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Abstract
Recent evidence suggests that the human hippocampus—known primarily for its involvement in episodic memory—plays a role
in a host of motivationally relevant behaviors, including some forms of value-based decision-making. However, less is known
about the role of the hippocampus in value-based learning. Such learning is typically associated with a striatal system, yet a small
number of studies, both in human and nonhuman species, suggest hippocampal engagement. It is not clear, however, whether this
engagement is necessary for such learning. In the present study, we used both functional MRI (fMRI) and lesion-based neuro-
psychological methods to clarify hippocampal contributions to value-based learning. In Experiment 1, healthy participants were
scanned while learning value-based contingencies (whether players in a Bgame^ win money) in the context of a probabilistic
learning task. Here, we observed recruitment of the hippocampus, in addition to the expected ventral striatal (nucleus accumbens)
activation that typically accompanies such learning. In Experiment 2, we administered this task to amnesic patients with medial
temporal lobe damage and to healthy controls. Amnesic patients, including those with damage circumscribed to the hippocam-
pus, failed to acquire value-based contingencies, thus confirming that hippocampal engagement is necessary for task perfor-
mance. Control experiments established that this impairment was not due to perceptual demands or memory load. Future research
is needed to clarify the mechanisms by which the hippocampus contributes to value-based learning, but these findings point to a
broader role for the hippocampus in goal-directed behaviors than previously appreciated.
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A wealth of evidence suggests that episodic memories are
augmented in the presence of reward. This reward-based
memory enhancement is demonstrated across a range of stim-
uli and paradigms (e.g., Callan & Schweighofer, 2008; Castel,

Farb, & Craik, 2007; Madan, Fujiwara, Gerson, & Caplan,
2012; Mather & Schoeke, 2011; Spaniol, Schain, & Bowen,
2014). Although the mechanism for this enhancement is not
fully understood, strong evidence is accumulating for involve-
ment of dopaminergic-rich mesolimbic (i.e., midbrain and
basal ganglia) systems implicated in reward anticipation, in
conjunction with the hippocampus—a region known for its
role in episodic memory (see Shohamy & Adcock, 2010, for
review). Such studies suggest that mesolimbic regions induce
motivational brain states that augment long-termmemory pro-
cesses and highlight interactive synergy between these brain
systems (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, &
Gabrieli, 2006; Loh et al., 2016; Mather & Schoeke, 2011;
Murty & Adcock, 2014; Murty, LaBar, & Adcock, 2016;
Wittmann, Bunzeck, Dolan, & Duzel, 2007).

Notably, a similar neural synergy has also been observed
during tasks that involve reinforcement-based reward learn-
ing. Unlike episodic learning, which involves the rapid acqui-
sition of single-instance events, in typical reinforcement-
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based tasks, learning occurs over many instances based on
trial and error; this type of learning has historically been con-
ceptualized as habitual or incremental in nature. In such cases,
the role of the hippocampus is more surprising, as such
stimulus–response learning has been thought of as a canonical
form of striatally based learning, according to a classic mem-
ory systems view (Squire, 2004). For example, using fMRI,
Li, Delgado, and Phelps (2011) showed BOLD response both
in the striatum and hippocampus when comparing monetary
wins to losses during simple feedback-based value learning
(also see Delgado, Nystrom, Fissell, Noll, & Fiez, 2000;
Dickerson & Delgado, 2015; Preuschoff, Bossaerts, &
Quartz, 2006). Further, some work has shown prediction error
signaling (which represents the difference between expected
and actual outcomes) both in the striatum and the hippocam-
pus using a similar task (Dickerson, Li, & Delgado, 2011;
Schonberg et al., 2010; also see Lee, Ghim, Kim, Lee, &
Jung, 2012, for related work in rodents),1 although this has
not always been observed (Li et al., 2011).

What is the nature of hippocampal involvement in value-
based learning? One possibility is that the hippocampal recruit-
ment observed in these studies is epiphenomenal to the task at
hand, akin to theoretical models of parallel hippocampal pro-
cessing of stimulus–response contingencies in aspects of con-
ditioning (Gluck, Ermita, Oliver, &Myers, 1997). On the other
hand, more recent work suggests that the hippocampal signal
observed during such learning may actually contribute to per-
formance. For example, Dickerson and Delgado (2015)
showed that accuracy on a value-based learning task was ad-
versely affected in a condition involving a competing
hippocampally mediated task (i.e., a concurrent scene-
recognition task) and, critically, whereas learning accuracy cor-
related with hippocampal activity in the standard feedback ver-
sion of the task, this correlation was significantly reduced when
participants performed the concurrent hippocampally based
task. Together, these findings provide more substantive evi-
dence that the hippocampal signal observed during learning
may be relevant to performance—an idea that potentially chal-
lenges a classic memory system’s view that regards hippocam-
pal and striatal regions as supporting dissociable aspects of
learning and memory (Squire, 2004). Nonetheless, the latter
finding is correlational, and as of yet it is unknown whether
the hippocampus is necessary for this form of learning.

The strongest test of the hypothesis that hippocampal fMRI
activation during value-based learning tasks actually contrib-
utes to learning would be to examine whether performance on
the very same task is adversely affected in amnesic patients
who have hippocampal damage. To fill this gap in the literature,

in the present study we used a combined neuroimaging
(Experiment 1) and lesion (Experiments 2a and 2b) approach
and a novel value-based reinforcement learning task. To date,
little is known about the consequences of hippocampal lesions
on value-based learning. On the one hand, work on reinforce-
ment learning (without a value component) has shown normal
performance in amnesic patients, suggesting that this form of
learning may not require the hippocampus (Foerde, Race,
Verfaellie, & Shohamy, 2013; Shohamy, Myers, Hopkins,
Sage, & Gluck, 2009). On the other hand, a study in amnesic
patients by Hopkins, Myers, Shohamy, Grossman, and Gluck
(2004) suggests that reinforcement learning with a value com-
ponent may be hippocampal dependent. In that study, amnesic
patients and controls were required to learn ice cream prefer-
ences for Mr. Potato HeadTM characters, and on correct trials
feedback was accompanied by the sound of coins in a tip jar.
Amnesic patients were impaired on this task. However, it
should be noted that in this task, optimal learning depended
on a combination of cues (i.e., multiple facial features of the
Mr. Potato HeadTM characters). The complexity of cues in itself
may have been responsible for the impairment in amnesia, as
amnesic patients are also impaired in reinforcement learning
without a value component when learning depends on a com-
bination of cues (e.g., the weather prediction task; Hopkins
et al., 2004; Knowlton, Squire, & Gluck, 1994). Thus, it is still
difficult to ascertain whether hippocampal lesions necessarily
interfere with value-based learning.

