IQ (M = 113.0, SD = 12.13) partici-

pated in the study. All participants provided informed consent in

accordance with the Institutional Review Board at the VA Boston

Healthcare System and were compensated for their time at a fixed

hourly rate (participants were not compensated extra based on their

performance).

The probabilistic learning paradigm, modelled after Li et al. (2011)

required participants to learn whether each of four visual patterns

usually hid a number larger or smaller than the number 10. Each of

the patterns consisted of a nonverbalizable symbol presented in a

5 by 5 matrix (see Figure 2a). The number hidden beneath each visual

pattern changed with each trial and could be any even number

between 2 and 18, excluding 10. Two of the patterns were associated

with numbers larger than 10 on 75% of the trials, whereas the other

two were associated with numbers smaller than 10 on 75% of the

trials.

On each trial, participants saw one of the visual patterns next to

the number 10, and were instructed to choose which they thought

was larger, the number hidden by the pattern or the number 10, via

key press on a keyboard. To simplify the task, the number 10 was

always displayed on the right side of the screen. Participants were

given 4,000 ms to make their selection. If a participant failed to

respond during this time, a screen displaying “Too late!” appeared. If a
choice was made during the allotted time, the participant's selection

was framed by a black square (3,000 ms). After this time, participants

were shown the hidden number, and given feedback on the accuracy

of their choice (for 1,500 ms). If a correct selection was made, a dollar

bill appeared at the top of the screen, with the words “You win!” An

incorrect selection was followed by a grey rectangle with the words

“You lose!” (See Figure 2b). Trials were separated by a 2000 ms inter-

stimulus interval.

Participants completed three blocks of 48 trials, with only a few

seconds separating blocks for a brief instruction reminder. Within

each block, each pattern appeared 12 times, and each of the potential

hidden numbers appeared six times. The order of trials was

pseudorandomized so that each pattern had one minority trial within

each third of the block, and no pattern was presented more than

twice in a row. Majority status of a visual pattern (i.e., whether typi-

cally associated with numbers larger or smaller than 10) was

counterbalanced across participants.

Immediately after the three learning blocks, participants com-

pleted a test phase, using the same patterns. Here, participants saw

two of the patterns side by side and were instructed to choose which

they thought was associated with a number larger than 10, based on

the game they had just played (i.e., the learning phase). Participants

were given 4,000 ms to respond, and saw a screen displaying “Too
late!” if they did not respond within the allotted time. Participants

were not given feedback. The task was run using E-prime (Version

2.0) on a PC Lenovo Thinkpad laptop.

Patients on average responded on 97.11% of trials (SD = 3.76%)

and control participants on average responded on 98.56% of the trials

(SD = 1.77%). This suggests that participants in both groups had suffi-

cient time to respond throughout the task.

For all analyses, accuracy (correct/[correct + incorrect trials]) was

calculated based on the majority outcome status of the pattern (as in

Palombo et al., 2019). Trials with no response were not included in

the accuracy calculation. The mean accuracy for each group across

the three learning blocks, as well as individual subject performance, is

shown in Figure 3. A 2 (Group) × 3 (Block) mixed factorial ANOVA

revealed a significant main effect of group, F(1,18) = 7.87, p = .01,

ηp2 = 0.30, and learning block, F(2,36) = 14.88, p < .001, ηp2 = 0.45.

The effect of block did not differ across groups, F(2,36) = 1.93,

F IGURE 1 Structural MRI and CT scans depicting MTL lesions for
five of the six participants with amnesia. The left side of the brain is
displayed on the right side of the image. CT slices show lesion
location for P1 in the axial plane. T1-weighted MRI images depict
lesions for P2, P3, P5, and P6 in the coronal and axial plane
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p = .16, ηp2 = 0.10 (Patients, First Block: 50.89%, SD = 1.83%; Second

Block: 52.89%, SD = 5.69%; Third Block: 63.26%, SD = 9.27%; Con-

trols, First Block: 54.69%, SD = 10.06%; Second Block: 68.25%,

SD = 12.33%; Third Block: 77.00%, SD = 14.23%). Independent sam-

ples t-tests showed that patients performed significantly worse on

both the second, t(18) = 2.89, p = .01, d = 1.60; and the third learning

blocks, t(18) = 2.16, p = .045, d = 1.14. This was not the case for the

first learning block, t(18) = 0.91, p = .38, d = 0.53.1 Hence, the main

effect of group was mainly driven by performance differences in the

second and third blocks. We note that by the third block, both

patients and controls performed significantly above chance (controls:

t(13) = 7.10, p < .001, d = 1.90; patients: t(5) = 3.50, p = .02, d = 1.43).

