Problem 1. Consider the N(0, θ) family, where $\theta > 0$; note that var(X) = θ if X ~ N(0, θ). - a. Does this family satisfy all the regularity conditions for MLE? - b. Find the maximum likelihood estimator (MLE) of θ , call it Y_n . - c. Show whether or not Y_n is unbiased for θ . - d. Show whether or not Y_n is a consistent estimator for θ . - e. Show whether or not Y_n is asymptotically normal, and if it is, identify its asymptotic normal variance. - f. Find the MLE of θ^4 . Show whether or not it is biased. - g. Find a function g so that $n^{1/2}(g(Y_n) g(\theta))$ is asymptotically standard normal for all values of $\theta > 0$. ## Problem 2. We say the rv X has the W distribution with parameter $\theta \ge 0$ (written $X \sim W(\theta)$) if X has pdf $$f(x, \theta) = 3x^2/\theta^3$$, for $0 < x < \theta$, and $f(x) = 0$, elsewhere. Consider the parameterized W family $\{W(\theta):\theta\geq 0\}$. - a. Show that the MLE of θ is the sample maximum. - b. Let Y_n be the maximum of the random sample of size n. Show that Y_n is a consistent estimator of θ . - c. Find the pdf of Y_n. (*Hint*: Find the cdf first.) - d. Show that Y_n is NOT an unbiased estimator of θ . - e. Show that $n(\theta Y_n)$ converges in distribution, and find its asymptotic distribution explicitly. - f. Find an unbiased estimator of θ , call it T_n . Show that T_n is a consistent estimator of θ . - g. Show that $n(\theta T_n)$ converges in distribution, and find its asymptotic distribution explicitly. (Hint: Use parts (e) and (f) here.)