To examine the role of the hippocampus in value-based
learning, in the present study, participants learned the value-
based contingencies of single-cue stimuli: Participants were
asked whether single players in a Bgame^ would win or lose
money. As in many reinforcement-learning tasks (that typically
focus on striatal involvement), the contingencies were proba-
bilistic, such that different outcomes were provided as feedback
for a given stimulus (e.g., a Bwinning^ player would win only
75% of the time). In Experiment 1, we administered this task to
a group of healthy adults during fMRI scanning to establish
that the task successfully recruits the hippocampus (along with
the expected activation in the ventral striatum; see below).
Notably, given recent interest in hippocampal long-axis spe-
cialization of function, and given some evidence for a greater
role of the anterior (vs. posterior) hippocampus in motivational
behaviors, we tested the hypothesis that the anterior hippocam-
pus would show stronger engagement during value-based
learning, acknowledging that the literature is not fully consis-
tent on this matter (see Poppenk, Evensmoen, Moscovitch, &
Nadel, 2013; Strange, Witter, Lein, & Moser, 2014).

We next administered the same value-based learning task to
a group of amnesic patients with damage to the medial tem-
poral lobes (MTL), including a subset of patients with damage
thought to be circumscribed to the hippocampus proper
(Experiment 2a). If the hippocampal recruitment observed in
Experiment 1 is simply epiphenomenal to the task, then

1 We note that prediction error signaling has also been observed in the hippo-
campus under other conditions of reinforcement learning (i.e., when there is no
reward component; Davidow, Foerde, Galvan, & Shohamy, 2016; Foerde &
Shohamy, 2011; Lighthall, Pearson, Huettel, & Cabeza, 2018).
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patients should acquire normal stimulus–response contingen-
cies. If, instead, the observed hippocampal activation is re-
quired for task performance, patients with hippocampal dam-
age should perform poorly on this value-based learning task.
Experiment 2b sought to replicate the findings from
Experiment 2a under conditions of reduced memory load.

Experiment 1

Materials and methods

Participants

Thirty healthy, right-handed, native English speakers (15 fe-
male), with a mean age of 19.6 (SD = 1.0) years and a mean
education of 13.2 (SD = 1.1) years participated in the study.
Participants were recruited from Boston University through
online postings. Participants were given a detailed phone
screen prior to participating in the study and were excluded
from participation if they had any MRI contraindications or
major psychiatric or neurological conditions. The session
lasted approximately 2.5 hours (approximately 1 hour in the
scanner), and participants were paid $60 for their participa-
tion. The VA Boston Healthcare System and the Boston
University School of Medicine institutional review boards ap-
proved all experimental procedures, and all participants pro-
vided informed consent.

Task paradigm and procedure

As shown in Fig. 1, participants learned reward-based contin-
gencies—namely, whether distinct players in a Bgame^ would
win money or not, in the context of a probabilistic learning
task (75% majority outcome status). The players were distin-
guished based on the color pattern depicted on their jumpsuits.
To bias participants away from an explicit rule-forming strat-
egy, for each player we used fractal-like color patterns, which
are more difficult to verbalize. Participants were shown an
image of the player along with, BDoes the man win money?^
printed on the screen (2,134 ms). Participants were instructed
to press the Byes^ button during that time if they believed the
player would win, and the Bno^ button if they believed the
player would not win. After a choice was made, a short delay,
which displayed the player in isolation (400 ms) was followed
by the actual outcome for the player (1,067 ms). If the player
won, then a dollar bill was shown above the player, along
with, BThe man wins $1.00!^ If the player did not win, an
opaque gray rectangle (displaying B$0.00^) was shown along
with, BThe man does not win money!^ If the participant failed
to make a response, BToo late!^ was displayed on the screen.
A jittered interstimulus interval preceded the next trial (M =
2,801 ms; range: 667–9,203 ms). In a control condition,

randomly intermixed with the abovementioned experimental
condition trials, participants made responses for players
wherein no learning was required. For such trials, the outcome
of the trial (Byes^ or Bno^) was displayed on the face of the
player, and the contingencies were consistent for each player
(100% rewarded or not rewarded).2 The exact instructions
given to participants are provided in the Supplementary
Materials.

Participants performed the task over four runs. The first
two runs (BSet 1^) involved a set of six experimental (three
rewarded, three nonrewarded) and two control players (one
rewarded, one nonrewarded), intermixed, and the last two runs
(BSet 2^) involved a different set of six experimental and two
control players, intermixed. Within a run, each experimental
player repeated eight times (majority outcome status for six
trials; 75%), for a total of 48 experimental trials per run. Each
control player also repeated eight times, for a total of 16 con-
trol trials per run. Accordingly, across the four runs, there were
192 experimental trials (majority outcome status for 144 trials;
75%) and 64 control trials. The presentation order of the runs
was quasirandomized for each participant, keeping pairs of
runs that formed sets together (i.e., set1a, set1b, set2a, set2b;
set2b, set2a, set1b, set1a, etc., with the letters referring to the
stimulus order). The assignment of a given player as rewarded
or nonrewarded was counterbalanced across participants.

All stimuli were presented using a PC computer (Lenovo
ThinkPad) with E-Prime (Version 2.0) and an MRI-compatible
projector and screen. Participants made their responses using an
MRI-compatible box placed in their right hand.

In order to familiarize participants with the materials and
procedure, immediately prior to the scan, participants were
provided with the task instructions and completed practice tri-
als, using a regular keyboard, with a different set of stimuli, in a
private testing room. Participants completed additional practice
trials with these same practice stimuli in the MRI scanner (dur-
ing theMP-RAGE scan) to help them acclimate to the scanning
environment and the button box used to make responses.