At the individual level, 11/14 controls (79%) performed above chance,

whereas only 3/6 patients (50%) performed above chance, including

one of the patients with a hippocampal-only lesion.

During the test phase, patients also performed significantly worse

(M = 52.82%, SD = 21.33%) than controls (M = 83.33; SD = 23.57%), t

(18) = 2.72, p = .01, d = 1.36 (see Figure 3).2 A 2 (Group) × 2 (Block)

ANOVA comparing test phase performance relative to the third block

of learning revealed a main effect of group, F(1,18) = 9.04, p = .008,

ηp2 = 0.33, but no main effect of block, F(1,18) = 0.15, p = .71,

ηp2 = 0.01, or group by block interaction, F(1,18) = 2.43, p = .14,

ηp2 = 0.12. This suggests that there were no group differences in the

retention of knowledge gained by the third learning block during the

test phase. However, Figure 3 shows that whereas individual controls

generally showed maintenance or nominally improved performance

from the third block to test, all but one patient showed a nominal

decrease.

An ancillary analysis examined whether the outcome status

(greater or smaller than 10 on majority trials) associated with each

pattern affected performance. There was not a significant main effect

of pattern status, F(1,18) = 0.40, p = .54, ηp2 = 0.02, or a significant

interaction between group and pattern status, F(1,18) = 0.82, p = .38,

ηp2 = 0.04. Consistent with previous analyses, there was a significant

main effect of group, F(1,18) = 7.99, p = .011, ηp2 = 0.31. These ana-

lyses suggest that neither performance of patients nor controls was

affected by whether patterns were usually associated with values

larger or smaller than 10.

To further clarify the role of the MTL in learning, we fitted a stan-

dard reinforcement learning (RL) model (Sutton & Barto, 2018) to the

F IGURE 2 (a) The four stimulus patterns used in the learning paradigm. (b) Schematic of the learning paradigm with one stimulus pattern
shown. As depicted in the upper row, the outcome was greater than 10 on 75% of trials (majority status trials); the lower row shows that the
outcome was less than 10 on 25% of trials (minority status trials). The blue arrow is depicted for display purposes to indicate the participant's
choice in this example [Color figure can be viewed at wileyonlinelibrary.com]
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trial-by-trial choice data. The expected reinforcing value “V(s, a)” of

each possible action “a” (i.e., choice of the pattern or of the number

10) given presentation of a specific pattern “s” was initially set to 0.5

and subsequently updated for the selected action using a delta rule:

V(s, a) V(s, a) + α(r − V(s, a)), where “r” is the reinforcement out-

come (equal to 1 if the participant's choice was reinforced and to 0 if

it was not reinforced), (r − V(s, a)) represents the prediction error, and

“α” is the updating parameter (i.e., the amount of influence given to

the prediction error for updating expected values of options). The

probability of choosing the pattern (or number 10) option was then

calculated using a softmax rule:

P a=Pattern=sð Þ= eβV s,a=Patternð Þ=½eβV s,a=Patternð Þ + eβV s,a=Number 10ð Þ�

where P(a Pattern/s) is the probability of choosing the pattern option

given presentation of a specific pattern “s”, and “β” is the exploit-

TABLE 2 α and β values for patients
and controls

α β

First Second Third First Second Third

Patients

Mediana 0.02 0.05 0.06 0.2 0.2 1.4

Rangea 0.02–0.03 0.03-0.59 0.03–0.12 0.20–0.60 0.20–2.40 0.20–2.80

Controls

Median 0.05 0.08 0.12 1.1 2.1 2.3

Range 0.01–0.97 0.02–0.65 0.01–0.66 0.20–2.40 0.20–7.00 0.20–15.20

aAs P6 was a statistical outlier here, for completeness, α and β are also reported without this patient:

(Median[range]): α (first: 0.02 [0.02–0.03]; second: 0.4[0.03–0.07]; third: 0.05 [0.03–0.06]), β (first: 0.2

[0.20–0.60]; second: 0.02 [0.20–0.20]; third: 1.0 [0.20–2.80]).

