Problem 1.

Consider the N(0, θ) family, where $\theta > 0$; note that var(X) = θ if X ~ N(0, θ).

- a. Does this family satisfy all the regularity conditions for MLE?
- b. Find the maximum likelihood estimator (MLE) of θ , call it Y_n .
- c. Show whether or not Y_n is unbiased for θ .
- d. Show whether or not Y_n is a consistent estimator for θ .
- e. Show whether or not Y_n is asymptotically normal, and if it is, identify its asymptotic normal variance.
- f. Find the MLE of θ^4 . Show whether or not it is biased.
- g. Find a function g so that $n^{1/2}(g(Y_n) g(\theta))$ is asymptotically standard normal for all values of $\theta > 0$.

Problem 2.

We say the rv X has the W distribution with parameter $\theta \ge 0$ (written $X \sim W(\theta)$) if X has pdf

$$f(x, \theta) = 3x^2/\theta^3$$
, for $0 < x < \theta$, and $f(x) = 0$, elsewhere.

Consider the parameterized W family $\{W(\theta):\theta\geq 0\}$.

- a. Show that the MLE of θ is the sample maximum.
- b. Let Y_n be the maximum of the random sample of size n. Show that Y_n is a consistent estimator of θ .
- c. Find the pdf of Y_n. (*Hint*: Find the cdf first.)
- d. Show that Y_n is NOT an unbiased estimator of θ .
- e. Show that $n(\theta Y_n)$ converges in distribution, and find its asymptotic distribution explicitly.
- f. Find an unbiased estimator of θ , call it T_n . Show that T_n is a consistent estimator of θ .
- g. Show that $n(\theta T_n)$ converges in distribution, and find its asymptotic distribution explicitly. (Hint: Use parts (e) and (f) here.)