Debrief Finally, participants were debriefed about the task,
which ensured that no participants had difficulty seeing the
screen, using the button box, or felt rushed during the task.
Participants were also asked about the strategies they used in
the task and how they felt they performed on the task.3

2 It should be noted that inclusion of control trials in this task increases the
stimulus load, which may have made the task more difficult. Although the
outcome for the player is provided on the control trials—hence, there is noth-
ing new to be learned from the feedback per se—some observational learning
may nonetheless have taken place, again, potentially resulting in greater task
difficulty.
3 After the scan, participants also completed a test phase, wherein the exper-
imental players from the learning phase were presented side by side and par-
ticipants made responses with no feedback provided. These data are not pre-
sented in this paper and will not be discussed further.
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Image acquisition

Images were collected on a 3.0 Tesla Siemens Prisma scanner
equipped with a 64-channel head coil and located at the
Jamaica Plain campus of the VA Boston Healthcare System.
A high-resolution T1-weighted magnetization-prepared rapid
gradient-echo (MP-RAGE) sequence was acquired in the sag-
ittal plane (TR = 2,530 ms, TE = 3.35 ms, TI = 1,100 ms, flip
angle = 7°, sections = 176, slice thickness = 1 mm, matrix =
2562, FOV = 256 mm, voxel size = 1 mm3). Four whole-brain
task-based functional scans were acquired parallel to the
anterior–posterior commissural plane using a multiband
echo-planar imaging (EPI) sequence sensitive to the blood
oxygenation level-dependent (BOLD) signal (e.g., Moeller
et al., 2010): multiband = 6; TR = 1,067 ms, TE = 34.80 ms,
flip angle = 65°, slices = 72, slice thickness = 2 mm, FOV =
208, matrix = 1042, voxel size = 2 mm3, volumes = 388, phase
encoding = anterior–posterior). To correct for image distor-
tion, a brief scan using the same parameters was also acquired,
although the phase encoding direction was inverted (posteri-
or–anterior). Two additional whole-brain resting-state scans
(before and after the task-based runs) were collected but were
not analyzed and are not discussed further.

Data processing and analyses

All analyses discussed below (behavioral and fMRI) pertain to
experimental trials only; the control task will not be discussed
further.

Behavioral For analysis of accuracy, as in other papers
(e.g., Shohamy, Myers, Kalanithi, & Gluck, 2008), we con-
sidered a response correct based on the majority outcome
status for a given player. That is, if a participant offered the
majority outcome response on a minority trial, that trial was
scored as correct. Accordingly, the maximum score for a given
participant is 100%. Although missed trials were somewhat
rare (see Results), the denominator for the accuracy calcula-
tion was based on valid trials (i.e., the total number of trials on
which the participant responded). Our main fMRI analyses
(discussed below) pertain to overall learning (i.e., collapsed
across runs), but we also report learning as a function of stage
(early vs. late runs), as one of our fMRI analyses pertained to
this comparison. For each individual participant, we used a
binomial test to calculate whether his or her performance
was above chance (50%), based on valid trials. Mean
reaction-time data for correct and incorrect responses are also
reported.

FMRI Functional imaging data were preprocessed and ana-
lyzed using FEAT (FMRI Expert Analysis Tool) Version
6.00, part of FSL (FMRIB's Software Library, www.fmrib.
ox.ac.uk/fsl). FSL’s topup tool was used to estimate
susceptibility fields. Images were motion corrected using
MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002).
Next, an estimated susceptibility field correction was applied
to the functional time series using applytopup. The BOLD
time series was skull stripped using FSL’s Brain Extraction
tool (BET) and bias-field corrected using FMRIB’s
Automated Segmentation Tool (FAST). Subsequent fMRI

Fig. 1 Schematic of the value-based learning paradigm. In the actual experiment, the stimuli were presented in color (Color figure online)
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data processing was carried out using the following
prestatistics: Spatial smoothing was performed using a
Gaussian kernel of FWHM 5 mm and grand-mean intensity
normalization of the entire 4D data set by a single multiplica-
tive factor. ICA-AROMA (a robust ICA-based strategy for
removing motion artifacts from fMRI data; Pruim et al.,
2015) was used to identify and remove additional motion
components. The data were then high-pass temporal filtered
(Gaussian-weighted least-squares straight line fitting, with
sigma = 30.0 s).

Next, in a two-step registration process, each functional
image was coregistered to the participant’s same-session T1-
weighted structural image using FMRIB Linear Image
Registration Tool (FLIRT). Between-subject registration was
accomplished by alignment of functional images to the
MNI152 standard-space template and further refined using
the FMRIB Nonlinear Image Registration Tool (FNIRT).
Images for each run for each participant were visually
inspected to confirm proper registration to MNI space.
Time-series statistical analysis was carried out using FILM
with local autocorrelation correction (Woolrich, Ripley,
Brady, & Smith, 2001). Trial onset times were convolved with
a double gamma hemodynamic response function, modeled
with the entire trial duration (3.6 s, which included the total
time for player onset, response, and outcome for each trial).4

Subject-level analysis was carried out using a fixed-effects
model in FLAME (FMRIB's Local Analysis of Mixed
Effects; Beckmann, Jenkinson, & Smith, 2003; Woolrich,
Behrens, Beckmann, Jenkinson, & Smith, 2004). The general
linear model (GLM) consisted of task regressors for each level
of the experimental condition (i.e., correct and incorrect re-
sponses for rewarded and nonrewarded stimuli) and additional
regressors of no interest, which included control trials and
trials in which no response was made.

At the third level, a series of whole-brain and ancillary
region-of-interest group-level analyses were carried out using
FLAME Stage 1. The resulting statistical images were com-
pared using paired t tests and using a cluster-defining thresh-
old of Z > 3.09 (i.e., p < .001) and a corrected cluster signif-
icance threshold of p = .05 (Eklund, Nichols, & Knutsson,
2016). Given the known uncertainty about regional specificity
when a given cluster comprises multiple regions (Woo,
Krishnan, & Wager, 2014), and given our a priori interest in
the hippocampus and ventral striatum (particularly the nucleus
accumbens; NAcc), we performed, when relevant, follow-up

targeted analyses that included only a single binarized
regions-of-interest (ROI) mask of the bilateral hippocampus
and NAcc in the analysis (Harvard-Oxford Subcortical
Structural Atlas, 50% threshold; see Fig. 2), using a family-
wise error (FWE) voxel-wise correction of p = .05. Although
we observed very similar results using a cluster-based correc-
tion approach with this ROI analysis, for small volumes, a
voxel-wise threshold is thought to be advantageous over a
cluster-based approach, as clusters often extend beyond ROI
boundaries (Roiser et al., 2016). The purpose of this ROI
analysis was to firmly localize our whole-brain effects to these
hypothesized regions. The statistical approach and use of a
single ROI mask were based on recent recommendations from
Roiser et al. (2016). Notably, the ROI mask included the
whole hippocampus proper, but excluded the MTL cortices
and amygdala. An additional targeted analysis, described be-
low, statistically examined whether our observed effects local-
ized to the anterior (versus posterior) hippocampus per se.