F IGURE 4 Trial-by-trial RL modeled probability of correct
response calculated using best fit α and β parameters for each
participant and each block, where “correct” refers to the majority
status of the patterns. Curves represent group means. They indicate
enhanced engagement of learning processes in controls compared to
patients during the first block, but with probability of correct
responses that are noisy and on average remain close to 0.5 for both
groups. The greater accuracy in the control group compared to the
patient group becomes more pronounced in the second and third
blocks. Proportion of correct responses, averaged over bins of eight
trials for each group are also presented. These data points were not
directly fit by the model and are only included for illustrative
purposes. Calculations of the R2 coefficient of determination
compared to a straight line at chance suggested that the model
accounted for 45% (Block 1), 89% (Block 2), and 96% (Block 3) of
additional variance in proportion of correct responses for control
participants and for 8% (Block 1), 74% (Block 2), and 88% (Block 3) of
additional variance for patients [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 (a) Average accuracy based on majority status for all
blocks. Each individual participant is shown with a dashed line.
(b) Average accuracy based on majority status for the third learning
block (left) and test phase (right) [Color figure can be viewed at
wileyonlinelibrary.com]
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explore parameter (i.e., larger β corresponds to more systematic

choice of the option with greater expected reinforcing value, and

smaller β corresponds to more random choice behavior). Parameters α

and β were estimated for each participant and each block with Bayes-

ian inference, using an implementation of the affine invariant ensem-

ble Markov Chain Monte Carlo sampler of Goodman and

Weare (2010) proposed by Foreman-Mackey, Hogg, Lang, and

Goodman (2013) and computed in Matlab by Grinsted (2015). Flat

priors were used, spanning the intervals (0–1) and (0–20) for α and β,

respectively; and final estimates of parameters were selected as the

maximum of the posterior distributions.

Nonparametric comparison (Mann–Whitney U) of estimated

parameters revealed significant group differences during the first

block for both α (U = 14, p = 0.02) and β (U = 15.5, p = .03; see

Table 2). Similar patterns of smaller median α and β values in patients

were found in the second and third blocks, albeit these did not reach

significance for α (second U = 40.5, p = .90; third U = 27.5, p = .24)

and were significant and marginally significant for β (second U = 11.5,

p = .009, third U = 19.5, p = .06). These results indicate less updating

and more random responding in patients compared to controls, a pat-

tern that is evident by the first block (also see Figure 4).3

Overall, these results provide evidence that the MTL is necessary

for value-based probabilistic learning and contributes to a growing

body of literature suggesting that the role of the MTL in learning and

cognition goes beyond memory for singular episodes. These results

not only complement prior imaging work demonstrating MTL recruit-

ment during a similar task (e.g., Li et al., 2011), they also extend this

study by pointing to the necessity of the MTL for task performance.

Critically, as the task used here had a simple feedback structure rela-

tive to our prior study, wherein the feedback to the participant and

the value of the stimuli were orthogonal and likely required integra-

tion of the two (Palombo et al., 2019), the present findings rule out

the possibility that the impairment in that study was simply due to this

task demand.

How does the hippocampus support probabilistic learning? In our

prior study (Palombo et al., 2019), we discussed the possibility that

the hippocampus plays a more domain-general role in stimulus-

outcome mappings via its computational role in pattern separation

(Leutgeb, Leutgeb, Moser, & Moser, 2007). In keeping with this con-

ceptualization, Ballard et al. (2018) recently showed that the hippo-

campus forms separable conjunctive representations, which, in turn,

facilitate value-based learning via striatally mediated prediction errors.

Such data suggest that the striatum and hippocampus play a synergis-

tic role in cognitive processing. However, we deliberately avoided the

use of conjunctive stimuli, opting instead for simple patterns as cues.

A recent study by Seib et al. (2020) similarly showed impaired reward-

based probabilistic learning using very simple cues in transgenic mice

lacking adult hippocampal neurogenesis. Akin to our study, the

demands on pattern separation in that study are not obvious.

