Problem 1.

Consider the N $(0, \theta)$ family, where $\theta > 0$ (note that $var(X) = \theta$).

- a. Find the maximum likelihood estimator (MLE) of θ , call it Y_n .
- b. Show whether or not Y_n is unbiased for θ .
- c. Show whether or not Y_n is a consistent estimator for θ .
- d. Show whether or not Y_n is asymptotically normal, and if it is, identify its asymptotic normal variance.
- e. Find $I(\theta)$, Fisher's Information for θ . Is MLE(θ) efficient?
- f. Find the MLE of θ^3 . Show whether or not it is biased.
- g. Find a function g so that $n^{1/2}(g(Y_n) g(\theta))$ is asymptotically standard normal.

Problem 2.

We say the rv X has the W distribution with parameter $\theta > 0$ (written $X \sim W(\theta)$) if X has pdf $f(x, \theta) = 4x^3/\theta^4$, for $0 < x < \theta$, and f(x) = 0, elsewhere.

Consider the parameterized D family $\{D(\theta) : \theta > 0\}$.

- a. Let Y_n be the maximum of the random sample of size n. Show that Y_n is a consistent estimator of θ .
- b. Find the pdf of Y_n . (*Hint:* Find the cdf first.)
- c. Show that Y_n is NOT an unbiased estimator of θ .
- d. Show that $n(\theta Y_n)$ converges in distribution, and find its asymptotic distribution explicitly.
- e. Find an unbiased estimator of θ , call it T_n . Show that T_n is a consistent estimator of θ .
- f. Show that $n(\theta T_n)$ converges in distribution, and find its asymptotic distribution explicitly. (Hint: Use parts (d) and (e) here.)