Following the literature on reinforcement learning more
broadly (Davidow et al., 2016; Foerde & Shohamy, 2011; Li
et al., 2011), the primary contrast of interest was correct versus
incorrect, which we hypothesized would elicit activation in
anterior hippocampus and the NAcc. The opposite contrast
was also examined (incorrect vs. correct). Notably, here, cor-
rect and incorrect trials are calculated from the point of view of
the feedback provided to a participant, not based on the
player’s majority outcome status as per above (e.g., if the
participant responded Byes^ to a typically rewarded player,
but, on that particular trial, the player did not win, then that
trial would be coded as Bincorrect^).

To formally implement the comparison of anterior versus
posterior hippocampus, we next split the Harvard-Oxford hip-
pocampal anatomical mask at the level of the uncal apex (i.e.,
at y = −21 mm) into anterior and posterior parts (Poppenk
et al., 2013). Then, for each hemisphere, we extracted aver-
aged parameter estimates (i.e., averaged across all voxels in
the mask) from the relevant contrast of parameter estimate
(COPE) images for each participant at the second level; these
data were inputted into a 2 (hemisphere [left, right]) × 2 (re-
gion [anterior, posterior]) repeated-measures ANOVA in
SPSS, with the threshold set to p < .05.

In an exploratory fashion, we also examined whether neu-
ral responses in the NAcc and hippocampus for correct versus
incorrect differed as a function of whether the player was
typically rewarded or not rewarded; we performed a 2 (cor-
rect, incorrect) × 2 (rewarded, nonrewarded) F test at the third
level in FSL, using the abovementioned ROI mask.

Having established robust activation in the NAcc and hip-
pocampus for the correct versus incorrect contrast (see below),
we next examined whether this pattern of activity differed as a
function of learning phase, by comparing activation for cor-
rect versus incorrect as a function of early versus late learning
runs using the abovementioned ROI mask. This comparison

4 To separate these phases would require a jittered epoch between the response
and outcome, which would impose a necessary delay in the arrival of the
outcome. However, given a number of studies showing hippocampal involve-
ment in delayed reinforcement learning (see Palombo & Verfaellie, 2017, for
review), we did not opt for such a design, as we wanted to observe whether
hippocampal effects occur independently of delay in feedback. Our approach
deviates from that of Foerde & Shohamy (2011; described in the Discussion),
in which the authors analyzed data from the feedback epoch.
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was first implemented in FSL at the second level by coding
early and late runs as 1 and −1, respectively. Although some
literature suggests greater contribution of the hippocampus
early in learning (and vice versa for the striatum; Dickerson
et al., 2011; Fera et al., 2014; Poldrack et al., 2001; Poldrack&
Packard, 2003; Shohamy et al., 2008), other work does not
support this notion (see Delgado, Miller, Inati, & Phelps,
2005; Shohamy et al., 2008). Accordingly, we did not make
specific predictions about the nature of changes across learn-
ing but perform such analyses only to align our work with that
of others in the literature.

Results

Behavioral

On average, participants responded on 96.0% of trials (SD =
4.9%).Mean accuracy was 65.3% (SD = 7.9%). A paired t test
comparing performance in early versus late runs showed a
significant increase in accuracy across learning (early:
63.6%, SD = 7.8%; late: 67.1%, SD = 9.6%), t(29) = 2.58, p
= .015, Cohen’s d (using pooled variance) = 0.40. Three par-
ticipants performed at or below chance level, but the pattern

did not change when these three participants were removed
from the analysis (p = .02).

On average, participants took 993.4 ms (SD = 137.4) to
respond on trials in which they were correct, and 1,075.8 ms
(SD,=,134.2) to respond on trials in which theywere incorrect;
the difference in reaction time on incorrect versus correct trials
(M = 82.4 ms) was statistically significant, t(29) = 7.0, p <
.0001, Cohen’s d (using pooled variance) = 0.61, though neg-
ligible in terms of differences in fMRI signal.

FMRI

Correct versus incorrect The results for the contrast of correct
versus incorrect (and vice versa) are displayed in Fig. 2a and
2b and Table 2. For the correct versus incorrect contrast,
BOLD response differences were observed in expected re-
gions, including striatal and MTL structures, as well as the
ventromedial prefrontal cortex. These results did not change
when we excluded the three participants who did not perform
above chance level.

Critically, ancillary ROI analyses confirmed strong BOLD
response localized to the bilateral nucleus accumbens (left
peak: −10, 6, −8; right peak: 12, 8, −10), bilateral anterior
hippocampus (left peak: −28, −16, −16; right peak: 22, −12,

Fig. 2 Results from Experiment 1a. a Brain images depicting activation
in the bilateral hippocampus (HPC; top) and nucleus accumbens (NAcc;
bottom) for the whole-brain contrast of correct versus incorrect. For dis-
play purposes only, percentage of signal change is shown for the left
(pink) and right (blue) hippocampus and NAcc. Percentage of signal
change was calculated by extracting the peak from each structure for
correct and incorrect responses using the COPE images from the second
level and a corrected scale factor (i.e., 100*baseline-to-max range). Using

an isolated 3-s long double-gamma hemodynamic response function, the
baseline-to-max range was set at 0.587. A 3-D render of the Harvard-
Oxford masks used to extract data from these structures is shown. bBrain
images depicting activation in the bilateral insula and medial prefrontal
cortex for the whole-brain contrast of incorrect versus correct. For the
analyses depicted in a and b, a cluster-defining threshold of Z > 3.09 (i.e.,
p < .001) and a corrected cluster significance threshold of p = .05 was
used. (Color figure online)
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−20), and left posterior hippocampus (left peak: −30, −32,
−8). Our exploratory analysis examining whether BOLD re-
sponse differences for correct versus incorrect varied as a
function of whether the player’s majority outcome status
was rewarded or nonrewarded failed to reveal any significant
interaction effect. Notably, no main effect of reward versus
nonreward was observed in either of these ROIs.5

The contrast of incorrect versus correct showed no activa-
tion anywhere in the basal ganglia orMTL, but showed robust
activation in other brain regions, including the bilateral insula
and a more dorsal part of the medial prefrontal cortex (see
Table 1 for the full list of regions; also see Fig. 2b).

Correct versus incorrect across learning (early vs. late)We did
not observe any significant differences in the patterns of acti-
vation as a function of learning block (early vs. late). Still, we
urge caution in interpreting this null effect, as this may be due
to low power (i.e., because the data are split in half) or due to a
minimal increase in performance from early to late learning
(see Behavioral Results).