Instead, the hippocampus may play a more fundamental role

when learning entails value or reward information. Within this broader

framework, one possibility is that the hippocampus is involved in

learning the inherent value of a stimulus, namely in acquiring

stimulus-value associations. A second albeit not mutually exclusive

possibility is that the hippocampus is involved in reinforcement learn-

ing when reinforcement involves reward. The current data cannot

adjudicate between these possibilities as our task involves value learn-

ing (i.e., whether a stimulus has a value greater or smaller than “10”)
and reward-based reinforcement. However, a prior fMRI study by

Dickerson et al. (2011) showed hippocampus engagement in a similar

value learning task (whether the value of a stimulus was greater or

smaller than “5”) where reinforcement did not entail reward. Such

data favor the possibility that the hippocampus is involved in learning

inherent stimulus value. Also consistent with this idea, in our own

prior fMRI work (Palombo et al., 2019), where participants learned

whether or not players won money, we showed that the hippocampus

was more strongly engaged for correct versus incorrect trials, but not

for rewarded versus nonrewarded trials. On the other hand, fMRI data

from Delgado, Nystrom, Fissell, Noll, and Fiez (2000) support the pos-

sibility that the hippocampus is implicated when there is a reward

component to reinforcement. In that study, MTL activation correlated

with reward (i.e., winning after a choice) even though the task placed

no demands on learning the value of a stimulus. Further research is

needed to elucidate which aspect of our task is critical for hippocam-

pal involvement.

There is now compelling evidence for synergistic communication

between the hippocampus and basolimbic dopamine system. For

instance in the domain of episodic memory, reward motivation boosts

learning (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, &

Gabrieli, 2006; Madan, Fujiwara, Gerson, & Caplan, 2012; Murty &

Adcock, 2014; Wolosin, Zeithamova, & Preston, 2012), largely, but

not exclusively via VTA-hippocampal mechanisms (see Murty &

Dickerson, 2017 for review). In a similar vein, in the context of the

current task, the hippocampus may play a modulatory role in gating

the phasic activity of dopaminergic neurons (e.g., Lodge &

Grace, 2006), thus potentially scaling the efficacy of probabilistic

reward learning.

In light of this possibility, it is interesting to note that the hippo-

campus does not appear necessary for probabilistic learning that does

not entail value or reward information. Indeed, in a study of probabi-

listic learning by Foerde, Race, Verfaellie, and Shohamy (2013) amne-

sic patients learned mono-coloured butterfly flower associations as

well as controls. Although the dissociation in amnesic performance

between reinforcement learning with versus without a value or

reward component is intriguing, given other task differences, it will be

important to directly compare performance in amnesic patients in the

same paradigm to illuminate this issue.

Alternatively, one might question whether our results might be

due to the contributions of episodic memory to performance of con-

trol participants. This argument was advanced by Knowlton, Squire,

and Gluck (1994) to explain their findings in the Weather Prediction

Task in which participants must learn to classify multidimensional

stimuli. Amnesic patients performed normally earlier in learning

(i.e., the first 50 trials), but were impaired with further training (also

see Knowlton et al., 1996), a pattern which was ascribed to the use

of declarative strategies by controls as learning progressed.
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Although our results analyzed by block are qualitatively similar, the

RL modelling results provide evidence that even early in learning,

amnesic patients are not updating as efficiently as controls. Albeit

not definitive, these data do not compel an episodic memory expla-

nation for our results.

In sum, we provide evidence for MTL involvement in simple prob-

abilistic learning. Although the putative role of the hippocampus in

probabilistic and value or reward-related learning remains to be clari-

fied, our results, coupled with other recent study in this area, call into

question the classic view of orthogonal memory systems, and demon-

strate that the hippocampus supports broader aspects of learning than

previously appreciated.
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ENDNOTES
1 A similar pattern of results was observed with a non-parametric

approach (first block, U = 27.0, p = .24; second block, U = 10.0, p = .006;

third block, U = 17.5 p = .04).
2 A similar pattern of results was observed with a non-parametric

approach (U = 13.5, p = .015).
3 As pointed out in previous work (Rutledge et al., 2009), α and β are not

fully independent, and parameter comparison across groups can be diffi-

cult to interpret when both parameters are free. In the present work, we

also tried RL models with fixed beta across groups (i.e., β = 1 and β = 2).

These models resulted in slightly greater group differences in α, but with-

out changing the pattern of significance of the results reported above.
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