Correct versus incorrect across the long axis A comparison of
differences along the long axis of the hippocampus in correct
versus incorrect BOLD response revealed stronger activation
in the anterior portion of the hippocampus, bilaterally, relative
to the posterior, F(1, 29) = 16.5, p = .0003, η2 = .36, with no
main effect of hemisphere (p = .81, η2 = .002) or interaction
with hemisphere (p = .17, η2 = .064; see Fig. S1 in the
Supplementary Materials).

Experiments 2a and 2b

Methods

Having established hippocampal involvement in the task used
in Experiment 1, we next administered a very similar task that
involved learning the reward contingencies for six players to
amnesic patients and well-matched healthy controls
(Experiment 2a). To examine performance under conditions
of reduced memory load, in a separate session, we adminis-
tered another version of the task to amnesics and a new set of
healthy controls (Experiment 2b), with four players instead of
six. The decision to reduce the load to four players was moti-
vated by prior work, in which intact performance was ob-
served in amnesic patients in a trial-and-error learning task
that involved acquiring the contingencies for only four stimuli

(Foerde et al., 2013); in light of those results, it follows that
any observed deficit in the present study in the four-player
version would unlikely be due to memory load per se.

Participants

Patients In Experiment 2a, seven patients with amnesia (one
female) secondary to MTL damage participated (see Table 2
for demographic and neuropsychological data). An eighth am-
nesic patient was excluded from all analyses because this pa-
tient had a substantial number of missed responses (17%),
resulting in less overall exposure to the player outcomes.
The neuropsychological profile for each patient indicated se-
vere impairment that was limited to the domain of memory.
Etiology of amnesia included hypoxic-ischemic injury sec-
ondary to either cardiac or respiratory arrest (n = 3), stroke
(n = 2), encephalitis (n = 1), and status epilepticus followed by
left temporal lobectomy (n = 1). Lesions for six of the seven
patients are presented in Fig. 3, either on MRI or CT images.
P4, who had suffered from cardiac arrest, could not be
scanned due to medical contraindications and is thus not in-
cluded in the figure. MTL pathology for this patient was in-
ferred based on etiology and neuropsychological profile. Of
the patients with available scans, two patients (P3, P5) had
lesions that were restricted to the hippocampus, one patient
(P7) had a lesion that included the hippocampus as well as the
amygdala (see below), one patient (P1) had a lesion that in-
cluded the hippocampus and MTL cortices, and one patient
(P2) had a lesion that extendedwell beyond the medial portion
of the temporal lobes into the anterolateral temporal neocortex
(due to the temporal lobectomy). For the patient whose etiol-
ogy was encephalitis (P6), clinical MRI was acquired, but
only in the acute phase of the illness, with no visible lesions
observed on T1-weighted images. However, T2-flair images
demonstrated bilateral hyperintensities in the hippocampus
and MTL cortices as well as the anterior insula. Hence, across
all patients with available information, the hippocampus was
the only area of overlap. As shown in Table 2, volumetric data
for the hippocampus and MTL cortices was available for four
of the seven patients (P2, P3, P5, P7), using methodology
reported elsewhere (see Kan, Giovanello, Schnyer, Makris,
& Verfaellie, 2007 for methodology).

Due to the known involvement of the amygdala and basal
ganglia structures in motivational processes, for patients P3,
P5, and P7, for whom reliable extra-hippocampal subcortical
volumetric data could be obtained (see Supplementary
Materials), we quantified the volume of the amygdala, cau-
date, putamen, pallidum, and nucleus accumbens using an
automated pipeline (FreeSurfer) that has been employed in
amnesic patients in other studies (Baker et al., 2016;
Sheldon, Romero, & Moscovitch, 2013). No significant vol-
ume loss was observed in any of these structures, with the
exception of the right amygdala, which was significantly

5 For completeness, we also compared rewarded versus nonrewarded trials at the
whole-brain level; this contrast revealed activation only in the fusiform gyrus,
bilaterally (left peak: −26, −68, −12; right peak: 24, −72, −8). This pattern of
activation is to be expected, given the greater sensory input associated with the
dollar bill image (vs. the gray rectangle image; see Methods); the opposite
contrast (nonrewarded vs. rewarded) failed to reveal any significant effects.
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Table 1 Regions of fMRI Activation in Experiment 1

Extent (voxels) z score MNI coordinates (mm) Side Region Brodmann area

x y z

Correct > Incorrect

1,119 5.50 −8 32 −10 L Ventromedial prefrontal cortex 24

875 5.54 16 6 −10 R Putamen

*Includes bilateral NAcc, R anterior hippocampus

850 5.01 14 −28 66 R Postcentral gyrus 3

486 4.74 62 −2 −6 R Superior temporal gyrus 22

397 5.00 −16 −4 −24 L Parahippocampal gyrus 34

*Includes L anterior hippocampus

376 4.00 38 −22 48 R Postcentral gyrus 3

215 4.42 −66 −34 10 L Superior temporal gyrus 22

147 3.96 34 −48 64 R Superior parietal lobule 7

Incorrect > Correct

3,402 6.32 8 20 62 R Superior medial prefrontal cortex 6

820 4.97 34 28 0 R Insula 13

762 5.36 −38 20 −12 L Inferior frontal gyrus and insula 47

625 5.39 44 10 52 R Middle frontal gyrus 6

448 4.94 6 −24 0 R Thalamus

350 4.73 34 −52 −34 R Cerebellum

236 4.64 −34 −58 −28 L Cerebellum

192 4.73 −42 20 48 L Middle frontal gyrus 6

136 3.96 48 −52 48 R Inferior parietal lobule 40

122 4.21 −30 50 24 L Superior frontal gyrus 9

118 4.50 50 −34 −4 R Middle temporal gyrus 21

112 3.80 40 28 20 R Middle frontal gyrus 9

Note. MNI = Montreal Neurological Institute; L = left; R = right; NAcc = nucleus accumbens

Table 2 Patient Information for Experiment 2

Experiment Patient Etiology Age
(years)

Edu
(years)

WAIS-III WMS-III Volume loss (%)

VIQ WMI GM VD AD Hippocampal Subhippocampal

2a, 2b P1 Hypoxic ischemic 67 12 88 75 52 56 55 N/A N/A

2a, 2b P2 Status epilepticus + Left temporal
Lobectomy

53 16 93 94 49 53 52 63% 60%a

2a, 2b P3 Hypoxic ischemic 61 14 106 115 59 72 52 22% –

2a, 2b P4 Hypoxic ischemic 65 17 131 126 86 78 86 N/A N/A

2a P5 Stroke 64 18 117 88 67 75 55 62% –

2a, 2b P6 Encephalitis 75 13 99 104 49 56 58 N/A N/A

2a, 2b P7 Stroke 53 20 111 99 60 65 58 43% -

Note. WAIS-III = Wechsler Adult Intelligence Scale, Third Edition; WMS-III = Wechsler Memory Scale, Third Edition; VIQ = verbal intelligence
quotient; WMI = workingmemory index; GM = general memory; VD = visual delayed; AD = auditory delayed; N/A = not available. Age is represented
at the time of Experiment 2a; Experiments 2a and 2b were completed within approximately 1 year of each other (minimum time between sessions = 167
days).
a Volume loss in left anterior parahippocampal gyrus (i.e., entorhinal cortex, medial portion of the temporal pole, and the medial portion of perirhinal
cortex; see Kan et al., 2007, for methodology)
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smaller in P7, as noted above. (Given the size of P2’s lesion,
which would likely deem the automated segmentation unreli-
able, we opted not to include his data in this analysis.)

For Experiment 2b, six of the seven amnesic patients from
Experiment 2a participated and are indicated in Table 2.
Patient P5 was not available due to long-term personal
commitments.

Healthy controls For Experiment 2a, 16 healthy control par-
ticipants (eight female) were matched to the patient group in
age (60.9 years, SD = 10.5), education (15.8 years, SD = 2.4
years), and verbal IQ (110.4, SD = 16.2), which was assessed

with the Wechsler Adult Intelligence Scale–Third Edition
(Wechsler, 1997).

For Experiment 2b, a new group of 12 healthy control
participants (three female) were matched to the patient group
in age (60.8 ± 7.61 years), education (15.4 ± 2.5 years), and
verbal IQ (112.1 ± 13.4).

All participants provided informed consent in accordance
with the Institutional Review Board at the VA Boston
Healthcare System.

Materials and procedure

For Experiment 2a, the task was modeled after the one used in
Experiment 1, with the following modifications for behavioral
testing of amnesic patients (also see Supplementary Materials
for task instructions): Participants were given more time to
make a response (4,000 ms); a fixed, rather than jittered, in-
tertrial interval (2,667 ms) was used; and the control condition
was eliminated. Finally, participants were given only one set
of six players (three rewarded, three nonrewarded), which
were administered over three learning blocks, providing more
overall repetitions of the players relative to Experiment 1 (i.e.,
a greater opportunity to learn the contingencies for a given
player; with a total of 24 presentations of each player).

As in Experiment 1, within a block, each player was pre-
sented eight times (majority outcome status for six trials;
75%), for a total of 48 intermixed trials per block.
Accordingly, across the three blocks, there were 144 trials.
There were three presentation orders of blocks (a-b-c; b-c-a;
c-a-b), which were randomly assigned to participants in each
group so that each counterbalance order was represented ap-
proximately equally in the two groups. Moreover, the assign-
ment of a given player to the rewarded or nonrewarded con-
dition was counterbalanced across participants. As in
Experiment 1, the task was preceded by a practice phase
consisting of six trials (with separate stimuli) and was follow-
ed by a test phase (not discussed) and debriefing. To determine
whether patients could acquire the stimulus contingencies by
the end of learning, we compared performance between am-
nesic patients and controls in the last learning block.

To ensure that amnesic patients had no trouble
distinguishing the players from each other, in a separate ses-
sion we performed a perceptual discrimination control task
using the players from Experiment 2a, for which amnesic
patients performed very well (see Supplementary Materials).

Fo r Expe r imen t 2b , t he me thods ( i nc lud ing
counterbalancing) were identical to those of Experiment 2a,
except this version included only four players (two rewarded,
two nonrewarded) and was administered over two learning
blocks of 48 trials each (with a total of 12 presentations of
each player). A new set of stimuli was used in Experiment 2b
(see Fig. S2 in the Supplementary Materials). As in

Fig. 3 Structural MRI and CT scans depicting medial temporal lobe
(MTL) lesions for six of the seven amnesic participants. The left side of
the brain is displayed on the right side of the image. CTslices show lesion
location for P1 in the axial plane. T1-weightedMRI images depict lesions
for P2, P3, P5, and P7 in the coronal and axial plane. T2-flair MRI images
depict lesion locations for P6 in the axial plane
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Experiment 2a, we compared performance between amnesic
patients and controls in the last learning block.

Results

In Experiment 2a, amnesic patients responded on average on
97.8% of trials (SD = 0.8%) and control participants on 99.5%
of trials (SD = 0.8%), suggesting that participants had suffi-
cient time to make a response. As in Experiment 1, accuracy
was calculated according to majority outcome status, and the
mean accuracy for each group across the last learning block is
shown in Fig. 4; the figure also shows performance for each
individual amnesic patient (also see Table S1 in the
Supplementary Materials). Patients showed a significant im-
pairment in learning, t(21) = 3.77 p = .001, Cohen’s d = 1.91.
Notably, at the individual level, all seven of the patients
(100%) were at or below chance, whereas only three
(18.8%) control participants were at or below chance.

In Experiment 2b, amnesic patients responded on average
on 98.1% of trials (SD = 0.8%) and controls on 99.7% of trials
(SD = 0.5%). The mean accuracy for each group is shown in
Fig. 4 (also see Table S1 in the Supplementary Materials).
Patients showed a significant impairment in learning, t(16) =
2.31 p = .035, Cohen’s d = 1.12. At the individual level, six
out of seven patients (86%) were at or below chance; the
remaining patient (P6) performed quite well (83%) and was
significantly above chance. By contrast, three (25%) of the
control participants were at or below chance.

Ancillary analyses for Experiment 2a and 2b examining
performance as a function of reward outcome are presented
in the Supplementary Materials. It is worth noting that al-
though this critical final block involved the same number of
stimuli (N = 48) across the two experiments (which allowed us
to set chance at the same level in the two experiments using
the binomial distribution test), by necessity, the number of
exposures to each player differed (eight exposures per player
in Experiment 2a, and 12 exposures per player in Experiment
2b). Nonetheless, when approximately matching across exper-
iments, the number of exposures to each player in the final
block (i.e., by increasing the number of stimuli included in the
block analyzed in Experiment 2a to 72 trials), the same pattern
of results was observed.

General discussion

The goal of the present study was to clarify the role of the
hippocampus in value-based learning. First, using fMRI, we
showed strong engagement of bilateral hippocampus, along-
side the expected recruitment of striatal regions (e.g., NAcc)
and ventromedial prefrontal cortex (Experiment 1). The hip-
pocampal finding was a prerequisite for asking next whether
the hippocampus is critical for value-based learning. The latter
was demonstrated in Experiment 2a, in which we showed that
amnesic patients with MTL lesions, and some with lesions
limited to the hippocampus, failed to learn the value-based
contingencies in this task. We replicated the effect in these
same amnesic patients under conditions of reduced memory
load (Experiment 2b). Taken together, the current results pro-
vide compelling converging evidence that the hippocampus is
required for value-based learning.

Our findings align well with prior fMRI work demonstrat-
ing that the hippocampus is engaged during various forms of
reward learning (see Introduction) and with converging evi-
dence from rodent work showing strong modulation of hippo-
campal neurons by reward information during learning (Lee
et al., 2012). This modulation is likely supported through a
dynamic interplay of dopamine projections between midbrain,
striatum, and hippocampus (Groenewegen, Vermeulen-Van
der Zee, te Kortschot, & Witter, 1987; Kelley & Domesick,
1982; Lisman & Grace, 2005). This interplay may be similar
to that responsible for effects of value on episodic memory
(e.g., Adcock et al., 2006).

In considering a role for the hippocampus in value-based
learning, it is interesting to compare our findings to prior work
by Foerde et al. (2013) that examined reinforcement learning.
In that study, amnesic patients (some of whom participated in
the present study) were asked to determine, through trial and
error, which flower each of four butterflies preferred. As in the
present study, the contingencies were probabilistic, and par-
ticipants received feedback (correct vs. incorrect) for their

Fig. 4 Results from Experiment 2a and 2b. The plot depicts mean
accuracy (with standard error of the mean) for amnesic patients (filled
circle) and healthy controls (filled square). Each individual patient is
shown with an open circle. Accuracy was defined according to majority
outcome status of each player (see Method section). Note that in experi-
ment 2b, one patient performed above chance (P6)
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choices. Thus, the task demands were quite similar, particu-
larly to the four-player version we used in Experiment 2b.
Foerde and colleagues showed that patients performed as well
as healthy controls under conditions in which the feedback
was delivered immediately (as in our task); moreover, in an
fMRI version of the task, the hippocampus was not engaged
under such conditions (Foerde & Shohamy, 2011). An intrigu-
ing difference between our task and that of Foerde et al. is that
whereas in our task learning involved mapping stimulus–
value contingencies, in Foerde et al., learning involved map-
ping stimulus–stimulus contingencies. That is, in their study,
there was no value component. Notwithstanding the limita-
tions of cross-study comparisons, this bolsters the idea that
reward information per se may be relevant to eliciting hippo-
campal engagement and may be a critical mechanistic feature
underlying our results. Our findings also raise the possibility
that prior findings showing impaired reinforcement learning
in amnesic patients (see Introduction) may have been due not
only to the complexity of the stimuli but also to the inclusion
of a value component (Hopkins et al., 2004).

Notably, our fMRI data showed stronger recruitment of the
anterior relative to the posterior portion of the hippocampus, a
finding that aligns well with the notion that the anterior hip-
pocampus (ventral hippocampus in rodents) is more critical
for motivational, affective, or value-based aspects of cogni-
tion, likely due to stronger anterior relative to posterior hippo-
campal projections with the NAcc (Groenewegen et al., 1987;
Kelley & Domesick, 1982), as well as the amygdala and ven-
tromedial prefrontal cortex (reviewed in Poppenk et al.,
2013).6 Altogether, these findings and the existing literature
provide support for the idea that value learning per se may be a
factor that elicits hippocampal involvement.

In the present task, we examined hippocampal involvement
when participants learned about the value of stimuli (in this
case, whether the stimulus player wins money or does not),
whereas in other tasks, participants learn what types of choices
lead to a valuable response (i.e., participants are rewarded for
their correct choices about stimuli that themselves do not have
value attached to them). Our focus on the learning of stimulus
value allowed us to orthogonalize reward outcome from ac-
curacy of the participant’s response. That is, in our task, the

feedback provided to the participant emphasized the outcome
for the player and was thus independent of whether the par-
ticipant made a correct response. Here, we showed that the
hippocampus was not sensitive to the presence of valuable
stimuli per se (i.e., rewarded vs. nonrewarded trials), but rath-
er, was sensitive to learning in the context of value-based
stimuli (i.e., correct vs. incorrect trials). In apparent contrast
to our findings, Delgado et al. (2000) demonstrated that the
MTL is modulated by value-based information (Bwins^ vs.
Blosses^), even in a task that does not have explicit learning
demands—suggesting, contrary to our findings, that the MTL
is sensitive to the mere presence of reward. Yet it is important
to note that the task used in Delgado et al.’s study was not
completely devoid of learning, in that participants could still
acquire information about long-term probabilities of value
over time.

It is nonetheless important to note that our study design
rendered a more complex feedback prescription relative to
other paradigms used in prior work. Is it possible that the
hippocampus was needed to resolve the ambiguity in our task
between player and participant outcome? Relevant to this is-
sue are the fMRI results: If this were the case, one would
expect an interaction between the reward status of the player
and participant outcome in the hippocampus. That is, one
would expect the hippocampus to be most strongly engaged
in these Bincongruent^ scenarios (i.e., when the player is
rewarded but the participant gets the trial incorrect, and when
the player is not rewarded but the participant gets the trial
correct). However, no such interaction was observed. These
findings fail to provide supporting evidence that our main
hippocampal effects are driven by task complexity.

An alternative account, recently put forth in the literature, is
that the hippocampus performs a more domain-general com-
putation that is not specific to reward. Relevant to this idea,
Ballard, Wagner, and McClure (2018) have suggested that
hippocampal-based pattern separation mechanisms (Leutgeb,
Leutgeb, Moser, & Moser, 2007) may support conjunctive
coding in tandem to a more basic reinforcement learning sys-
tem that is striatal (Ballard et al. 2018; also see e.g., Floresco,
2007, for a discussion of related ideas). To test this idea, the
authors examined hippocampal and striatal engagement, via
fMRI, during a probabilistic stimulus-value learning task that
involved stimuli that have overlapping features (e.g., AB+, B
−, AC−, C+). Based on hippocampal similarity patterns, the
authors showed that the hippocampus formed conjunctive rep-
resentations that facilitated value-based learning by influenc-
ing striatal-based prediction errors—a finding that fits with the
conceptualization that the hippocampus entrains the striatum
(Bornstein, Khaw, Shohamy, & Daw, 2017). Notably, other
recent work suggests that such conjunctive coding also occurs
in non-value-based feedback learning: Duncan, Doll, Daw,
and Shohamy (2018) showed hippocampal engagement asso-
ciated with the use of configural information during

6 Such long-axis considerations have not been addressed in prior fMRI studies
of value-based learning, although they have received attention in studies of
episodic and spatial learning. In this literature, the focus has been on gradient-
based differences across the long axis in terms of mnemonic specificity, with
the anterior and posterior hippocampi implicated in gist-level and detail-level
processing, respectively (reviewed in Poppenk et al., 2013; Sheldon& Levine,
2016). Although these models are not necessarily mutually exclusive to a
motivational one (see Sheldon & Levine, 2016), consistent with this alterna-
tive view, it is possible that probabilistic trial-and-error learning, wherein in-
formation is accrued over repeated trials, is more likely to recruit gist-based
anterior hippocampal processes to facilitate extraction of the global regularities
of the contingencies (i.e., which players win most of the time), whereas the
posterior hippocampus may be more engaged when specific details from dis-
crete episodes are more relevant.
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reinforcement learning. Such hippocampal involvement was
observed even when configural processing was not required
for learning per se (Duncan et al., 2018).

Can such an explanation account for our findings? In con-
trast to the abovementioned Hopkins et al. (2004) amnesia
study, our study used one-to-one stimulus-value mappings
(i.e., there was no requirement to incorporate multiple stimuli
into learning, hence limiting the demands on configural pro-
cessing). Nonetheless, it is possible that in the absence of
explicit conjunctive-coding demands, the use of fractal stimuli
(which can share shape- and color-based features with one
another) augmented the involvement of hippocampal-based
pattern separation processes in our task. This explanation
could help explain why an intact striatal system was insuffi-
cient to support what appeared to be basic stimulus–response
learning in amnesic patients. It also provides an alternative
explanation for the divergent results of the present study from
those of Foerde et al. (2013)—namely, that it is the complexity
of the stimuli (fractal patterns in the present study vs. plain
colors in Foerde et al.) and the resulting pattern separation
demands that drive hippocampal engagement, as opposed to
value information per se.

Although this post hoc explanation is appealing, it does not
conform with some observations that the hippocampus is ac-
tivated in value-based learning tasks that use one-to-one
stimulus-value mappings that include simple stimuli, such as
monotone shapes (Dickerson et al., 2011; also see Li et al.,
2011). Based on the findings to date, it is possible that multiple
mechanisms are at play—namely, that the hippocampus is
engaged when the task draws on pattern separation mecha-
nisms, and it is also sensitive to learning about value-based
information above and beyond its role in pattern separation.
The precise mechanism by which the hippocampus contrib-
utes to value-based learning, and how its contribution differs
from the striatum, remains to be further elucidated. Relevant
to this topic, it will be important for future research to ascertain
whether value signals are computed in house in the hippocam-
pus versus propagated from elsewhere (also see Lee et al.,
2012).

In interpreting our results, we also considered whether hip-
pocampal involvement in this task might simply be due to the
influence of declarative memory. Our task was probabilistic
and involved learning from feedback—conditions thought to
maximize nondeclarative learning (as this learning is histori-
cally considered incremental [habitual] in nature—i.e., learn-
ing without awareness; Squire, 2004). Yet it is important to
consider that in healthy individuals no task is process pure,
and we cannot rule out the possibility that participants had
explicit knowledge about stimulus contingencies during learn-
ing (see Gluck, Shohamy, & Myers, 2002, for further
discussion). Related to this idea is the possibility for involve-
ment of episodic or relational processes in influencing
performance—processes that are known to depend on the

hippocampus (Cohen, Poldrack, & Eichenbaum, 1997;
Eichenbaum, Yonelinas, & Ranganath, 2007). The prevailing
idea in prominent reinforcement learning models is that par-
ticipants create a running average of rewards accrued for a
given action, and that this average is updated incrementally
as learning ensues. Yet accumulating evidence suggests that
episodic or relational processes play a role in value-based
reinforcement learning, even when there is no explicit task
demand to use such processes, and even when participants
are unaware of the use of these processes (Bornstein et al.,
2017; Wimmer, Daw, & Shohamy, 2012). For example,
Bornstein et al. (2017) recently showed that an episodic mem-
ory model (one in which participants sample individual trial
memories) better fit choices in a probabilistic value-based
learning task than did a classic incremental learning model.
Other work suggests that participants incidentally incorporate
relational structure into their choice behavior—a phenomenon
supported by functional coupling between the striatum and
hippocampus (Wimmer et al., 2012).

Still, an important piece of evidence that speaks against
either a declarative or an episodic or relational explanation
comes from the Foerde et al. (2013) findings described above.
Given the similarities between our tasks, there is no obvious
reason that the demands on declarative or episodic/relational
memory would be larger in our study as compared with
Foerde et al. On the surface, the demands on explicit memory
should, if anything, be greater in Foerde et al., as the stimuli
were more easily verbalizable (i.e., they involved solid, basic
colors such as Bblue,^ whereas we used fractal-like patterns;
see Fig. S2 in the SupplementaryMaterials), yet in such a case
the hippocampus was neither necessary (Foerde et al., 2013)
nor engaged (Foerde & Shohamy, 2011).

Other domain-general accounts of hippocampal contribu-
tions to value-based learning have also been proposed—
namely, that the hippocampus provides a temporal context
signal (Howard & Eichenbaum, 2015; Palombo, Di Lascio,
Howard, & Verfaellie, 2018; see Palombo & Verfaellie, 2017)
or an internal model (Stachenfeld, Botvinick, & Gershman,
2017; also see Shohamy & Turk-Browne, 2013). Evidence
suggests that the former is more relevant under conditions
where feedback is delayed and the latter under conditions of
multistep learning. Because neither of these conditions apply
to the current task, it is not obvious how they provide an
explanation of the hippocampal contribution observed here,
although they may help explain task dissociations in other
work (e.g., see Foerde & Shohamy, 2011; Foerde et al., 2013).

Although the precise mechanism is unclear, the observation
that hippocampal and striatal systems were both engaged in
our task provides another instance in which these systems may
cooperate during learning. Such dual engagement calls for
refinement of existing theoretical memory system models that
postulate that these brain regions support dissociable aspects
of learning and memory or even compete during learning.
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Future research is needed to determine the boundary condi-
tions of hippocampal versus striatal involvement in such
value-based learning and, crucially, the precise nature of their
contributions to such learning. Nonetheless, the present find-
ings highlight a broader role of the hippocampus in cognition
than previously appreciated and may elucidate how the hip-
pocampus contributes to goal-directed behaviors more broad-
ly (Palombo, Keane, & Verfaellie, 2015; Shohamy & Turk-
Browne, 2013).
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